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1. Introduction.

Signi�cant progress has been made in the last decade on the theory of algorithms for network 
ow

problems. Some of the algorithms that came out of this research have been shown to have practical impact

as well. In particular, the push-relabel method [10, 15] is the best currently known way for solving the

maximum 
ow problem [1, 7, 22]. This method extends to the minimum-cost 
ow problem using cost

scaling [10, 16]. Earlier implementations of this method [4, 13] performed well on some problems but

relatively poorly on others. A later implementation [11] has been shown very competitive on a wide class

of problems. In this paper we study e�cient implementations of the cost scaling push-relabel method

for the assignment problem.

The most relevant theoretical results on the assignment problem are as follows. The best currently

known strongly polynomial time bound of O(n(m + n logn)) is achieved by the classical Hungarian

method of Kuhn [20]. Here n denotes the number of nodes in the input network and m denotes the

number of edges. (Implementations of the Hungarian method and related algorithms are discussed in

[6].) Under the assumption that the input costs are integers in the range [�C; : : :; C ], Gabow and

Tarjan [9] use cost scaling and blocking 
ow techniques to obtain an O(

p

nm log(nC)) time algorithm.

Algorithms with the same running time bound based on the push-relabel method appeared in [14, 23].

In this paper we study implementations of the scaling push-relabel method in the context of the

assignment problem. We use the ideas behind the minimum-cost 
ow codes [4, 11, 13], the assignment

codes [2, 5, 3], and the ideas of theoretical work on the push-relabel method for the assignment problem

[14], as well as new techniques aimed at improving practical performance of the method. We develop

several CSA (Cost Scaling Assignment) codes based on di�erent heuristics which improve the code

performance on many problem classes. The \basic" code CSA-B does not use any heuristics, the CSA-Q

code uses a \quick-minima" heuristic, and the CSA-S code uses a \speculative arc �xing" heuristic.

Another outcome of our research is a better understanding of cost scaling algorithm implementations,

which may lead in turn to improved cost scaling codes for the minimum-cost 
ow problem.

We compare the performance of the CSA codes to four other codes: SFR10, an implementation

of the auction method for the assignment problem [5]; SJV and DJV, implementations of Jonker and

Volgenant's shortest augmenting path method [18] tuned for sparse and dense graphs respectively; and

ADP/A, an implementation of the interior-point method specialized for the assignment problem [24].

We make the comparison over classes of problems from generators developed for the First DIMACS

Implementation Challenge [17]

1

and on problems obtained from digital images as suggested by Don

Knuth [19]. Of our codes, CSA-Q is best overall. This code outperforms ADP/A on all problem

1

The DIMACS benchmark codes, problem generators, and other information we refer to are available

by anonymous ftp from dimacs.rutgers.edu
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instances in our tests, outperforms SFR10 on all except one class, and outperforms SJV and DJV on

large instances in every class. Although our second-best code, CSA-S, is somewhat slower than CSA-Q

on many problem classes, it is usually not much slower and it outperforms CSA-Q on three problem

classes, always outperforms ADP/A, is worse than SFR10 by only a slight margin on one problem class

and by a noticeable margin on only one problem class, and loses to the Jonker-Volgenant codes only on

one class and on small instances from two other classes. While we use the CSA-B code primarily to

gauge the e�ect of heuristics on performance, it is worth noting that it outperforms ADP/A in all our

tests, the Jonker-Volgenant codes on large instances from all but one class, and SFR10 on all but one

class of problems we tested.

This paper is organized as follows. Section 2 gives the relevant de�nitions. Section 3 outlines the

scaling push-relabel method for the assignment problem. Section 4 discusses our implementation, in

particular the techniques used to improve our code's practical performance. Section 5 describes the

experimental setup. Section 6 gives the experimental results. In Section 7, we give concluding remarks.

2. Background

Let G = (V = X [ Y;E) be an undirected bipartite graph and let n = jV j, m = jEj. A matching

in G is a subset of edges M � E that have no node in common. The cardinality of the matching is

jM j. Given a weight function c : E ! R, we de�ne the weight of M to be the sum of weights of edges

in M . The assignment problem is to �nd a maximum cardinality matching of maximum weight. We

assume that the weights are integers in the range [�C; : : : ; C ]. To simplify the presentation, we assume

that jXj = jY j, G has a perfect matching (i.e., a matching of cardinality jXj), and every node degree

in G is at least two. We can dispense with these last assumptions without any signi�cant decrease in

performance by using a slightly more complicated reduction to the transportation problem than the one

described below.

Our implementation reduces the assignment problem to the transportation problem de�ned as follows.

Let G = (V;E) be a digraph with a real-valued capacity u(a) and a real-valued cost c(a) associated

with each arc

2

a and a real-valued supply d(v) associated with each node v. We assume that

P

V

d(v) =

0. A pseudo
ow is a function f : E ! R

+

satisfying the capacity constraints: for each a 2 E,

f(a) � u(a). For a pseudo
ow f and a node v, the excess 
ow into v, e

f

(v); is de�ned by e

f

(v) =

d(v) +

P

(u;v)2E

f(u; v) �

P

(v;w)2E

f(v; w). A node v with e

f

(v) > 0 is called active. Note that

P

v2V

e

f

(v) = 0.

2

Sometimes we refer to an arc a by its endpoints, e.g., (v; w). This is ambiguous if there are multiple

arcs from v to w. An alternative is to refer to v as the tail of a and to w as the head of a, which is

precise but inconvenient.



3

A 
ow is a pseudo
ow f such that, for each node v, e

f

(v) = 0. Observe that a pseudo
ow f is a 
ow

if and only if there are no active nodes. The cost of a pseudo
ow f is given by cost(f) =

P

a2E

c(a)f(a).

The transportation problem is to �nd a 
ow of minimum cost.

We use a slight variation of the standard reduction from the assignment problem to the minimum-

cost 
ow problem (see e.g. [21]). Given an instance of the assignment problem (G; c), we construct a

transportation problem instance (G = (V;E); c; u) as follows. We de�ne V = V = X [ Y . For every

edge fv; wg 2 E such that v 2 X and w 2 Y , we add the arc (v; w) to E and de�ne c(v; w) = �c(v; w)

and u(v; w) = 1. Finally we de�ne d(v) = 1 for all v 2 X and d(w) = �1 for all w 2 Y . Note that the

graph G is bipartite.

For a given pseudo
ow f , the residual capacity of an arc a 2 E is u

f

(a) = u(a) � f(a). The set of

residual arcs E

f

contains the arcs a 2 E with f(a) < u(a) and the reverse arcs, a

R

, for every a 2 E

with f(a) > 0. The residual graph G

f

= (V;E

f

) is the graph induced by the residual arcs. For a 2 E,

we de�ne c(a

R

) = �c(a). Note that if G is obtained by the above reduction, then for any integral

pseudo
ow f and for any arc a 2 E, u(a); f(a) 2 f0; 1g.

A price function is a function p : V ! R. For a given price function p, the reduced cost of an arc

(v; w) is c

p

(v; w) = c(v; w) + p(v) � p(w) and the partial reduced cost is c

0

p

(v; w) = c(v; w)� p(w).

For a constant � � 0, a pseudo
ow f is said to be �-optimal with respect to a price function p if, for

every residual arc a 2 E

f

, we have

�

a 2 E ) c

p

(a) � 0;

a

R

2 E ) c

p

(a) � ��:

A pseudo
ow f is �-optimal if f is �-optimal with respect to some price function p. If the arc costs and

capacities are integers and � < 1=n, any �-optimal 
ow is optimal.

For a given f and p, an arc a 2 E

f

is admissible i�

�

a 2 E and c

p

(a) < �=2 or

a

R

2 E and c

p

(a) < ��=2:

The admissible graph G

A

= (V;E

A

) is the graph induced by the admissible arcs.

3. The Method

First we give a high-level description of the successive approximation algorithm (see Figure 1). For

a detailed presentation of the successive approximation framework and the associated proofs, see [16].

The algorithm starts with � = C and p(v) = 0 for all v 2 V . At the beginning of every iteration, the

algorithm divides � by a constant factor � and sets f to the zero pseudo
ow. The iteration modi�es f
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procedure min-cost(V;E; u; c);

[initialization]

� C; 8v, p(v)  0;

[loop]

while � � 1=n do

(�; f; p) re�ne(�; p);

return(f);

end.

Figure 1. The cost scaling algorithm.

procedure refine(�; p);

[initialization]

� �=�;

8a 2 E, f(a)  0;

8v 2 X, p(v)  �min

(v;w)2E

c

0

p

(v; w);

[loop]

while f is not a 
ow

apply a push or a relabel operation;

return(�; f; p);

end.

Figure 2. The generic re�ne subroutine.

and p so that f is an (�=�)-optimal 
ow with respect to p. When � < 1=n, f is optimal and the algorithm

terminates. The number of iterations of the algorithm is 1 + blog

�

(nC)c.

Reducing � is the task of the subroutine re�ne. The input to re�ne is � and p such that there exists

a 
ow f that is �-optimal with respect to p. The output from re�ne is �

0

= �=�, a 
ow f , and a price

function p such that f is �

0

-optimal with respect to p.

The generic re�ne subroutine (described in Figure 2) begins by decreasing the value of �, setting

f to the zero pseudo
ow (thus creating some excesses and making some nodes active), and setting

p(v) = �min

(v;w)2E

fc

0

p

(v; w)g for every v 2 X. This converts the f into an �-optimal pseudo
ow

(indeed, into a 0-optimal pseudo
ow). Then the subroutine converts f into an �-optimal 
ow by applying

a sequence of push and relabel operations, each of which preserves �-optimality. The generic algorithm

does not specify the order in which these operations are applied. Next, we describe the push and relabel

operations for the unit-capacity case.

A push operation applies to an admissible arc (v; w) whose tail node v is active. It consists of pushing

one unit of 
ow from v to w, thereby decreasing e

f

(v) by one, increasing e

f

(w), and either increasing

f(v; w) by one if (v; w) 2 E or decreasing f(w; v) by one if (w; v) 2 E. A relabel operation applies to

a node v. The operation sets p(v) to the smallest value allowed by the �-optimality constraints, namely
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push(v; w).

send a unit of 
ow from v to w.

end.

relabel(v).

if v 2 X

then replace p(v) by max

(v;w)2E

f

�

p(w) � c(v; w)

	

else replace p(v) by max

(v;w)2E

f

�

p(w)� c(v; w)� �

	

end.

Figure 3. The push and relabel operations

max

(v;w)2E

f

�

p(w) � c(v; w)

	

if v 2 X, or max

(v;w)2E

f

�

p(w)� c(v; w)� �

	

otherwise.

The analysis of cost scaling push-relabel algorithms is based on the following facts [14, 16]: During

a scaling iteration

� no node price increases;

� for any v 2 V , p(v) decreases by O(n�).

4. Implementation and Heuristics

In this section we discuss implementation issues and heuristics aimed at speeding up the method.

The e�ciency of a scaling implementation depends on the choice of scale factor �. Although an

earlier study [5] suggests that the performance of scaling codes for the assignment problem may be quite

sensitive to the choice of scale factor, our observations are to the contrary. Spot checks on instances

from several problem classes indicated that the running times seem to vary by a factor of no more than

2 for values of � between 4 and 40. We chose � = 10 for our tests; di�erent values of � would yield

running times that are somewhat worse on some problem classes and somewhat better on others, but the

di�erence is not drastic. We believe the lack of robustness alluded to in [5] may be due to a characteristic

of the implementation of SFR10 and related codes. In particular, SFR10 contains an \optimization" that

seems to terminate early scaling phases prematurely. Our codes run every scaling phase to completion

as suggested by the theory.

The e�ciency of an implementation of re�ne depends on the number of operations performed by the

method and on the implementation details. We discuss the operation ordering �rst.

The implementation maintains the price function p and the 
ow f . For each node w 2 Y with

e

f

(w) = 0, we maintain a pointer to the unique node v = �(w) such that f(v; w) = 1.

Our implementation maintains the invariant that only the nodes in X are active, except possibly in

the middle of the double-push operation described below. The implementation picks an active node and
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applies the double-push operation to it.

The performance of the implementation depends on the strategy for selecting the next active node

to process. We experimented with several operation orderings, including those suggested in [16] and

[12]. Our implementation uses the LIFO ordering, i.e., the set of active nodes is maintained as a stack.

This ordering worked best in our tests; the FIFO ordering usually worked somewhat worse, although

the di�erence was never drastic.

4.1. The Double-Push Operation. The double-push operation is similar to a sequential version of

the match-and-push procedure from [14]. The operation applies to an active node v. Recall that at the

beginning of a double-push, all active nodes are in X, so v 2 X.

First the double-push operation processes v by relabeling v, pushing 
ow from v along an admissible

arc (v; w), and then relabeling v again. If e

f

(w) becomes positive, the operation pushes 
ow from w to

�(w) and sets �(w) = v. Finally, double-push relabels w.

Lemma 4.1. The double-push operation is correct.

Proof. We only need to show that double-push applies the pushing operation correctly. Since immedi-

ately before the 
ow is pushed out of v the node is relabeled, there is an admissible arc out of v and the

push is correct. If this push makes w active, then there is a second push from w to �(w).

Consider the last double-push into w which set �(w) to its current value. Because the network is

obtained via a reduction described in Section 2, (w; �(w)) is the only residual arc out of w. So when the

double-push relabeled w, c

p

(�(w); w) became �. From this double-push to the current one, w and �(w)

have not been relabeled (the latter holds because (w; �(w)) was the only residual arc into �(w) during

that time period). Thus during the current push from w, c

p

(�(w); w) = �, so the push is valid.

Lemma 4.2. A double-push operation decreases the price of a node w 2 Y by at least �.

Proof. Just before the double-push, w is either unmatched or matched.

In the �rst case, the 
ow is pushed into w and at this point the only residual arc out of w is the arc

(w; v). Just before that the double-push relabeled v and c

p

(v; w) = 0. Next double-push relabels w and

p(w) decreases by �.

In the second case, the 
ow is pushed to w and at this point w has two outgoing residual arcs, (w; v)

and (w; �(w)). As we have seen, c

p

(v; w) = 0 before v's second relabeling, and c

p

(�(w); w) = �. After

the second relabeling of v, double-push pushes 
ow from w to �(w) and relabels w, reducing p(w) by at

least �.
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double-push(v).

let (v; w) and (v; z) be the arcs with the smallest and the second-smallest reduced costs;

push(v; w);

p(v) = �c

0

p

(v; z);

if e

f

(w) > 0

push(w; �(w));

�(w) = v;

p(w) = p(v) + c(v; w)� �;

end.

Figure 4. E�cient implementation of double-push

Corollary 4.3. There are O(n

2

) double-push operations per re�ne.

4.2. E�cient Implementation. Suppose we apply double-push to a node v. Let (v; w) and (v; z) be

the arcs out of v with the smallest and the second-smallest reduced costs, respectively. These arcs can

by found by scanning the adjacency list of v once. The e�ects of double-push on v are equivalent to

pushing 
ow along (v; w) and setting p(v) = �c

0

p

(v; z). To relabel w, we set p(w) = p(v) + c(v; w) � �.

This implementation of double-push is summarized in Figure 4.

It is not necessary to maintain the prices of nodes in X explicitly; for v 2 X, we can de�ne p(v)

implicitly by p(v) = �min

(v;w)2E

fc

0

p

(v; w)g if e

f

(v) = 1 and p(v) = c

0

(v; w) + � if e

f

(v) = 0 and (v; w)

is the unique arc with f(v; w) = 1. One can easily verify that using implicit prices is equivalent to

using explicit prices in the above implementation. The only time we need to know the value of p(v)

is when we relabel w in double-push, and at that time p(v) = �c

0

p

(v; z) which we compute during the

previous relabel of v. Maintaining the prices implicitly saves memory and time. The implementation of

the double-push operation with implicit prices is similar to the basic step of the auction algorithm of [2].

Our code CSA-B implements the scaling push-relabel algorithm using stack ordering of active nodes

and the implementation of double-push with implicit prices mentioned above.

4.3. Heuristics. In this section we describe two heuristics that often improve the algorithm's perform-

ance.

The kth-best heuristic [2] is aimed at reducing the number of scans of arc lists of nodes in X. The

idea of the kth-best heuristic is as follows. Recall that we scan the list of v to �nd the arcs (v; w) and

(v; z) with the smallest and second-smallest values of the partial reduced cost. Let k � 3 be an integer.

When we scan the list of v 2 X, we compute the kth-smallest value K of the partial reduced costs of

the outgoing arcs and store the k� 1 arcs with the k� 1 smallest partial reduced costs. The node prices

monotonically decrease during re�ne, hence during the subsequent double-push operations we can �rst

look for the smallest and the second-smallest arcs among the stored arcs whose current partial reduced
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cost is at most K. We need to scan the list of v again only when all except possibly one of the saved

arcs have partial reduced costs greater than K.

Our code CSA-Q is a variation of CSA-B that uses the 4th-best heuristic.

The idea of the speculative arc �xing heuristic [8, 11] is to move arcs with reduced costs of large

magnitude to a special list. These arcs are not examined by the double-push procedure but are examined

as follows at a (relatively large) periodic interval. When the arc (v; w) is examined, if the �-optimality

condition is violated on (v; w), f(v; w) is modi�ed to restore �-optimality and (v; w) is moved back to

the adjacency list of v; if �-optimality holds for (v; w) but jc

p

(v; w)j is no longer large, (v; w) is simply

moved back to the adjacency list. This heuristic takes advantage of the fact that the 
ow is �xed on

arcs of high reduced cost [16].

Our code CSA-S is a variation of CSA-B that uses the speculative arc �xing heuristic.

We implemented a number of other heuristics that are known to improve performance of cost scaling

code for the minimum-cost 
ow problem [11]. Among these are: global price updates which periodically

ensure, via a specialized shortest-paths computation, that the admissible graph contains a path from

every node with 
ow excess to some node with 
ow de�cit; and price re�nement which determines at

each iteration whether the current assignment is actually �

0

-optimal for some �

0

< �, and hence avoids

unnecessary executions of re�ne. Our best implementation uses neither of these strategies, however, since

even taking advantage of the assignment problem's structure to simplify and speed up these heuristics, a

typical price re�nement iteration used more time than simply executing re�ne in our tests. The double-

push operation seems to maintain a su�ciently \aggressive" price function and global price updates

cannot reduce the number of push and relabel operations enough to improve the running time.

5. Experimental Setup

All the test runs were executed on a Sun SparcStation 2 with a clock rate of 40 MHz and 96 Megabytes

of main memory. We compiled the SFR10 code supplied by David Casta~non with the Sun Fortran-77

compiler, release 2.0.1 using the -O4 optimization switch

3

. We compiled the DJV and SJV codes supplied

by Jianxiu Hao with the Sun C compiler release 1.0, using the -O2 optimization option. We compiled

our CSA codes with the Sun C compiler release 1.0, using the -fast optimization option; each choice

seemed to yield the fastest execution times for the code where we used it. Times reported here are Unix

user CPU times, and were measured using the times() library function. During each run, the programs

3

Casta~non [5] recommends setting the initial \bidding increment" in SFR10 to a special value for

problems of high density; we found this advice appropriate for the dense problem class, but discovered

that it hurt performance on the geometric class. We followed Casta~non's recommendation only on the

class where it seemed to improve SFR10's performance.
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C benchmarks

user times

Test 1 Test 2

2.7 sec 24.0 sec

FORTRAN benchmarks

user times

Test 1 Test 2

1.2 sec 2.2 sec

Figure 5. DIMACS benchmark times

collect time usage information after reading the input problem and initializing all data structures and

again after computing the optimum assignment; we take the di�erence between the two �gures to indicate

the CPU time actually spent solving the assignment problem.

To give a baseline for comparison of our machine's speed to others, we ran the DIMACS benchmarks

wmatch (to benchmark C performance) and netflo (to benchmark FORTRAN performance) on our

machines, with the timing results given in Figure 5. It is interesting (though neither surprising nor

critical to our conclusions) to note that the DIMACS benchmarks do not precisely re
ect the mix

of operations in the codes we developed. Of two C compilers available on our system, the one that

consistently ran our code faster by a few percent also ran the benchmarks more slowly by a few percent

(the C benchmark times in Figure 5 are for code generated by the same compiler we used for our

experiments). But even though they should not be taken as the basis for very precise comparison,

the benchmarks provide a useful way to estimate relative speeds of di�erent machines on the sort of

operations typically performed by combinatorial optimization codes.

We did not run the ADP/A code on our machine, but because the benchmark times reported in

[24] di�er only slightly from the times we obtained on our machine, we conclude that the running times

reported for ADP/A in [24] form a reasonable basis for comparison with our codes. Therefore, we report

running times directly from [24]. As the reader will see, even if this benchmark comparison introduces

a signi�cant amount of error, our conclusions about the codes' relative performance are justi�ed by the

large di�erences in performance between ADP/A and the other codes we tested.

The DJV code is designed for dense problems and uses an adjacency-matrix data structure. The

memory requirements for this code would be prohibitive on sparse problems with many nodes. For this

reason, we included it only in experiments on problem classes that are dense. On these problems, DJV

is faster than SJV by a factor of about 1.5. It is likely that our codes and the SFR10 code would enjoy

a similar improvement in performance if they were modi�ed to use the adjacency-matrix data structure.

We collected performance data on a variety of problem classes, many of which we took from the

First DIMACS Implementation Challenge. Following is a brief description of each class; details of the

generator inputs that produced each set of instances are included in Appendix A.

5.1. The High-Cost Class. Each v 2 X is connected by an edge to 2 log

2

jV j randomly-selected

nodes of Y , with integer edge costs uniformly distributed in the interval [0; 10

8

].
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5.2. The Low-Cost Class. Each v 2 X is connected by an edge to 2 log

2

jV j randomly-selected nodes

of Y , with integer edge costs uniformly distributed in the interval [0; 100].

5.3. The Two-Cost Class. Each v 2 X is connected by an edge to 2 log

2

jV j randomly-selected nodes

of Y , each edge having cost 100 with probability 1=2, or cost 10

8

with probability 1=2.

5.4. The Fixed-Cost Class. For problems in this class, we viewX as a copy of the set f1; 2; : : : ; jV j=2g,

and Y as a copy of f jV j=2 + 1; jV j=2 + 2; : : : ; jV j g. Each v 2 X is connected by an edge to jV j=16

randomly-selected nodes of Y , with edge (x; y), if present, having cost 100 � x � y.

5.5. The Geometric Class. Geometric problems are generated by placing a collection of integer-

coordinate points uniformly at random in the square [0; 10

6

]� [0; 10

6

], coloring half the points blue and

the other half red, and introducing an edge between every red point r and every blue point b with cost

equal to the 
oor of the distance between r and b.

5.6. The Dense Class. Like instances of the geometric class, dense problems are complete, but edge

costs are distributed uniformly at random in the range [0; 10

7

].

5.7. Picture Problems. Picture problems, suggested by Don Knuth [19], are generated from photo-

graphs scanned at various resolutions, with 256 greyscale values. The set V is the set of pixels; the pixel

at row r, column c is a member of X if r + c is odd, and is a member of Y otherwise. Each pixel has

edges to its vertical and horizontal neighbors in the image, and the cost of each edge is the absolute value

of the greyscale di�erence between its two endpoints. Note that picture problems are extremely sparse,

with an average degree always below 4. Although picture problems are an abstract construct with no

practical motivation, the solution to a picture problem can be viewed as a tiling of the picture with

dominos, where we would like each domino to cover greyscale values that are as di�erent as possible.

For our problems, we used two scanned photographs, one of each author of this paper.

6. Experimental Observations and Discussion

In the following tables and graphs, we present performance data for the codes. Note that problem

instances are characterized by the number of nodes on a single side, i.e., half the number of nodes in

the graph.

We report times on the test runs we conducted, along with performance data for the ADP/A code

taken from [24]. The instances on which ADP/A was timed in [24] are identical to those we used in our

tests. We give mean running times computed over three instances for each problem size in each class;

in the two-cost and geometric classes we also give mean running times computed over 15 instances and
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sample deviations for each sample size. We computed sample deviations for each problem class and size,

and observed that in most cases they were less than ten percent of the mean (often much less). The two

exceptions were the two-cost and geometric classes, where we observed larger sample deviations in the

running times for some of the codes. For these two classes we also collected data on 15 instances for

each problem size. The sample statistics taken over 15 instances seem to validate those we observed for

three instances. All statistics are reported in seconds.

6.1. The High-Cost Class. Figure 6 summarizes the timings on DIMACS high-cost instances. The

kth-best heuristic yields a clear advantage in running time on these instances. CSA-Q beats CSA-B, its

nearest competitor, by a factor of nearly 2 on large instances, and CSA-Q seems to have an asymptotic

advantage over the other codes, as well. The overhead of speculative arc �xing is too great on high-cost

instances; the running times of CSA-S for large graphs are essentially the same as those of SFR10. SJV

has the worst asymptotic behavior.

6.2. The Low-Cost Class. The situation here is very similar to the high-cost case: CSA-Q enjoys a

slight asymptotic advantage as well as a clear constant-factor advantage over the competing codes. SJV

has worse asymptotic behavior than the other codes on the low-cost class, just as it does on high-cost

instances. See Figure 7.

6.3. The Two-Cost Class. The two-cost data appear in Figure 8 and Figure 9. It is di�cult for

robust scaling algorithms to exploit the special structure of two-cost instances; the assignment problem

for most of the graphs in this class amounts to �nding a perfect matching on the high-cost edges, and

none of the scaling codes we tested is able to take special advantage of this observation. Because SJV

does not use scaling, it would seem a good candidate to perform especially well on this class, and indeed

it does well on small two-cost instances. For large instances, however, SJV uses a great deal of time in

its shortest augmenting path phase, and performs poorly for this reason. Speculative arc �xing improves

signi�cantly upon the performance of the basic CSA implementation, and the kth-best heuristic hurts

performance on this class of problems. It seems that the kth-best heuristic tends to speed up the last few

iterations of re�ne, but it hurts in the early iterations. Like kth-best, the speculative arc �xing heuristic

is able to capitalize on the fact that later iterations of re�ne can a�ord to ignore many of the arcs incident

to each node, but by keeping all arcs of similar cost under consideration in the beginning, speculative

arc �xing allows early iterations to run relatively fast. On this class, CSA-S is the winner, although

for applications limited to this sort of strongly bimodal cost distribution, an unscaled push-relabel or

blocking 
ow algorithm might perform better than any of the codes we tested. No running times are

given in [24] for ADP/A on this problem class, but the authors suggest that their program performs

very well on two-cost problems. Relative to those of the other codes, the running times of SFR10 are
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High-Cost Instances

ADP/A
SJV

SFR10
CSA-S
CSA-B
CSA-Q

Nodes ADP/A SFR10 SJV CSA-B CSA-S CSA-Q

(jXj) time time time time time time

1024 17 1.2 0.87 0.7 1.1 0.5

2048 36 2.9 4.40 1.9 2.7 1.3

4096 132 6.4 18.1 4.3 6.2 2.8

8192 202 15.7 65.6 10.8 15.3 6.5

16384 545 37.3 266 25.5 38.3 14.3

32768 1463 85.7 1197 58.7 84.0 32.4

Figure 6. Running Times for the High-Cost Class
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Low-Cost Instances

ADP/A
SJV

SFR10
CSA-S
CSA-B
CSA-Q

Nodes ADP/A SFR10 SJV CSA-B CSA-S CSA-Q

(jXj) time time time time time time

1024 15 0.75 0.82 0.48 0.64 0.44

2048 29 1.83 3.03 1.21 1.77 0.98

4096 178 4.31 12.6 2.99 4.13 2.43

8192 301 10.7 57.0 7.39 10.3 5.72

16384 803 27.7 229 20.1 27.8 13.4

32768 2464 68.5 1052 46.9 64.6 30.3

Figure 7. Running Times for the Low-Cost Class
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Two-Cost Instances

SJV
SFR10
CSA-Q
CSA-B
CSA-S

Nodes SFR10 SJV CSA-B CSA-S CSA-Q

(jXj) time s time s time s time s time s

1024 5.13 0.09 0.35 0.00 3.09 0.24 2.58 0.15 5.21 0.33

2048 14.0 1.1 1.16 0.01 7.72 0.28 6.19 0.18 11.1 1.0

4096 37.3 1.1 4.21 0.16 17.7 1.1 14.2 1.6 23.3 2.4

8192 107 12 18.2 0.43 43.4 3.5 36.7 2.1 58.6 3.3

16384 366 81 73.6 0.58 102 2.8 85.4 3.2 133 7.8

32768 894 180 320 1.2 240 6.0 185 6.8 299 6.4

65536 1782 60 1370 5.8 531 15 417 11 628 25

Figure 8. Running Times (3-instance samples) for the Two-Cost Class



15

Nodes SFR10 SJV CSA-B CSA-S CSA-Q

(jXj) time s time s time s time s time s

1024 5.05 0.32 0.35 0.02 3.07 0.21 2.56 0.10 4.93 0.40

2048 14.1 1.1 1.18 0.04 7.49 0.37 6.18 0.26 10.8 0.73

4096 37.4 2.7 4.22 0.14 17.7 1.0 14.7 0.84 24.1 1.6

8192 109 9.8 18.0 0.37 44.6 2.5 36.5 1.5 57.5 3.2

16384 314 50 73.7 0.57 105 4.2 84.1 2.9 130 8.4

32768 822 194 320 2.1 239 8.5 186 4.8 293 15

65536 2021 342 1376 7.5 524 25 426 16 637 27

Figure 9. Running Times (15-instance samples) for the Two-Cost Class

comparatively scattered at each problem size in this class; we believe this phenomenon results from the

premature termination of early scaling phases in SFR10 (see Section 4).

The relatively large sample deviations shown in Figure 8 motivated our experiments with 15 instances

of each problem size. The sample means and deviations of the 15-instance data are shown in Figure 9,

and they are consistent with and very similar to the three-instance data shown in Figure 8.

6.4. The Fixed-Cost Class. Figure 10 gives the data for the �xed-cost problem class. On smaller

instances of this class, CSA-B and CSA-Q have nearly the same performance. On instances with

jXj = 1024 and jXj = 2048, CSA-Q is faster on �xed-cost problems than CSA-B, or indeed any of

the other codes. On smaller instances, speculative arc �xing does not pay for itself; when jXj = 2048,

the overhead is just paid for. Perhaps on larger instances, speculative arc �xing would pay o�. It is

doubtful, though, that CSA-S would beat CSA-Q on any instances of reasonable size. SJV exhibits

the worst asymptotic behavior among the codes we tested on this problem class.

6.5. The Geometric Class. On geometric problems, both heuristics improve performance over the

basic CSA-B code. The performance of CSA-S and CSA-Q is similar to and better than that of the

other codes. The Jonker-Volgenant codes seem to have asymptotic behavior similar to the other codes

on this class. See Figure 11.

Because the sample deviations shown in Figure 11 are somewhat large compared to those we observed

on most other problem classes, we ran experiments on 15 instances as a check on the validity of the

data. Statistics calculated over 15-instance samples are reported in Figure 12, and they are very much

like the three-instance data.

6.6. The Dense Class. The di�erence between Figures 12 and 13 shows that the codes' relative

performance is signi�cantly a�ected by changes in cost distribution. Except on very small instances,

CSA-Q is the winner in this class; DJV is its closest competitor, with SJV performing fairly well also.
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Fixed-Cost Instances

ADP/A
SJV

SFR10
CSA-S
CSA-B
CSA-Q

Nodes ADP/A SFR10 SJV CSA-B CSA-S CSA-Q

(jXj) time time time time time time

128 3 0.16 0.18 0.06 0.08 0.07

256 11 0.63 2.14 0.30 0.37 0.32

512 46 3.59 19.4 1.6 1.8 1.7

1024 276 20.5 168 7.8 8.2 6.0

2048 N/A 123 1367 37.8 37.6 27.9

Figure 10. Running Times for the Fixed-Cost Class
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Geometric Instances

ADP/A
SJV
DJV

SFR10
CSA-B
CSA-Q
CSA-S

Nodes ADP/A SFR10 SJV DJV CSA-B CSA-S CSA-Q

(jXj) time s time s time s time s time s time s time s

128 12 0.5 1.27 0.46 6.64 4.4 4.36 2.9 0.79 0.28 0.62 0.05 0.58 0.19

256 47 1 6.12 0.23 25.3 3.3 16.9 2.0 3.67 0.67 2.56 0.08 2.43 0.34

512 214 42 31.0 4.1 110 2.8 73.2 1.0 27.9 8.1 11.9 0.89 16.7 3.7

1024 1316 288 193 19 424 51 297 32 114 24 54.9 1.42 62.5 2.6

Figure 11. Running Times (3-instance samples) for the Geometric Class
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Nodes SFR10 SJV DJV CSA-B CSA-S CSA-Q

(jXj) time s time s time s time s time s time s

128 1.28 0.21 5.96 2.0 3.85 1.3 0.78 0.16 0.61 0.03 0.57 0.11

256 6.21 0.82 26.1 4.7 17.5 2.9 3.72 0.51 2.63 0.09 2.50 0.27

512 35.0 6.0 101 11 68.2 7.4 23.2 4.9 11.8 0.67 15.1 2.4

1024 214 54 416 38 291 25 127 27 54.4 2.2 66.7 9.7

Figure 12. Running Times (15-instance samples) for the Geometric Class

As in the case of geometric problems, SJV and DJV seem to have asymptotic performance similar to

the scaling and interior-point codes on this class.

6.7. Picture Problems. Although the pictures used had very similar characteristics, the tentative

conclusions we draw here about the relative performance of the codes seem to apply to a broader class

of images. We performed trials on a variety of images generated and transformed by various techniques,

and found no substantial di�erences in relative performance, although some pictures seem to yield more

di�cult assignment problems than others. On the picture problems we tried, SFR10 performs better

than any of the CSA implementations; we believe that the \reverse-auction" phases performed by SFR10

[5] are critical to this performance di�erence. We were unable to obtain times for SJV and CSA-Q on

the largest problem instance from each picture, nor from SFR10 on the largest problem instance from

one of the pictures because the codes required too much memory. On the second-largest instance from

each picture, our experiments suggested that SJV would require more than a day of CPU time, so we

did not collect data for these cases. On picture problems CSA-Q performs signi�cantly worse than

either of the other two CSA implementations. This situation is no surprise because CSA-Q performs an

additional pointer dereference each time it examines an arc. In such a sparse graph, the 4 arcs stored

at each node exhaust the list of arcs incident to that node, so no bene�t is to be had from the kth-best

heuristic.

7. Concluding Remarks

Casta~non [5] gives running times for an auction code called SF5 in addition to performance data for

SFR10; SF5 and SFR10 are the fastest among the robust codes discussed. The data in [5] show that

on several classes of problems, SF5 outperforms SFR10 by a noticeable margin. Comparing Casta~non's

reported running times for SFR10 with the data we obtained for the same code allows us to estimate

roughly how SF5 performs relative to our codes. The data indicate that CSA-S and CSA-Q should

perform at least as well as SF5 on all classes for which data are available, and that CSA-Q should

outperform SF5 by a wide margin on some classes. A possible source of error in this technique of

estimation is that Casta~non reports times for test runs on cost-minimization problems, whereas all the



19

0.1

1

10

100

128 256 512 1024

r
u
n
n
i
n
g
 
t
i
m
e
 
(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Dense Instances

CSA-S
SFR10
CSA-B
SJV
DJV

CSA-Q

Nodes SFR10 SJV DJV CSA-B CSA-S CSA-Q

(jXj) time time time time time time

128 0.51 0.14 0.12 0.36 0.52 0.16

256 2.22 1.57 1.07 1.83 2.17 0.84

512 8.50 6.22 4.47 8.12 9.36 4.13

1024 41.2 28.5 19.6 42.0 47.1 18.9

Figure 13. Running Times for the Dense Class
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Andrew Picture Problems

SJV
CSA-Q
CSA-S
SFR10
CSA-B

Nodes SFR10 SJV CSA-B CSA-Q CSA-S

(jXj) time time time time time

65158 79.20 2656 73.23 103.3 76.70

131370 260.2 11115 173.2 248.0 185.5

261324 705.2 49137 665.1 907.8 844.8

526008 1073 N/A 1375 2146 1432

1046520 N/A N/A 5061 N/A 5204

Figure 14. Running Times for Problems from Andrew's Picture
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Robert Picture Problems

SJV
CSA-Q
CSA-S
CSA-B
SFR10

Nodes SFR10 SJV CSA-B CSA-Q CSA-S

(jXj) time time time time time

59318 49.17 1580 50.13 68.10 51.82

119132 153.1 6767 154.8 223.6 165.4

237272 351.4 26637 585.0 916.8 611.2

515088 827.8 N/A 2019 3095 3057

950152 1865 N/A 5764 N/A 8215

Figure 15. Running Times for Problems from Robert's Picture
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codes we test here (including SFR10) are con�gured to maximize cost. The di�erence in every case is

but a single line of code, but while on some classes minimization and maximization problems are similar,

on other classes we observed that minimization problems were signi�cantly easier for all the codes. This

di�erence is unlikely to be a large error source, however, since the relative performance of the codes we

tested was very similar for minimization problems and maximization problems.

It is interesting that SJV is asymptotically worse than all its competitors on every sparse class,

and that SJV and DJV are asymptotically very similar to their competitors on the dense classes. DJV

performs very well on the uniform dense problem class, but we feel SJV provides a more genuine reference

point, since the other combinatorial codes could be sped up on dense problems by replacing their central

data structures with an adjacency matrix representation similar to that in DJV.

From our tests and data from [24] and [5], we conclude that CSA-Q is a robust, competitive im-

plementation that should be considered for use by those who wish to solve assignment problems in

practice.
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Appendix A. Generator Inputs

The assignment instances on which we ran our tests were generated as follows: Problems in the high-

cost, low-cost, �xed-cost, and dense classes were generated using the DIMACS generator assign.c.

Problems in the two-cost class were generated using assign.c with output post-processed by the

DIMACS awk script twocost.a. Problems in the geometric class were generated using the DIMACS

generator dcube.c with output post-processed by the DIMACS awk script geomasn.a. Picture prob-

lems were generated from images in the Portable Grey Map format using our program p5pgmtoasn. To

obtain the DIMACS generators, use anonymous ftp to dimacs.rutgers.edu, or obtain the csa package

(which includes the generators) as described below.

In each class except the picture class, we generated instances of various numbers of nodes N and

using various seeds K for the random number generator. For each problem type and each N , either

three or 15 values of K were used; the values were integers 270001 through 270003 or through 270015.

For picture problems, we tested the codes on a single instance of each size.

A.1. The High-Cost Class. We generated high-cost problems using assign.c from the DIMACS

distribution. The input parameters given to the generator are as follows, with the appropriate values

substituted for N and K:

nodes N

sources N=2

degree 2 log

2

N

maxcost 100000000

seed K

A.2. The Low-Cost Class. Like high-cost problems, low-cost problems are generated using the

DIMACS generator assign.c. The parameters to the generator are identical to those for high-cost

problems, except for the maximum edge cost:

nodes N

sources N=2

degree 2 log

2

N

maxcost 100

seed K
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A.3. The Two-Cost Class. Two-cost instances are derived from low-cost instances using the Unix

awk program and the DIMACS awk script twocost.a. The instance with N nodes and seed K was

generated using the following Unix command line, with input parameters identical to those for the

low-cost problem class:

assign | awk -f twocost.a

A.4. The Fixed-Cost Class. We generated �xed-cost instances using assign.c, with input para-

meters as follows:

nodes N

sources N=2

degree N=16

maxcost 100

multiple

seed K

A.5. The GeometricClass. We generated geometric problems using the DIMACS generator dcube.c

and the DIMACS awk script geomasn.a. We gave input parameters to dcube as shown below, and used

the following Unix command line:

dcube | awk -f geomasn.a

nodes N

dimension 2

maxloc 1000000

seed K

A.6. The Dense Class. We generated dense problems using assign.c, with input parameters as

follows:

nodes N

sources N=2

complete

maxcost 1000000

seed K
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Appendix B. Obtaining the CSA Codes

To obtain a copy of the CSA codes, DIMACS generators referred to in this paper, and documentation

�les, send mail to ftp-request@theory.stanford.edu and use send csas.tar as the subject line; you

will automatically be mailed a uuencoded copy of a tar �le.


