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The Auction Algorithm for Assignment and
Other Network Flow Problems: A Tutorial

DIMITRI P. BERTSEKAS

Department of Electrical Engineering and

Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

The auction algorithm is an intuitive method for solving the
classical assignment problem. It outperforms substantially its
main competitors for important types of problems, both in the-
ory and in practice and is also naturally well suited for parallel
computation. I derive the algorithm from first principles, ex-
plain its computational properties, and discuss its extensions to
transportation and transshipment problems.

In the classical assignment problem
there are n persons and 1 objects that
we have to match on a one-to-one basis.
There is a benefit 4, for matching person {
with object j, and we want to assign per-
sons to objects so as to maximize the total
benefit. Mathematically, we want to find a
one-to-one assignment [a set of person-
object pairs (1, j1), . . ., (1, j.), such that
the objects ji, . . ., j. are all distinct] with
maximum total benefit 2., a,,.

The assignment problem is important in
many practical contexts. The most obvious
ones are resource allocation problems, such
as assigning personnel to jobs, machines to

tasks, and the like. There are also situa-
tions where the assignment problem ap-
pears as a subproblem in various methods
for solving more complex problems; for ex-
ample, in an important method for solving
traveling salesman problems [Held and
Karp 1970, 1971].

The assignment problem is also of great
theoretical importance because, despite its
simplicity, it embodies a fundamental lin-
ear programming structure. The most im-
portant type of linear programming prob-
lems, the linear network flow problem, can
be reduced to the assignment problem by
means of a simple reformulation [Bertsekas
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and Tsitsiklis 1989, p. 335; Papadimitriou
and Steiglitz 1982, p. 149]. Thus, any
method for solving the assignment prob-
lem can be generalized to solve the linear
network flow problem. For this reason, the
assignment problem has served as a conve-
nient starting point for important algo-
rithmic ideas in linear programming. For
example, the primal-dual method [Ford
and Fulkerson 1962; Minty 1960] was mo-
tivated and developed through Kuhn'’s
Hungarian method [Kuhn 1955], the first
specialized algorithm for the assignment
problem. (The name of the algorithm hon-
ors its connection with the work of the
Hungarian mathematician Egervary, dating
to 1931.)

In the 35 years since Kuhn’s original
proposal a plethora of algorithms for the
assignment problem have been proposed;
for a representative but incomplete sample,
see Balinski [1985, 1986], Barr, Glover, and
Klingman [1977], Balas et al. [1989], Bert-
sekas [1981], Carpaneto, Martello, and
Toth [1988], Derigs [1985], Engquist [1982],
Glover, Glover, and Klingman [1982],
Goldfarb [1985], Hall {1956), Hung [1983],
Jonker and Volegnant [1987], McGinnis
[1983], and Thompson [1981]. All of these
methods are based on iterative improve-
ment of some cost function; for example, a
primal cost (as in primal simplex methods),
or a dual cost (as in Hungarian-like meth-
ods, dual simplex methods, and relaxation
methods).

The auction algorithm, which I first pro-
posed in 1979 and discussed further in
Bertsekas [1985, 1988], departs signifi-
cantly from the cost improvement idea; at
any one iteration, it may deteriorate both
the primal and the dual cost, although in

INTERFACES 20:4

the end it finds an optimal assignment. It is
based on a notion of approximate optimal-
ity, called e-complementary slackness, and
while it implicitly tries to solve a dual
problem, it actually attains a dual solution
that is not quite optimal. I originally con-
ceived the auction algorithm as a method
for massively parallel solution of the as-
signment problem, but it has also turned
out to be very effective for serial
computation.

Prices and Equilibria

To develop an intuitive understanding of
the auction algorithm, it is helpful to intro-
duce an economic equilibrium problem
that turns out to be equivalent to the
assignment problem.

Let us consider the possibility of match-
ing the n objects with the n persons
through a market mechanism, viewing
each person as an economic agent acting in
his own best interest. Suppose that object j
has a price p, and that the person who re-
ceives the object must pay the price p,.
Then, the (net) value of object j for person
iis a, — p, and each person i would logi-
cally want to be assigned to an object j,
with maximal value, that is, with

Ay, =~ P, = }:r]naxn {a, —p,}. (N
We will say that a person i is happy if this
condition holds, and we will say that an
assignment and a set of prices are at equi-
librium when all persons are happy.
Equilibrium assignments and prices are
naturally of great interest to economists,
but there is also a fundamental relation
with the assignment problem; it turns out
that an equilibrium assignment offers max-
imum total benefit (and thus solves the
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assignment problem), while the corre-
sponding set of prices solves an associated
dual optimization problem. This is a conse-
quence of the celebrated duality theorem
of linear programming (see for example
Dantzig [1963], Papadimitriou and Steiglitz
[1982], Rockafellar [1984]; in the terminol-
ogy of linear programming, the “happi-
ness’’ relation (1) is known as complemen-
tary slackness). I provide a simple, first
principles, proof of the relation of equilib-
ria to optimal assignments and dual opti-
mization in the appendix, but for simplic-
ity, I will not emphasize linear
programming and duality in this paper.
An Auction Process

Let us consider now a natural process
for finding an equilibrium assignment. I
will call this process the naive auction algo-
rithm, because it has a serious flaw. None-
theless, this flaw will help motivate a more
sophisticated and correct algorithm.

The naive auction algorithm proceeds in
“rounds” (or “iterations”) starting with

V.
I

Values a -p ~_*
of objectsﬁ :
\

for person i

Q

Q

any assignment and any set of prices.
There is an assignment and a set of prices
at the beginning of each round, and if all
persons are happy with these, the process
terminates. Otherwise some person who is
not happy is selected. This person, call him
i, finds an object j, which offers maximal
value, that is,

j € arg rlnax {a, —p}, 2)
<L

and then

(a) Exchanges objects with the person as-
signed to j, at the beginning of the
round,

(b) Sets the price of the best object j, to the
level at which he is indifferent be-
tween j, and the second best object,
that is, he sets p, to

Put v €)
where
Y, = U, W, (4)

: The value of j; , the best object for person i

Bidding increment ¥; of person i for its best
object j .

) w; : The value of the second best object for person i

Figure 1: In the naive auction algorithm, even after the price of j, is increased by the bidding
increment v,, j, continues to be the preferred object, so the bidder i is happy following the
round. However, v, = 0 if there are two objects most preferred by the bidder i.

July-August 1990
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v, is the best object value,

v, = m}ax {a,—p} (5)

and w, is the second best object value

w, = max {a, — p,}. (6)
i*h
(Note that v, is the largest increment
by which the best object price p, can
be increased, with j, still being the best
object for person i.)
This process is repeated in a sequence of
rounds until all persons are happy.

We may view this process as an auction;
at each round the bidder i raises the price
of his or her preferred object by the bid-
ding increment v,. Note that v, cannot be
negative since v, = w, [compare equations

PERSONS OBJECTS

Initially assigned
to object 1

Initially assigned
to object 2

(5) and (6)}, so the object prices tend to in-
crease. The choice v, is illustrated in Figure
1. Just as in a real auction, bidding incre-

ments and price increases spur competition

by making the bidder’s own preferred
object less attractive to other potential

bidders.

Does this auction process work? Unfor-
tunately, not always. The difficulty is that
the bidding increment v, is zero when
more than one object offers maximum
value for the bidder i. As a result, a situa-
tion may be created where several persons
contest a smaller number of equally desir-
able objects without raising their prices,
thereby creating a never ending cycle
(Figure 2).

To break such cycles, we introduce a

Initial price = 0

Initial price = 0

Here g = C >0 for alt (i wthi =1,23andj=1.2
and aj = Oforall(ijjwithi=123andj=3

Initially assigned Initial price = 0
to object 3
A o| Qo s |ssomaras | Ly | s | Saed ST
1 0,00 ONE2EI | 1.2 3 2 0
2 0,0,0 (1.1) (2,3) (3,2) 1,3 2 2 0
3 0,0,0 (1,1 (2,2) (3,3) 1,2 3 2 0

Figure 2: Illustration of how the naive auction algorithm may never terminate for a three-
person and three-object problem. Here objects 1 and 2 offer benefit C > 0 to all persons, and
object 3 offers benefit 0 to all persons. The algorithm cycles as persons 2 and 3 alternately bid
for object 2 without changing its price because they prefer equally object 1 and object 2 (v; = 0;
compare Figure 1),
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perturbation mechanism, motivated by real
auctions where each bid for an object must
raise its price by a minimum positive incre-
ment, and bidders must on occasion take
risks to win their preferred objects. In par-
ticular, let us fix a positive scalar ¢ and say
that a person i is almost happy with an as-
signment and a set of prices if the value of
its assigned object j, is within ¢ of being
maximal, that is,

ay, = P, 2] max {ay —p} — e (7)
We will say that an assignment and a set
of prices are almost at equilibrium when
all persons are almost happy. The condi-
tion (7), introduced first in 1979 in con-
junction with the auction algorithm, is
known as e-complementary slackness and
has played a central role in several algo-
rithmic contexts recently (see for example,
Ahuja et al. [1988], Bertsekas [1986a], Bert-
sekas and Castafion [1989b], Bertsekas and
Eckstein [1987, 1988], Gabow and Tarjan

V.
|

Values é‘:\'i - pj -
of objects’j
for person i e O

?

[1987]}, and Goldberg and Tarjan [1987}).
For € = 0 it reduces to ordinary comple-
mentary slackness [compare equation (1)].

We now reformulate the previous auc-
tion process so that the bidding increment
is always at least equal to e. The resulting
method, the auction algorithm, is the same
as the naive auction algorithm, except that
the bidding increment v, is

71=vx_wx+fr (8)

[rather than v, = v, — w, as in equation (4)].
With this choice, the bidder of a round is
almost happy at the end of the round
(rather than happy), as illustrated in Figure
3. The particular increment v; = v, — w, + ¢
used in the auction algorithm is the maxi-
mum amount with this property. Smaller
increments v, would also work as long as
v, = ¢, but using the largest possible incre-
ment accelerates the algorithm. This is
consistent with experience from real
auctions, which tend to terminate faster
when the bidding is aggressive.

: The value ot j; , the best object for person i

Bidding increment Y; of person i for its best
object j;.

" 'w; : The value of the second best object for person i

Figure 3: In the auction algorithm, even after the price of the preferred object j, is increased by
the bidding increment v;, j; will be within ¢ from being most preferred, so the bidder i is

almost happy following the round.

July—August 1990
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We can now show that this reformulated
auction process terminates in a finite num-
ber of rounds, necessarily with an assign-
ment and a set of prices that are almost at
equilibrium. To see this, note that once an
object receives a bid for the first time, then
the person assigned to the object at every
subsequent round is almost happy; the
reason is that a person is almost happy just
after acquiring an object through a bid,
and continues to be almost happy as long
as he holds the object (since the other ob-
ject prices cannot decrease in the course of
the algorithm). Therefore, the persons that
are not almost happy must be assigned to
objects that have never received a bid. In
particular, once each object receives at
least one bid, the algorithm must termi-
nate. Next note that if an object receives a
bid in m rounds, its price must exceed its
initial price by at least me. Thus, for suffi-
ciently large m, the object will become “ex-
pensive” enough to be judged “inferior” to
some object that has not received a bid so
far. It follows that only for a limited num-
ber of rounds can an object receive a bid
while some other object still has not yet re-
ceived any bid. Therefore, there are two
possibilities: either (a) the auction termi-
nates in a finite number of rounds, with all
persons almost happy, before every object
receives a bid or (b) the auction continues
until, after a finite number of rounds, all
objects receive at least one bid, at which
time the auction terminates. (This argu-
ment assumes that any person can bid for
any object, but it can be generalized for
the case where the set of feasible person-
object pairs is limited, as long as at least
one feasible assignment exists.) Figure 4
shows how the auction algorithm, based

INTERFACES 20:4

on the bidding increment (8), overcomes
the cycling problem of the example of
Figure 2.

Optimality Properties at Termination

When the auction algorithm terminates,
we have an assignment that is almost at
equilibrium, but does this assignment max-
imize the total benefit? The answer here
depends strongly on the size of ¢. In a real
auction, a prudent bidder would not place
an excessively high bid for fear that he
might win the object at an unnecessarily
high price. Consistent with this intuition,
we can show that if € is small, then the fi-
nal assignment will be ““almost optimal.”
In particular, we can show that the total
benefit of the final assignment is within 7e
of being optimal. A simple self-contained
proof of this is given in the appendix; the
idea is that an assignment and a set of
prices that are almost at equilibrium may
be viewed as being at equilibrium for a
slightly different problem where all bene-
fits a, are the same as before, except for
the n benefits of the assigned pairs which
are modified by an amount no more
than e.

Suppose now that the benefits g, are all
integer, which is the typical practical case
(if a, are rational numbers, they can be
scaled up to integer by multiplication with
a suitable common number). Then, the to-
tal benefit of any assignment is integer, so
if ne < 1, a complete assignment that is
within ne of being optimal must be
optimal. It follows, that if ¢ < 1/, and the
benefits 4, are all integer, then the assign-
ment obtained upon termination of the
auction algorithm is optimal. [Actually,
with a more careful analysis, we can show
that for optimality of the final assignment,

138
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it is sufficient that ¢ < 1/(n — 1). This
threshold cannot be further improved; my
original paper [Bertsekas 1979] gives for
every n = 2 an example where the auction
algorithm terminates with a nonoptimal
assignment when e = 1/(n — 1).]
Duality and the Coordinate Descent
Interpretation

Just as the final assignment obtained
from the auction algorithm is within ne of
being optimal, it turns out that the final set
of prices is within ne of being an optimal

solution of a certain dual problem. As
shown in the appendix, this dual problem
is

n n
minimize > p, + 2 max {a, — p,}
=1 =1 1

overall pricesp, j=1,...,n 9

Figure 5 shows the sequence of gener-
ated object prices for the example of Fig-
ures 2 and 4 in relation to the contours of
the dual cost function of equation (9). It

PERSONS OBJECTS

Intially assigned

Initial price = 0
to object 1

Inttially assigned

to object 2 Initia! price = 0

Here 3 = Cs>O0forall(ijjwtht =123 and;=12
and a, = 0 forall (i,j) withi=1,23andj=3

Initially assigned Intial price = 0

to object 3
9: S?J:] d# Object Prices | Assigned Paws é'{;‘::r“s’“‘app)’ Bidder grbe]f:cftred ?n.cc:j:jelpngent

1 0,0,0 (1,1) (2.2) (3,3) 1,2 3 2 €

2 0,¢,0 (1.1 (23) (3.2) 1,3 2 1 2%

3 2, &0 (1,2)(2,3) (3,1) 2,3 1 2 2%

4 2¢, 3¢, 0 (1,2) (2,1) (3.3) 1,2 3 i 2

5 4,360 | (1,3)(21) (3.2 1,3 2 2 2%

6

Figure 4: This figure shows how the auction algorithm overcomes the cycling problem for the
example of Figure 2, by making the bidding increment at least equal to ¢. I give one possible
sequence of bids and assignments generated by the auction algorithm, starting with all prices
equal to 0. At each round except the last, the person assigned to object 3 bids for either object 1
or 2, increasing its price by ¢ in the first round and by 2¢ in each subsequent round. In the last
round, after the prices of 1 and 2 rise at or above C, object 3 receives a bid and the auction
terminates.
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can be seen from this figure that each bid rigorously established [Bertsekas 1988;
has the effect of setting the price of the ob-  Bertsekas and Tsitsiklis 1989)]. Successive

ject receiving the bid nearly equal (within minimization of a cost function along sin-

¢) to the price that minimizes the dual cost  gle coordinates is a central feature of coor-

with respect to that price with all other dinate descent and relaxation methods,

prices held fixed. This observation can be which are popular for unconstrained mini-
PERSONS OBJECTS

Initially assigned Initial price = 0

to object 1

Initially assigned . .

1o object 2 Initial price = 0 o .
Herea; = C >0 forall (ij) withi =1,23and|= 1,2
and g = Oforall (i) withi=123and|=3

Initially assigned Initial price = 0

to object 3

P24

Contours of the
dual function

Y

Py
Figure 5: Illustration of the sequence of prices generated by the auction algorithm for the
example of Figure 4, in relation to the contours of the dual function

3 3
> pit+ 2 max {a, —p;},

7=1 =1 7

[compare equation (9)] viewed as a function of p, and p,, with p, held fixed at its initial price
of 0.

INTERFACES 20:4 140

“Copyright © 2001 All Rights Reserved
RIGHTS L



RIGHTS

THE AUCTION ALGORITHM

mization of smooth functions and for solv-
ing systems of smooth equations. The auc-
tion algorithm can be interpreted as an ap-
proximate coordinate descent method and
as such, it is related to relaxation methods
for network flow problems [Bertsekas
1982; Bertsekas and Tseng 1985, 1988;
Bertsekas and Tsitsiklis 1989], which also
resemble coordinate descent methods.
There is a fundamental difference here,
however; the dual cost function is piece-
wise linear and thus it is not smooth. It is
precisely for this reason that we had to in-
troduce the perturbations implicit in the
““almost happiness’”” or e-complementary
slackness condition (7).

In the auction algorithm presented so
far, only one person can bid at each round;
this version of the auction algorithm is
known as the one-at-g-time or Gauss-Seidel
implementation, in view of its similarity
with Gauss-Seidel relaxation methods for
solving systems of equations [Ortega and
Rheinboldt 1970]. An alternative is to cal-
culate at each round the bids of all unas-
signed persons simultaneously and to raise
the prices of objects that receive a bid to
the highest bid level. This version is
known as the all-at-once or Jacobi imple-
mentation, in view of its similarity to Jacobi
relaxation methods for solving systems of
equations [Ortega and Rheinboldt 1970]. It
is just as valid as the Gauss-Seidel version
although it tends to terminate a little
slower. It is, however, better suited for
parallel computation.

Computational Aspects—e€-Scaling

The auction algorithm exhibits interest-
ing computational behavior, and it is es-
sential to understand this behavior to
implement the algorithm efficiently.

July-August 1990

First note that the amount of work to
solve the problem can depend strongly on
the value of € and on the maximum
absolute object value

C = max |a;].
i

Basically, for many types of problems, the
number of bidding rounds up to termina-
tion tends to be proportional to C/e. This
can be seen from the example of Figure 5,
where the number of rounds up to termi-
nation is roughly C/e, starting from zero
initial prices.

Next consider the dependence of the
computational requirements on the initial
prices; if these prices are “‘near optimal,”
we expect that the number of rounds to
solve the problem will be relatively small.
This can be seen from the example of Fig-
ure 5; if the initial prices satisfy p; = p;

+ Cand p, == p3 + C, the number of
rounds up to termination is quite small.

The preceding observations suggest the
idea of e-scaling, which consists of apply-
ing the algorithm several times, starting
with a large value of ¢ and successively re-
ducing ¢ up to an ultimate value that is less
than some critical value (for example, 1/#,
when the benefits a, are integer). Each ap-
plication of the algorithm provides good
initial prices for the next application. This
is a very common idea in nonlinear pro-
gramming, encountered, for example, in
barrier and penalty function methods. An
alternative form of scaling, called cost scal-
ing, is based on successively representing
the benefits 2, with an increasing number
of bits while keeping ¢ at a constant value.

In practice, it is a good idea to at least
consider scaling. For sparse assignment
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problems, that is, problems where the set
of feasible assignment pairs is severely re-
stricted, scaling seems almost universally
helpful. I convinced myself of this through
extensive experimentation when I first pro-
posed the auction algorithm. A related
(polynomial) computational complexity
analysis of the auction algorithm was
given in Bertsekas and Eckstein [1988], us-
ing some of the earlier ideas of an e-scaling
analysis by Goldberg [1987], and Goldberg
and Tarjan [1987], for a different but re-
lated method (the e-relaxation method, to
be discussed shortly).

A public domain code, called
AUCTION, implements the auction algo-
rithm. Roughly, in this code the integer
benefits 4, are first multiplied by n + 1 and
the auction algorithm is applied with pro-
gressively lower values of ¢, to the point
where ¢ becomes 1 or smaller (because 4,
has been scaled by n + 1, it is sufficient for
optimality of the final assignment to have €
< 1). The sequence of ¢ values used is

(k) = max {1, A/6%}, k=0,1,...,

where A and § are parameters set by the
user with A > 0 and § > 1. (Typical values
for sparse problems are C/5 < A < (/2
and 4 < 6 < 10. For nonsparse problems,
sometimes A = 1, which in effect bypasses
e-scaling, works quite well.)

Extensive computational experimenta-
tion with the AUCTION code has estab-
lished that the auction algorithm is very ef-
ficient in practice. For sparse problems, it
substantially outperforms its principal
competitors (see Bertsekas and Castafion
[1989b], which contains extensive compu-
tational results). Furthermore, the factor of
superiority increases with the dimension #,

INTERFACES 20:4

indicating a superior practical computa-
tional complexity. For nonsparse problems,
the auction algorithm is competitive with
its rivals. The practical performance of the
auction algorithm is also supported by
theoretical computational complexity anal-
ysis [Bertsekas and Eckstein 1988;
Bertsekas and Tsitsiklis 1989; Bertsekas
and Castafion 1989b], which gives it a sub-
stantial edge over other popular methods
for large and sparse problems.

Figures 6, 7, and 8 give some typical
computational results, comparing the
AUCTION code with the code of Jonker
and Volegnant [1987] (abbreviated as JV),
the code APS of Carpaneto, Martello, and
Toth [1988], and the code RELAX-II that I
developed with P. Tseng [Bertsekas and
Tseng 1985, 1988]. Jonker and Volegnant’s
code has two phases. The first phase is an
extensive initialization procedure based on
my relaxation method [Bertsekas 1981],
and it consists of a sequence of iterations
of the naive auction algorithm. To over-
come the difficulty with finite termination
of the naive auction algorithm, Jonker and
Volegnant use a second phase. This phase
is based on the Hungarian method and re-
fines the results obtained by the naive auc-
tion phase. APS is an efficient implementa-
tion of the Hungarian method without the
use of the naive auction algorithm in an
initialization phase. RELAX-II is an effi-
cient public domain implementation of my
general linear network flow relaxation
method [Bertsekas 1982; Bertsekas and
Tseng 1985]. (RELAX-II is, of course, at a
disadvantage here because it treats the as-
signment problem as a more general net-
work flow problem and ignores much of its

_special structure.)
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i Average number of objects per person =5
~ i Benefits uniformly distributed in the range [0,1000]
9
s 60
c
o
w e
(3]
o
2
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E
= -
c
2 RELAX Il
5 20
° AUCTION
n
0o 1 1. J
o 1000 2000 3000 4000 5000

Number of Persons n

Figure 6: Computational results comparing various codes using a MAC-II on randomly gener-
ated problems. For all test problems, the number of feasible assignment pairs is 5#, where 1 is
the number of persons, and the benefits a,; are integers chosen according to a uniform

distribution from the range [0, 1000].

As illustrated in Figures 6-8, AUCTION
is almost uniformly faster than the other
codes and the factor of superiority in-
creases as the problem becomes more
sparse. Note also that JV is greatly superior
to APS. Since the Hungarian algorithms
used by both codes are essentially equiva-
lent, the superiority of JV must be attrib-
uted to the use of the naive auction algo-
rithm for initialization. Indeed, typically,
the vast majority of persons (85 to 100
percent) are assigned by the naive auction
part of this code.

There have been a number of computa-
tional studies involving parallel implemen-
tation of the auction algorithm by

July-August 1990

Bertsekas and Castation [1989c¢], Castafion
Smith, and Wilson [forthcoming],
Kennington and Wang [1988], Kempa,
Kennington, and Zaki [1989], Perry (pri-
vate communication), and Phillips and
Zenios [1988]. Collectively, these studies
indicate that the speedup that one can ob-
tain from parallelism is substantial (in the

7

order of four to 10 for sparse problems,
and considerably larger for nonsparse
problems, depending on the implementa-
tion and the machine used). Note also that
the Hungarian method has been paralle-
lized recently in an interesting way by
Balas et al. [1989]. Their method also ad-
mits an asynchronous implementation as
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Figure 7: Computational results comparing various codes using a MAC-Il on randomly gener-
ated problems. For all test problems, the number of feasible assignment pairs is 151, where n
is the number of persons, and the benefits 4, are integers chosen according to a uniform

distribution from the range [0, 1000].

shown in Bertsekas and Castafion [1990].
However, experimental results indicate a
generally smaller speedup obtained from
parallelization of the Hungarian method
than from parallelization of auction.
Variations

A variation of the auction algorithm can
be used for asymmetric assignment prob-
lems where the number of objects is larger
than the number of persons and there is a
requirement that all persons be assigned to
some object. Naturally, the notion of an
assignment must now be modified appro-
priately. To solve this problem, the auction
algorithm need only be modified in the

INTERFACES 20:4

choice of initial conditions. It is sufficient
to require that all initial prices be zero. A
similar algorithm can be used for the case
where there is no requirement that all per-
sons be assigned. Other variations handle
efficiently the cases where there are several
groups of “identical” persons or objects
[Bertsekas and Castafion 1989a].
Parallel and Asynchronous
Implementation

Both the bidding and the assignment
phases of the auction algorithm are highly
parallelizable. This is particularly so for the
all-at-once (Jacobi) version of the algo-
rithm, where the bidding and assignment
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can be carried out for all persons and ob-
jects simultaneously. Such an implementa-
tion can be termed synchronous. There are
also totally asynchronous implementations
of the auction algorithm, which are inter-
esting because they are quite flexible and
also tend to result in faster solution in
some types of parallel machines. To under-
stand these implementations, it is useful to
think of a person as an autonomous deci-
sion maker who at unpredictable times ob-
tains information about the prices of the
objects. Each person who is not almost
happy makes a bid at arbitrary times on
the basis of its current object price infor-
mation (that may be outdated because of

July—-August 1990

communication delays).

Bertsekas and Castanon [1989¢] give a
careful formulation of the totally asynchro-
nous model, and a proof of its validity.
They include also extensive computational
results on a shared memory machine, con-
firming the advantage of asynchronous
over synchronous implementations. There
are also totally asynchronous models for
extensions of the auction algorithms that
apply to linear network flow problems
[Bertsekas 1986a; Bertsekas and Eckstein
1988; Bertsekas and Tsitsiklis 1989].
Extension to Transportation and
Minimum-Cost-Flow Problems

David Castafion and I have extended the
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auction algorithm to solve linear transpor-
tation problems [Bertsekas and Castarion
1989a). The basic idea is to convert the
transportation problem into an assignment
problem by creating multiple copies of per-
sons (or objects) for each source (or sink
respectively), and then to modify the auc-
tion algorithm to take advantage of the
presence of the multiple copies. We give
computational results with a code called
TRANSAUCTION, showing that this auc-
tion algorithm is considerably faster than
its chief competitors for important classes
of transportation problems. Generally
these problems are characterized by two
properties, homogeneity and asymmetry. A
homogeneous problem is one for which
there are only few levels of supply and de-
mand. An asymmetric problem is one for
which the number of sources is much
larger than the number of sinks. For other
types of transportation problems, the auc-
tion algorithm is outperformed by, for ex-
ample, the relaxation code RELAX-1I. The
computational complexity of transporta-
tion-auction is studied by Bertsekas and
Castafion [1989Db].

There are extensions of the auction algo-
rithm for linear minimum cost flow (trans-
shipment) problems. One such extension is
the e-relaxation method first proposed in
Bertsekas [1986a, 1986b]; see also
Bertsekas and Eckstein {1987, 1988],
Bertsekas and Tsitsiklis [1989], and
Goldberg and Tarjan [1987] for a detailed
description and analysis. This method has
interesting theoretical properties and, like
the auction algorithm, is well suited for
parallelization. However, for general trans-
shipment problems, its practical perfor-
mance has yet to match that of relaxation

INTERFACES 20:4

methods (for example, the RELAX-II code);
further research may change this
assessment.

Concluding Remarks

The auction algorithm is an intuitive
method based on new and interesting
computational ideas. It performs very well
on serial machines, and it is also well
suited for implementation in parallel ma-
chines, in both a synchronous and an
asynchronous mode. Auction-like algo-
rithms for network flow problems more
general than assignment have been devel-
oped only recently. Much remains to be
done to properly extend them and to
realize their full potential.

To foster research in the network opti-
mization area, I have placed the code
AUCTION in the public domain. Paul
Tseng and | have also placed the code
RELAX-II in the public domain. You can
obtain these codes from me at no cost.
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APPENDIX: Relation of Equilibria with
Primal and Dual Optimality

Let us fix ¢ = 0. In this appendix, we
show that given an assignment {(i, j,)|i
=1,...,n} and a set of prices {p,|j = 1,
..., n}, which are almost at equilibrium (if
¢ > 0) or at equilibrium (if € = 0), then the
assignment is within ne of maximizing the
total benefit and is optimal if ¢ = 0. Fur-
thermore, the set of prices is within ne of
minimizing a certain dual cost function.

Let € > 0. The total benefit of any assign-
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ment {(i, k,)|7 = 1, ..., n} satisfies

> Ay, = > pt 2. max {alj - P]},

11 =1 1=1 J

for any set of prices {p,|j =1, ..., n},
since the second term of the right-hand
side is no less than

Z (aﬂ(, - Pk.)/
=1

while the first term is equal to 27 ; py..
Therefore,

A* < D,
where A* is the optimal total assignment

benefit

n
max  , dy

A* =
k. 1=1, Mo
kFhy 1f 1¥m
and
n n
D* = min [Z p, + 2. max {a, — p,}].

7 =1 =1 ]
M

=L
On the other hand, since all persons are al-
most happy with the given assignment
{(i, joli=1,..., n} and set of prices
{plj=1,..., n}, we have

Ilnax {a, = p} —e<a, — P
=L M

and by adding this relation over all i, we
see that

n

D* < 3 (p, + max {a, — j,})

=1 7
n
< 2 a, + ne < A* + ne
=1

Since we showed earlier that A* < D*, it
follows that the total assignment bene-
fit 2}.1 a,, is within ne of the optimal
value A%,

The function

July-August 1990

2 py+ 2 max {a, —p},

j=1 =1 J

appearing in the definition of D¥, may be
viewed as a dual function of the price vari-
ables p,, and its minimization may be
viewed as a dual problem in the standard
linear programming duality context; see
Bertsekas [1988], Bertsekas and Tsitsiklis
[1989], Dantzig [1963], Papadimitriou and
Steiglitz [1982], and Rockafellar [1984]. It
is seen from the preceding analysis, that
the prices p, attain within ne the dual
optimal value D*.

If we let ¢ = 0 in the preceding argu-
ment, we see that A* = D* and that an as-
signment and a set of prices that are at
equilibrium maximize the total benefit and
minimize the dual function, respectively.
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