The min cost flow problem (part II)

Giovanni Righini

University of Milan

UNIVERSITA DEGLI STUDI DI MILANO

Shortest augmenting paths Primal-dual

@00000000 DO00000C ODO00000C 0000000000

Successive shortest paths algorithm

In this case the algorithm keeps the optimality of the flow and
iteratively achieves feasibility with respect to the flow constraints.

At each iteration, the current flow x is the minimum cost flow among
all flows of its value.

When the flow is maximum, then the algorithm stops.

Shortest augmenting paths
0®0000000

Notation

Flow constraints:

ei=b+ Y xi— > x;VieN

GIEA (ij)eA

We define E={ie N: e >0}and D= {ie N: ¢ < 0}.
Given a dual vector y, the corresponding reduced costs are

c; = cj—Yyi+y Y(i.j) € R(x).

Shortest augmenting paths
00®000000

Lemma 1: optimality conditions

Lemma 1. Let x be a min cost flow and let d be the min distance
vector from s € N and the other nodes in R(x) according to the
reduced costs ¢’. Then

1. x is still a min cost flow with respect to potentials y’ = y — d;

2. ¢/ =0 VY(i,j) € P(s, k) ¥k € N, where P(s, k) indicates the
sﬁlortest path from s to k.

Shortest augmenting paths Primal-dual Out-of-kilter

000800000 DO00000C ODO00000C 0000000000

Lemma 1: optimality conditions

Proof (1). Since x is a min cost flow, the optimality conditions hold:
¢/ >0 Y(i,j) € R(x).
For the properties of shortest paths (using a ¢’ cost function)
d < di+¢f W(i.j) € R(X).

By definition
ci =Cj—Yi+

Therefore

d < ditCj—yity; = Ci—(Vi—d)+(yj—d)) > 0= ¢} >0 (i, j) € R(x).

[/

Shortest augmenting paths Primal-dual Out-of-kilter
0000@0000 0000000000000 00000000000000000

Lemma 1: optimality conditions

Proof (2). Given any shortest path P(s, k), we have
d=d+ cg v(i,j) € P(s, k).

Therefore
d=di+cj—yit+y,

’

c; =0 Y(i,j) € P(s, k).

Shortest augmenting paths
00000@000

Lemma 2: optimality conservation

Optimality conditions are initially satisfied because ¢ = ¢ > 0.

Lemma 2. Let x be a min cost flow and let x’ be the flow obtained
from x after sending flow along a shortest path from a node u € E to
anode v € D. Then x’ is still a min cost flow.

Proof. From Lemma 1, cg =0 V(i,j) € P(u, V).

After sending flow along P(u, v), some arc (j, /) can appear in R(x’)
corresponding to an arc (i, j) € P(u, v).

Y 0 impli "
However, ¢/ = 0 implies ¢ = 0.

Therefore all reduced costs remain non-negative.

Shortest augmenting paths
000000000

Pseudo-code

X+ 0

y+0

e+ b VieN

E« {ieN:g >0}

D+ {ieN:g <0}

while E # () do
Select u € E and Select v e D
(P(u,v),d) + ShortestPath(u, v, R(x), c”)
y+y—d
0+ min{eu, —€y, min(,-’j)ep(u’v){r,j}}
(x,R(x), E, D, ¢”) + Update(u, v, d)

Shortest augmenting paths
000000080

Complexity
The total excess decreases by at least one unit for each iteration.

The initial excess is bounded by nB, where B is the maximum supply
of a a node:
B = max{|bil}.

Therefore no more than nB iterations are required.

Every iteration requires the computation of a shortest path.
The resulting complexity is pseudo-polynomial.

However polynomial-time versions also exist (using scaling
techniques).

Shortest augmenting paths
000000008

A practical improvement

The computation of labels d from any node u € E can be stopped as
soon as any node v € D is labelled permanently.

The dual update rule is

o yi— d; if iis labelled permanently
yi yi —d, if i is not labelled permanently

This update rule guarantees that the reduced costs remain
non-negative.

Primal-dual
©000000000000

Primal-dual algorithm

Consider a flow network with a single excess node s a single deficit
node t (wlog).

This is obtained by connecting all nodes i with an excess b; > 0 to
node s with arcs (s, /) of capacity b; and all nodes i with a deficit

b; < 0 to node t with arcs (/, f) of capacity —b;. Let z be the sum of all
excesses.

The primal-dual algorithm iteratively solves a max flow problem on an
admissible graph A(x, y), which depends on the current flow x and a
set of potentials y.

The admissible graph A(x, y) contains only the arcs of the residual
graph R(x) that have zero reduced cost ¢”.

The residual capacity of each arc in A(x, y) is the same as in R(x). .

NIVERSITA DEGLI STUDI DI MILANO

Shortest augmenting paths Primal-dual Out-of-kilter
000000000 0®00000000000

Primal-dual algorithm: pseudo-code

x+0

y+0

e(s)«z

e(t) «+ -z

while ¢(s) > 0 do
d «+ ShortestPaths(s, R(x), c¥)
y+y—d
Define A(x, y)
ComputeMaxFlow(s, t, A(x, y))
Update e(s), e(t), R(x)

Primal-dual
0080000000000

An example

The original network with excess The equivalent flow network.
nodes 1 and 2 and deficit nodes 3 Node labels: e.
and 4.

Arc labels: (c, u).
Node labels: b.

Arc labels: (c, u).

igmenting paths Primal-dual Out-of-kilter

An example

The equivalent flow network. Dual iteration 1.
Node labels: e. Shortest paths from s on R(x).
Arc labels: (c, u). Node labels: e, d.

Arc labels: (c, u).

0008000000000 000000C

Primal-dual
0000®00000000

An example

Dual iteration 1 on R(x). Potentials and reduced costs.
Node labels: e, d. Node labels: e, y.
Arc labels: (c, u). Arc labels: (¢’, c, u).

Primal-dual
00000@0000000

An example

Potentials and reduced costs. The admissible graph A(x, y).
Node labels: e, y. Node labels: e, y.
Arc labels: (¢’, c, u). Arc labels: u.

Out-of-kilter

Primal-dual
00000000000000000

0O00000@000000

An example

Shortest augmenting paths
000000000

The admissible graph A(x,). Primal iteration 1.
Node labels: e, y. A max flow on A(x, y).
Arc labels: u. Node labels: e, y.

Arc labels: (x, u).

UNIVERSITA DEGLI STUDI DI MILANO

Shortest augmenting paths Primal-dual Out-of-kilter
00000000000 000000

000000000 0000000800000

An example

Primal iteration 1. The updated residual graph.
A max flow on A(x, y). Node labels: e, y.
Node labels: e, y. Arc labels: (¢’, c, u).

Arc labels: (x, u).

NN
s

UNIVERSITA DEGLI STUDI DI MILANO

Out-of-kilter

Primal-dual
00000000000000000

0O0000000e0000

An example

Shortest augmenting paths
000000000

0,0 -2,0
The updated residual graph. Dual iteration 2.
Node labels: e, y. Shortest paths on R(x).
Arc labels: (¢’, c, u). Node labels: e, y, d.

Arc labels: (¢’, c, u).

UNIVERSITA DEGLI STUDI DI MILANO

Primal-dual
000000000e000

An example

0,0

Dual iteration 2. Updated potentials and reduced
Shortest paths on R(x). costs.
Node labels: e, y, d. Node labels: e, y.

Arc labels: (¢’, c, u). Arc labels: (¢, c, u).

Primal-dual
0000000000800

An example

Updated potentials and reduced The admissible graph A(x, y).
costs. Node labels: e, y.
Node labels: e, y. Arc labels: (¢’, c, u).

Arc labels: (¢’, c, u).

UNIVERSITA DEGLI STUDI DI MILANO

Out-of-kilter

Primal-dual
00000000000000000

0000000000080

An example

Shortest augmenting paths
000000000

The admissible graph A(x,). Primal iteration 2.
Node labels: e, y. A max flow on A(x, y).
Arc labels: (¢’, c, u). Node labels: e, y.

Arc labels: (x, ¢, c, u).

UNIVERSITA DEGLI STUDI DI MILANO

Primal-dual
0000000000008

Complexity

The algorithm guarantees that at each iteration

¢ the excess of node s decreases by at least 1 unit.
Proof: a strictly positive amount of flow is sent from s to .

e the potential of node t decreases by at least 1 unit.
Proof: no more (s, t)-paths of zero reduced cost can exist in the
residual graph.

Initially e(s) < nB and at the end e(s) = 0.
Initially y(f) = 0 and at the end y(t) > —nC.

Therefore, the number of iterations is bounded by O(min{nB, nC}).

This bound must be multiplied by the complexity for solving a shortest
path problem and a max flow problem at each iteration.

Out-of-kilter
©0000000000000000

The out-of-kilter algorithm

The out-of-kilter algorithm is a primal-dual algorithm in which
¢ flow balance constraints are kept satisfied, while flow bounds
constraints can be violated;
¢ flows and potentials are iteratively modified to move the solution
towards feasiblity and optimality.
Since flow bounds constraints can be violated before the algorithm

stops, the out-of-kilter algorithm can be used to solve the min cost
flow problem when lower bounds are imposed on arc flows.

Out-of-kilter
0®000000000000000

Circulation problem

A circulation problem is a special case of the min cost flow problem,
in which b; =0 Vi e N.

The flow is forced to be non-zero, although costs are positive, by the
lower bounds.

Every min cost flow problem instance can be reformulated as an
equivalent circulation problem instance:

e add a node s and arcs (s, /) Vi € N : b; > 0, with Is; = ugj = b;

and ¢s; = 0;
* add a node tand arcs (j,t) Vj € N : b; < 0, with J; = u;y = b; and
Cit = 0;

® add an arc (¢, s) with s = uis = Band ¢s =0,

where B = Zie/\/:bpo bj = — E/eN:b,»<0 b;.
Now, setting all b to zero a circulation problem instance is obtained.

Shortest augmenting paths Primal-dual Out-of-kilter
0000000000000 0000000000000 000

Primal and dual problems

minimize z= > ¢;x;
(i)eA

st. > x—) x=0 Vie N

JEN:(i,j)eA JEN:(j,i)eA

Xj > lj V(i,j)e A
— Xjj > —Uj V(i,j') cA
(xj integer) v(i,j) € A
maximize w = > ljuj— > Uph;
(ij)eA (ij)eA
st yi—yi+puj— N < ¢j V(i,j) e A
yi free Vie N
Aj=>0 V(i,j) e A
V(LJ) € Ao

wij =0

Shortest augmenting paths Primal-dual Out-of-kilter
0000000000000 000@0000000000000

Complementary slackness conditions

maximize w = Y ljuj— > Ujh;
(i/)eA (i,)eA

st yi— Y+ pi— \j < ¢j v(i.j) € A
Vi free Vie N
Aj>0 v(i,j) € A
1j >0 Y(i,j) € A.

Defining the reduced costs c{ = ¢j — y; + y; for any given vector y,
dual optimality requires s — \j = czf for each arc, because uj; > /;

Therefore
o 1y =max{0,cf}: if ¢ > 0, then 1 > 0;

°)‘lj = max{O, _Ci{}: if Cj/ <0, then A’l > 0.

Shortest augmenting paths Primal-dual Out-of-kilter
000000000 0000000000000 0000@000000000000

Complementary slackness conditions

Primal C.S.C.
X,]'(C,‘j+yj_yi_ﬂij+)\,'j) =0 V(i,]') c A.

Dual C.S.C.
Nj(uj — xj) =0 V(i,j) e A
pii(xj — ly) =0 Y(i,j) € A.
Therefore
Xj=lj=c;>0
l,-,-<x,-,-<u,-,-:>c,¥:0

Xj = uj = cj <O0.

Out-of-kilter
00000@00000000000

The restricted residual graph

The out-of-kilter algorithm works on a restricted residual graph,
because

¢ not all arcs with residual capacity are allowed to carry additional
flow;

e the residual capacity of an arc (/, j) does not depend only on xj;,
uj and I, but also on c}.

Only admissible arcs are allowed to receive additional flow.
Only admissible arcs are included in R(x, y), which then depends
both on x and y.

To measure how far the pair of solutions (x, y) is from optimality, a
kilter number is defined for each arc (i,) € A.

200008000 P 056060000000 36060080000000000
Kilter numbers and residual capacities
Kilter numbers for each original arc.
Cijv Residual capacities for each arc in
A R(x,y).
e % Aikij:/,'j—X,'j f,‘j:/,‘j—X,'j
H Bikij:X,'j—/," fj,':X,'j—/,"
Crky=li—x; rj=uj—x;
C G_Uij D x; Dky=xj—uy =X —l
0 ||J Eikij:U,‘j—X,'j rij = Ujj — Xijj
L Foky=xj—uj ri=Xj—Uj
E F G:kj=0 rij = Uj — Xj
i = Xij =l
H: k,'j =0 rj = 0
L:kj=0 ri =0
The kilter diagram for
(i.j) € A.

C;jy
A B
H
o G Ui D
0 |u
L
E F
L]]

The kilter diagram.

j

Out-of-kilter
00000008000000000

Admissible arcs

R(x, y) includes only admissible arcs:

e arcs (i,f) € R(x, y) corresponding to
arcs (i,j) € Aoftype A, C and E (x; can
be increased);

e arcs (f, i) € R(x, y) corresponding to
arcs (i,f) € Aoftype B, D and F (x; can
be decreased);

e arcs (i,j) and (/.) € R(x, y)
corresponding to arcs (/,)) € A of type

(xj can be increased/decreased);

In-kilter arcs of type /H and L are not
admissible.

a Out-of-kilter
)00 00000« 00000000800000000

gmenting paths Prim

The algorithm

Primal initialization. The flow starts from 0 on all arcs.
Dual initialization. The potential starts from 0 on all nodes.

Primal iteration. A maximum flow is sent along a circuit in a restricted
residual graph R(x), including only admissible arcs.
The circuit must include at least one out-of-kilter arc.

Dual iteration. A shortest path is computed to modify the potentials
and the restricted residual graph.

Out-of-kilter
000000000@0000000

Primal iteration

An out-of-kilter arc (i, j) € A is selected.

The corresponding arc (p, q) € R(x, y) is considered:
* R(x,y)includes arc (i,)) if x; is of type A, C or E ((p,q) = (i,]));
* R(x,y) includes arc (j,/) if x; is of type B, D or F ((p, q) = (J, 1))

A path P(q, p) from g to p in R(x, y) is searched by labelling nodes
from g.

Different labelling strategies can be used to select P(q, p).

Out-of-kilter
0000000000e000000

Primal iteration

cij
P(g, p) can only use admissible arcs in
< R(x. y).

Sending flow along admissible arcs can only
Sl .G Ui D x; decrease their kilter number.

" When a (q, p)-path is found (breakthrough),
F .) :

- <« the maximum residual capacity along the
circuit P(q, p) U (p, q) determines the amount
of flow.
R(x, y) is updated.
If out-of-kilter arcs still exist, a new primal
iteration is started.

The effects of a primal
iteration.

Out-of-kilter
00000000000800000

Primal iteration

If no (g, p)-path exists in R(x, y), a dual iteration is executed.

Let Q be the set of nodes reachable from g in R(x,y) and Q be its
complement.

There are no arcs with positive residual capacity in R(x, y) across the
(Q, Q) cut.
Therefore there are no out-of-kilter arcs (/, j) such that

e (i,j)is of type A, Cor E ((i,j) € R(x,y))and i € Qandj € Q;

e (i,j)is of type B, Dor F ((j,i) € R(x,y))and j € Qand i € Q.
There are no in-kilter arcs (i,) of type G with an endpoint in Q and
the other in Q.

C;j‘f
B
L
H B i
BI
i X
1
O :V'F
Yo
Ly

The effects of a dual
iteration (direct arcs

from Qto Q).

Out-of-kilter
000000000000e0000

Dual iteration

R(x, y) does not include any arc
(1,)) € (Q, Q) such that

e (i,j)isoftype A, Cor E;
® (i,)) is of type G and x; < uj.

Consider the set Fw of forward arcs in A
across the (Q, Q) cut:

Fw={(i,j)e A:i€Q,jeQ,c]>0x <u}

>

They all correspond to arcs of type B and H.

Compute o = min(; jyerw{C}}-

Cij”

Te--->
->

Xij

O - -

]

me - - 4>

me - —-->

L

The effects of a dual
iteration (reverse arcs
from Qto Q).

Out-of-kilter
00000000000008000

Dual iteration

R(x, y) does not include any arc
(j,1) € (Q, Q) such that

e (i,j)isoftype B, D or F;

* (i,j)is of type G and x; > Ij.

Consider the set Bw of backward arcs in A
across the (Q, Q) cut:

Bw={(i,j)e A:jeQieQcl<0,x;> I}

They all correspond to arcs of type E and L.

Compute 3 = max(;jesw{C}}-

Out-of-kilter
00000000000000e00

Dual iteration
Define 8 = min{«, —5}.
C;jv
Update y; <+ y; + 0 Vi € Q.

I l For all arcs across the (Q, Q) cut:

¢ positive reduced costs are reduced by 6,
Xij

0 I ® negative reduced costs are increased by 6
J. I l and kilter numbers can only decrease.

T The other arcs are unaffected.

At least one more arc gets zero reduced cost

The effects of adual ang becomes admissible (type G).

iteration.

Update R(x, y) and resume the primal iteration.

Out-of-kilter
000000000000000e0

Pseudo-code

X+—0;y«0
for all (/,j) € Ado
Compute kj; Compute rj or rj in R(x, y)
while 3(/,j) € A: k; > 0do
if xj < ;v (c; <O0AX;j < uy) then
(P.q) + (i.))
else
(P, q) < (J:1)
label(i) « null Vi € N
repeat
PropagatelLabels(q)
if label(p) = null then
Dual lteration
until /abel(p) # null
Reconstruct the (g — p)-path P; C + P U(p,q)
§ < minw vyec{ru}
Send ¢ units of flow along C and update x, k and R(x, y)

UNIVERSITA DEGLI STUDI DI MILANO

Out-of-kilter
0000000000000000e

Correctness and complexity

Correctness.
Lemma 1. Updating the node potentials y does not increase the kilter
number of any arc.

Lemma 2. Sending flow along C does not increase the kilter number
of any arc.

Complexity.
Initially the kilter number of any arc is bounded by U.
Hence the sum of all kilter numbers is at most mU.

The sum of the kilter numbers decreases by at least 1 unit for each
primal or dual iteration.

Therefore the algorithm requires O(mU) primal or dual iterations.

	Shortest augmenting paths
	Shortest augmenting paths

	Primal-dual
	Primal-dual

	Out-of-kilter
	Out-of-kilter

