

Problem properties Cycle canceling

The min cost flow problem (part I)

Giovanni Righini

University of Milan

Problem properties Cycle canceling

Definitions

A flow network is a digraph D = (N ,A) with two particular nodes s
and t acting as source and sink of a flow.

The flow is a quantity that can traverse the arcs from their tails to their

heads, starting from s and reaching t.

The digraph D is weighted with

• a capacity u : A 7→ ℜm
+;

• a cost c : A 7→ ℜm
+;

Arc capacity: limit to the amount of flow that can traverse the arc.

Arc cost: cost to be paid for each unit of flow traversing the arc.

• An arc with no flow is empty.

• An arc with a flow equal to its capacity is saturated.

Problem properties Cycle canceling

A formulation

We use a continuous and non-negative variable xij to indicate the

amount of flow on each arc (i, j) ∈ A.

A mathematical model of the min-cost flow problem is:

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

We assume that:

• all data are integer;

• ∑

i∈N
bi = 0;

• capacities and costs are non-negative.

Reverse arcs in the residual graph have negative cost.

Problem properties Cycle canceling

Optimality conditions

A feasible solution x∗ is optimal if and only if

1. the residual digraph R(x) does not contain any negative cost

cycle;

2. there is a dual vector y such that the reduced cost

c
y
ij = cij − yi + yj ≥ 0 for all arcs in the residual digraph R(x);

3. complementary slackness conditions hold.

All these conditions are equivalent.

Problem properties Cycle canceling

Flow decomposition

The difference between two feasible flows of the same value, is a set
of directed cycles.

s

1

2

3

4

t

5,9

7,3

2,6

3,1

0,2

1,6

8,3

2,5

6,12

6,0

Figure: Two feasible flows, x1 and x2.

s

1

2

3

4

t

4

4

4

2

2

5

5

3

6

6

Figure: The difference x1 − x2.

Problem properties Cycle canceling

Flow decomposition

s

1

2

3

4

t

4

4

4

2

2

5

5

3

6

6

Figure: The difference x1 − x2.

s

1

2

3

4

t

4

4

4

2

2

5

5

2,1

1,5

1,5

Figure: Decomposition in 4 directed

cycles.

Problem properties Cycle canceling

Negative cycles optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if the residual graph R(x) does not contain any negative

cost cycle.

Proof (1): x optimal⇒ No negative cycles in R(x).

By construction of the residual digraph, any directed cycle in R(x) is

an augmenting cycle for x .

Then, sending a unit of flow along a negative cost cycle decreases
the cost, without violating any constraint.

Therefore, if R(x) contains a negative cost cycle, x cannot be optimal.

Problem properties Cycle canceling

Negative cycles optimality conditions

Proof (2): No negative cycles in R(x)⇒ x optimal.

Assume that x∗ is feasible, xo is optimal (i.e. a min cost flow) with

xo 6= x∗ and R(x∗) has no negative cost cycles.

The difference vector xo − x∗ can be decomposed into a set of
augmenting cycles with respect to x∗ on R(x∗) and the sum of the

costs of the flows along them is equal to cxo − cx∗.

Since there are no negative cost cycles, cxo − cx∗ ≥ 0 for each
augmenting cycle: hence cxo ≥ cx∗.

Since xo is a min cost flow, then cxo ≤ cx∗.

Therefore cxo = cx∗ and x∗ is also optimal.

Problem properties Cycle canceling

Reduced cost optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if there exists a vector of node potentials y satisfying the

condition

c
y
ij = cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x).

Proof (1): ∃y : c
y
ij ≥ 0 ∀(i, j) ∈ R(x)⇒ x optimal.

If c
y
ij ≥ 0 ∀(i, j) ∈ R(x), then

∑

(i,j)∈W c
y
ij ≥ 0 for any cycle W in R(x).

For every cycle W ,
∑

(i,j)∈W c
y
ij =

∑

(i,j)∈W cij , because potentials
cancel out along the cycle.

Therefore for every cycle W in R(x),
∑

(i,j)∈W cij ≥ 0, i.e. R(x) does

not contain any negative cost cycle. Therefore x is optimal.

Problem properties Cycle canceling

Reduced cost optimality conditions

Proof (2): x optimal⇒ ∃y : c
y
ij ≥ 0 ∀(i, j) ∈ R(x).

If x is optimal, then R(x) has no negative cost cycles.

Consider a feasible flow x∗ such that R(x∗) has no negative cost
cycles.

Then the shortest path problem is well-defined on R(x∗).

Compute min cost paths from s to all nodes in R(x∗): let di be the
resulting min cost ∀i ∈ N.

From optimality conditions for shortest paths

dj ≤ di + cij ∀(i, j) ∈ R(x∗).

Now choosing y = −d , we obtain

cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x∗).

Problem properties Cycle canceling

The dual problem

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = bi ∀i ∈ N [yi]

0 ≤ xij ≤ uij ∀(i, j) ∈ A. [−λij]

maximize w =
∑

i∈N

bi yi −
∑

(i,j)∈A

uijλij

s.t. yi − yj − λij ≤ cij ∀(i, j) ∈ A [xij]

yi free ∀i ∈ N
λij ≥ 0 ∀(i, j) ∈ A.

Integer capacities⇒ integer optimal solution.

Problem properties Cycle canceling

Complementary slackness conditions

Primal C.S.C.

xij(cij + yj − yi + λij) = 0 ∀(i, j) ∈ A
Dual C.S.C.

λij(uij − xij) = 0 ∀(i, j) ∈ A

While the previous optimality conditions are formulated on the
residual digraph, the c.s. optimality conditions are formulated on the

original digraph.

Problem properties Cycle canceling

Complementary slackness optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if for some node potential y , the reduced costs cy and the

flow values x satisfy the following c.s.c. for each arc (i, j) ∈ A:

• if c
y
ij > 0 then xij = 0;

• if 0 < xij < uij then c
y
ij = 0;

• if c
y
ij < 0 then xij = uij .

Proof. From linear programming duality.

This is a notable case of LP with bounded variables: flow variables x

can be non-basic in two different ways: either because they are at

their lower bound (0) or because they are at their upper bound (u).

Problem properties Cycle canceling

Optimal flows and optimal potentials

Question 1. Given an optimal flow x∗, how can we obtain optimal
node potentials y∗?

Question 2. Given optimal node potentials y∗, how can we obtain an

optimal flow x∗?

Answer 1. By computing a shortest path.

Answer 2. By computing a maximum flow.

Problem properties Cycle canceling

From x∗ to y∗

Let R(x∗) be the residual graph corresponding to an optimal flow x∗.
Since x∗ is optimal, R(x∗) does not contain any negative cost cycle.

Let d be the vector of shortest distances from node s to all the other

nodes, using c as arc lengths.

Shortest path optimality conditions imply

dj ≤ di + cij ∀(i, j) ∈ R(x∗)

Let yi = −di ∀i ∈ N . Then

cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x∗).

Then y is an optimal vector of node potentials.

Problem properties Cycle canceling

From y∗ to x∗

Let y∗ be an optimal vector of node potentials.
We can compute the corresponding reduced costs:

c
y∗

ij = cij − y∗
i + y∗

j ∀(i, j) ∈ A.

We examine each arc (i, j) ∈ A:

• if c
y∗

ij > 0, then x∗
ij = 0: delete (i, j).

• if c
y∗

ij < 0, then x∗
ij = uij : set bi := bi − uij ; bj := bj + uij ; delete

(i, j).

• if c
y∗

ij = 0, then we have the constraint 0 ≤ x∗
ij ≤ uij .

Insert a dummy source s′ and a dummy sink t ′.
Insert an arc (s′, i) for each i ∈ N with b′

i > 0.

Insert an arc (i, t ′) for each i ∈ N with b′
i < 0.

Send a maximum flow x∗ from s′ to t ′.

Problem properties Cycle canceling

Algorithms

Algorithms for the min-cost flow problem can be roughly classified
according to the optimality conditions they exploit.

1. Cycle-canceling algorithms find a maximum flow first and then

iteratively improve its cost by detecting negative cost cycles.

2. Successive shortest path algorithms iteratively increase a

min-cost flow by detecting minimum cost augmenting paths.

3. Primal-dual algorithms send an augmenting flow at each iteration

instead of using a single augmenting path.

4. Out-of-kilter algorithm.

Problem properties Cycle canceling

Cycle-canceling algorithms

Algorithm 1 Cycle-canceling algorithm

Compute a max flow x and the corresponding residual graph R(x);
while R(x) contains a negative cost cycle do

Select a negative cost cycle W ;

δ ← min(i,j)∈W{rij};
Send δ units of flow along W and update R(x);

Problem properties Cycle canceling

Cycle-canceling algorithms: complexity

Let define

• C = max(i,j)∈A{cij};
• U = max(i,j)∈A{uij};

Then mCU is a trivial upper bound on the cost of the initial maximum

flow.

Then the algorithm terminates in at most mCU iterations, since δ ≥ 1
at each iteration.

If negative cost cycles are identified in O(nm) (with Moore algorithm

with FIFO policy), the overall complexity is O(nm2CU), which is not
polynomial.

Problem properties Cycle canceling

Polynomial-time implementations

Two possible polynomial-time implementations of the generic
cycle-canceling algorithm select

• a negative cost cycle with maximum residual capacity:

O(m log (mCU))

• a negative cost cycle with minimum mean cost:

O(min{nm log (nC), nm2 log n}).

Both of them yield algorithms with polynomial-time complexity.

Problem properties Cycle canceling

Cycle with maximum residual capacity

Any two feasible flows on a given network can be obtained from each

other by at most m augmenting cycles in the residual graph.

Let x be a feasible flow and x∗ an optimal flow.
Then the cost cx∗ equals cx plus the (negative) cost of at most m

cycles in R(x).
The improvement in cost is cx − cx∗.

Consequently, at least one of the augmenting cycles must produce a

decrease of at least (cx − cx∗)/m.
Then, by selecting the cycle yielding maximum improvement, the

algorithm requires O(m log (mCU)) iterations.

Unfortunately, finding the maximum improvement cycle is an NP-hard

problem.

However a slight modification of this approach yields an overall
polynomial-time complexity.

Problem properties Cycle canceling

Cycle with minimum mean cost

The mean cost of a cycle is its cost divided by the number of arcs it
contains.

A cycle with minimum mean cost can be identified in O(nm) or

O(
√

nm log (nC)).

If the cycle canceling algorithm always selects a minimum mean cost

cycle, it requires O(min{nm log (nC), nm2 log n}) iterations.

Therefore it is strongly polynomial.

Problem properties Cycle canceling

A basic property

Basic property. Given any flow x and its corresponding residual
graph R(x), for each cycle W in R(x) and for each choice of the node

potentials y ,
∑

(i,j)∈W

cij =
∑

(i,j)∈W

c
y
ij

where c
y
ij = cij − yj + yi ∀(i, j) ∈ R(x), because the potentials cancel

out along the cycle.

Problem properties Cycle canceling

ǫ-optimality

Definition. A flow x is ǫ-optimal if ∃y : c
y
ij ≥ −ǫ ∀(i, j) ∈ R(x).

Given a vector of potentials y , let define

ǫy(x) = − min
(i,j)∈R(x)

{cy
ij }.

Then
{

c
y
ij ≥ −ǫy(x) ∀(i, j) ∈ R(x)

∃(u, v) ∈ R(x) : c
y
uv = −ǫy (x)

Therefore x is ǫ-optimal for ǫ = ǫy (x).

For different choices of y , we can have different values for ǫy (x).
Let ǫ(x) be the minimum value of ǫy (x) for which x is ǫy(x)-optimal:

ǫ(x) = min
y
{ǫy(x)}.

Problem properties Cycle canceling

Reduced costs along cycles

Let µ(x) be the mean cost of the minimum mean cost cycle in R(x).

If x is ǫ-optimal, then for each cycle W of R(x) and for each vector of

potentials y
∑

(i,j)∈W

cij =
∑

(i,j)∈W

c
y
ij ≥ −ǫy(x)|W |.

If W ∗ is the minimum mean cost cycle in R(x), then

µ(x) ≥ −ǫy(x)

and

∃y : c
y
ij = −ǫ(x) ∀(i, j) ∈W ∗.

Problem properties Cycle canceling

Lemma 1: relationship between µ(x) and ǫ(x)

Lemma 1. Consider a sub-optimal flow x 6= x∗. Then ǫ(x) = −µ(x).

Proof. Let modify the costs c into c′ as follows:

c′
ij = cij − µ(x) ∀(i, j) ∈ A.

The resulting digraph R′(x) has the same arcs as R(x).

The cost modification reduces the mean cost of all cycles by µ(x)
(which is negative).

The mean cost of W ∗ is zero in R′(x).

Therefore R′(x) does not contain cycles with negative cost.

Problem properties Cycle canceling

Lemma 1: relationship between µ(x) and ǫ(x)

Select a node s ∈ N and consider the shortest paths arborescence
from s in R′(x).

Let d ′ be the shortest distances.

d ′
j ≤ d ′

i + c′
ij = d ′

i + cij − µ(x) ∀(i, j) ∈ R′(x).

Setting yj = −d ′
j ∀j ∈ N we have

−yj ≤ −yi + cij − µ(x) ∀(i, j) ∈ R(x)

c
y
ij ≥ µ(x) ∀(i, j) ∈ R(x)

Therefore x is (−µ(x))-optimal.

Since µ(x) does not depend on y , then ǫ(x) = −µ(x).

Problem properties Cycle canceling

Lemma 2: relationship between cy and µ(x) and ǫ(x)

Lemma 2. Consider a sub-optimal flow x 6= x∗. Then
∃y : c

y
ij = −ǫ(x) = µ(x) ∀(i, j) ∈W ∗.

Proof. Selecting y as before, c
y
ij ≥ µ(x) ∀(i, j) ∈ R(x).

By definition

c(W ∗) =
∑

(i,j)∈W∗

cij =
∑

(i,j)∈W∗

c
y
ij = µ(x)|W ∗|.

So, the mean value of c
y
ij along W ∗ is µ(x) and all values of c

y
ij are at

least µ(x). Therefore

c
y
ij = µ(x) ∀(i, j) ∈W ∗

and from Lemma 1

c
y
ij = −ǫ(x) ∀(i, j) ∈W ∗.

Problem properties Cycle canceling

Lemma 3: monotonicity of ǫ(x)

Lemma 3. Consider a sub-optimal flow x 6= x∗. After deleting W ∗,
ǫ(x) does not increase and µ(x) does not decrease.

Proof. Consider a dual vector y such that

{

c
y
ij = −ǫ(x) ∀(i, j) ∈W ∗

c
y
ij ≥ −ǫ(x) ∀(i, j) ∈ R(x)

Let x ′ be the flow and R′(x ′) the residual graph after the cancellation

of W ∗.

At least one arc of R(x) does not belong to R′(x ′) (because it has

been saturated).

Problem properties Cycle canceling

Lemma 3: monotonicity of ǫ(x)

Some new arcs may appear in R′(x ′) that were not in R(x).
For all (i, j) ∈ R′(x ′):

{

if (i, j) ∈ R(x) c
y
ij ≥ −ǫ(x)

if (i, j) 6∈ R(x) c
y
ji = −ǫ(x)((j, i) ∈ W ∗)

In the latter case c
y
ij = −c

y
ji = ǫ(x) > 0 > −ǫ(x).

Problem properties Cycle canceling

Lemma 3: monotonicity of ǫ(x)

Therefore, in both cases

c
y
ij ≥ −ǫ(x) ∀(i, j) ∈ R′(x ′).

Then x ′ is still ǫ(x)-optimal: ǫ(x ′) ≤ ǫ(x).

µ(x ′) =
∑

(i,j)∈W∗
′

cij

|W ∗′ | =
∑

(i,j)∈W∗
′

c
y
ij

|W ∗′ | ≥ min
(i,j)∈W∗

′

{cy
ij } ≥ −ǫ(x) = µ(x).

Therefore µ(x ′) ≥ µ(x).

Problem properties Cycle canceling

Lemma 4: decrease rate of ǫ(x)

Lemma 4. Within at most m iterations, ǫ decreases by a factor at

least (1− 1
n
).

Proof. We have already proven that

∃y : c
y
ij ≥ −ǫ(x) ∀(i, j) ∈ R(x).

Type-1 iterations: c
y
ij < 0 ∀(i, j) ∈ W ∗

Type-2 iterations: otherwise.

Every type-1 iteration deletes an arc with negative reduced cost from
the residual graph.

All arcs inserted by type-1 iterations have positive reduced cost.

Therefore the algorithm can execute at most m consecutive type-1

iterations.

Problem properties Cycle canceling

Lemma 4: decrease rate of ǫ(x)

When a type-2 iteration is done, the eliminated cycle W ∗ contains at
least one arc with non-negative reduced cost.

Therefore it contains at most |W ∗| − 1 arcs with negative reduced

cost.
Let x ′ and x ′′ be the flows before and after the iteration.

c
y
ij ≥ −ǫ(x ′) ∀(i, j) ∈W ∗

c(W ∗) =
∑

(i,j)∈W∗

c
y
ij

c(W ∗) ≥ (|W ∗| − 1)(−ǫ(x ′))

µ(x ′) = c(W ∗)/|W ∗|
Then

µ(x ′) ≥ |W
∗| − 1

|W ∗| (−ǫ(x ′)).

Problem properties Cycle canceling

Lemma 4: decrease rate of ǫ(x)

µ(x ′) ≥ |W
∗| − 1

|W ∗| (−ǫ(x ′)).

From Lemma 3, µ(x ′′) ≥ µ(x ′).

Then

−ǫ(x ′′) = µ(x ′′) ≥ µ(x ′) ≥
(

1− 1

|W ∗|

)

(−ǫ(x ′)) ≥
(

1− 1

n

)

(−ǫ(x ′)).

Therefore

ǫ(x ′′) ≤
(

1− 1

n

)

ǫ(x ′).

Problem properties Cycle canceling

Lemma 5: stop criterion

Lemma 5. If ǫ < 1
n
, every ǫ-optimal flow is also optimal.

Proof. If x is ǫ-optimal, then a dual vector y exists such that c
y
ij ≥ −ǫ

for all arcs in R(x).

Let W be a cycle in R(x). Then

c(W) =
∑

(i,j)∈W

c
y
ij ≥ −ǫ|W | ≥ −ǫn > −1.

Since c(W) is integer, c(W) > −1 implies c(W) ≥ 0.

Then R(x) contains no negative cost cycle, and x is optimal.

Problem properties Cycle canceling

Lemma 6: exponential decrease rate

Lemma 6. Consider an integer α > 1 and a series of real numbers
such that zk+1 ≤ (1− 1

α
)zk for each k . Then zk+α ≤ 1

2
zk for any k .

Proof. From zk+1 ≤ (1− 1
α
)zk we obtain

zk ≥ zk+1 +
zk+1

α− 1
.

The same holds replacing k with k + 1:

zk+1 ≥ zk+2 +
zk+2

α− 1
.

Combining the two inequalities:

zk ≥ zk+2 +
zk+2

α− 1
+

zk+1

α− 1
> zk+2 + 2

zk+2

α− 1

because zk+2 < zk+1.

Problem properties Cycle canceling

Lemma 6: exponential decrease rate

Repeating the same procedure we get

zk > zk+3 + 3
zk+3

α− 1

zk > zk+4 + 4
zk+4

α− 1

and so on. In general

zk > zk+α + α
zk+α

α− 1
.

This inequality can be rewritten as

zk > zk+α

(

1 +
α

α− 1

)

> 2 zk+α.

Problem properties Cycle canceling

Proof of complexity

Let C be the maximum cost of an arc in the original digraph.

Initially the trivial bound ǫ(x) ≤ C holds: every flow is C-optimal.

For every m consecutive iterations ǫ(x) decreases by a factor (1− 1
n
)

at least.

When ǫ < 1
n

the algorithm stops.

Therefore ǫ must decrease by a factor of nC in the worst case.

Problem properties Cycle canceling

Proof of complexity

Selecting α = n and letting k be the index of type-2 iterations we
know that ǫ(x)k+1 ≤ (1− 1

n
)ǫ(x)k .

For Lemma 6 we have ǫ(x)k+n ≤ 1
2
ǫ(x)k .

Using an index h to count all iterations, since there can be up to m
type-1 iterations for each single type-2 iteration, ǫ(x)h+mn ≤ 1

2
ǫ(x)h.

Therefore ǫ(x) is halved after at most nm iterations.

Hence the number of iterations is bounded by nm log2 (nC).

Problem properties Cycle canceling

Proof of complexity

Detecting the minimum mean cost cycle requires O(nm).

Therefore the overall worst-case time complexity of the cycle

cancelling algorithm is O(n2m2 log (nC)).

Strongly polynomial complexity can be also proven (see Network
flows, chapter 10).

	Problem properties
	Problem properties

	Cycle canceling
	Cycle canceling

