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Definitions

A flow network is a digraph D = (N, .A) with two particular nodes s
and t acting as source and sink of a flow.

The flow is a quantity that can traverse the arcs from their tails to their
heads, starting from s and reaching t.

The digraph D is weighted with
e acapacity u: A~ RT;
e gcostc: A RT;

Arc capacity: limit to the amount of flow that can traverse the arc.
Arc cost: cost to be paid for each unit of flow traversing the arc.

¢ An arc with no flow is empty.
e An arc with a flow equal to its capacity is saturated.
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A formulation

We use a continuous and non-negative variable x; to indicate the
amount of flow on each arc (i, j) € A.

A mathematical model of the min-cost flow problem is:

minimize z = > ¢;x;

(i,j)eA

s.t. Z Xijj — Z Xji = b; Vie N
JEN(i,j)EA JEN:(j,i)eA
OSX,'I'SU,] V(i,j)E.A.

We assume that:
e all data are integer;
® Yien bi=0;
¢ capacities and costs are non-negative.
Reverse arcs in the residual graph have negative cost.
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Optimality conditions

A feasible solution x* is optimal if and only if
1. the residual digraph R(x) does not contain any negative cost
cycle;
2. there is a dual vector y such that the reduced cost
¢l = cj—yi+y; > 0 for all arcs in the residual digraph R(x);

1)
3. complementary slackness conditions hold.

All these conditions are equivalent.
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Flow decomposition

The difference between two feasible flows of the same value, is a set
of directed cycles.

Figure: Two feasible flows, x; and x..
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Flow decomposition

Figure: The difference xi — x.

Figure: Decomposition in 4 directed
cycles.
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Negative cycles optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if the residual graph R(x) does not contain any negative
cost cycle.

Proof (1): x optimal = No negative cycles in R(x).

By construction of the residual digraph, any directed cycle in R(x) is
an augmenting cycle for x.

Then, sending a unit of flow along a negative cost cycle decreases
the cost, without violating any constraint.

Therefore, if R(x) contains a negative cost cycle, x cannot be optimal.
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Negative cycles optimality conditions

Proof (2): No negative cycles in R(x) = x optimal.

Assume that x* is feasible, x° is optimal (i.e. a min cost flow) with
x° = x* and R(x*) has no negative cost cycles.

The difference vector x° — x* can be decomposed into a set of
augmenting cycles with respect to x* on R(x*) and the sum of the
costs of the flows along them is equal to cx° — cx*.

Since there are no negative cost cycles, cx® — cx* > 0 for each
augmenting cycle: hence cx° > cx*.

Since x° is a min cost flow, then cx° < cx*.

Therefore cx° = cx* and x* is also optimal.
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Reduced cost optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if there exists a vector of node potentials y satisfying the
condition

cj = cj— ¥i+y; >0 V(ij) € R(x).

Proof (1): 3y : ¢/ > 0(/,j) € R(x) = x optimal.

If cj’ > 0V(i,j) € R(x), then > ; hew c’]’ > 0 for any cycle W in R(x).

[/

For every cycle W, 3= hcw ¢ = >
cancel out along the cycle.

i j)ew Cij» because potentials

Therefore for every cycle W in R(x), >=; yew Ci = 0, i.e. R(x) does
not contain any negative cost cycle. Therefore x is optimal.
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Reduced cost optimality conditions

Proof (2): x optimal = 3y : ¢ > 0(i,j) € R(x).

If x is optimal, then R(x) has no negative cost cycles.

Consider a feasible flow x* such that R(x*) has no negative cost
cycles.

Then the shortest path problem is well-defined on R(x*).

Compute min cost paths from s to all nodes in R(x*): let d; be the
resulting min cost Vi € N.

From optimality conditions for shortest paths
d; < di+c¢; V(i,j) € R(x™).
Now choosing y = —d, we obtain

cj — Yi+y; =0 V(i,j) € R(x").
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The dual problem

minimize z = > ¢jx;

(i,j)eA

st. > x— ). xi=b VieN  [y]
JEN(i,j)EA JEN:(j,i)eA
0< Xjj < Uji V(i,j) c A [—/\,'j]

maximize w = Z biyi — Z UjAji

ieN (i))eA

st yi—y—Ni<gj v(i.j)eA  [x]
y; free VieN
Aj>0 v(i,j) € A.

Integer capacities = integer optimal solution.

UNIVERSITA DEGLI STUDI DI MILANO



Problem properties Cycle canceling
0000000000e00000 00000000000000000000000

Complementary slackness conditions

Primal C.S.C.

xj(cj+y—yi+XNj) =0 VY(i,j) €A
Dual C.S.C.

Aj(uj = x;) =0 V(i,j) € A

While the previous optimality conditions are formulated on the
residual digraph, the c.s. optimality conditions are formulated on the
original digraph.
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Complementary slackness optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if for some node potential y, the reduced costs ¢’ and the
flow values x satisfy the following c.s.c. for each arc (i, /) € A:

e if ¢/ > 0 then x; = 0;
e if 0 < x; < uj then ¢/ = 0;

e if ¢ < 0then x; = uj.

Proof. From linear programming duality.

This is a notable case of LP with bounded variables: flow variables x
can be non-basic in two different ways: either because they are at
their lower bound (0) or because they are at their upper bound (u).
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Optimal flows and optimal potentials

Question 1. Given an optimal flow x*, how can we obtain optimal
node potentials y*?

Question 2. Given optimal node potentials y*, how can we obtain an
optimal flow x*?

Answer 1. By computing a shortest path.

Answer 2. By computing a maximum flow.
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From x* to y*

Let R(x*) be the residual graph corresponding to an optimal flow x*.
Since x* is optimal, R(x*) does not contain any negative cost cycle.

Let d be the vector of shortest distances from node s to all the other
nodes, using ¢ as arc lengths.

Shortest path optimality conditions imply
d <d+cj Y(ij) e R(x")
Let yj = —d; Vie N. Then
ci—Yi+y; >0 V(i,j) e R(x").

Then y is an optimal vector of node potentials.
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From y* to x*

Let y* be an optimal vector of node potentials.
We can compute the corresponding reduced costs:

*

cg =cj—y  +y Y(ij)eA

We examine each arc (/,j) € A:
o if ¢/ >0, then x; = 0: delete (/. ).
o if c{ < 0, then x; = uj: set b; == bj — uy; by := bj + uy; delete
(i.J)-
o if cg = 0, then we have the constraint 0 < x; < uj.

Insert a dummy source s and a dummy sink t'.
Insert an arc (', i) for each i € N with b} > 0.
Insert an arc (i, t') for each i € N with b} < 0.
Send a maximum flow x* from s’ to t'.
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Algorithms

Algorithms for the min-cost flow problem can be roughly classified
according to the optimality conditions they exploit.

1. Cycle-canceling algorithms find a maximum flow first and then
iteratively improve its cost by detecting negative cost cycles.

2. Successive shortest path algorithms iteratively increase a
min-cost flow by detecting minimum cost augmenting paths.

3. Primal-dual algorithms send an augmenting flow at each iteration
instead of using a single augmenting path.

4. Out-of-kilter algorithm.
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Cycle-canceling algorithms

Algorithm 1 Cycle-canceling algorithm
Compute a max flow x and the corresponding residual graph R(x);
while R(x) contains a negative cost cycle do
Select a negative cost cycle W;
§ < ming pew{rj};
Send ¢ units of flow along W and update R(x);
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Cycle-canceling algorithms: complexity

Let define
e C= max(,-J)eA{C,-j};
o J= max(,-,j)eA{u,j};

Then mCU is a trivial upper bound on the cost of the initial maximum
flow.

Then the algorithm terminates in at most mCU iterations, since 6 > 1
at each iteration.

If negative cost cycles are identified in O(nm) (with Moore algorithm
with FIFO policy), the overall complexity is O(nm?CU), which is not
polynomial.
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Polynomial-time implementations

Two possible polynomial-time implementations of the generic
cycle-canceling algorithm select

® a negative cost cycle with maximum residual capacity:
O(mlog (mCU))

® a negative cost cycle with minimum mean cost:
O(min{nmlog (nC), nm? log n}).

Both of them yield algorithms with polynomial-time complexity.
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Cycle with maximum residual capacity

Any two feasible flows on a given network can be obtained from each
other by at most m augmenting cycles in the residual graph.

Let x be a feasible flow and x* an optimal flow.

Then the cost cx* equals cx plus the (negative) cost of at most m
cycles in R(x).

The improvement in cost is cx — cx*.

Consequently, at least one of the augmenting cycles must produce a
decrease of at least (cx — cx*)/m.

Then, by selecting the cycle yielding maximum improvement, the
algorithm requires O(mlog (mCU)) iterations.

Unfortunately, finding the maximum improvement cycle is an NP-hard
problem.

However a slight modification of this approach yields an overall
polynomial-time complexity.
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Cycle with minimum mean cost

The mean cost of a cycle is its cost divided by the number of arcs it
contains.

A cycle with minimum mean cost can be identified in O(nm) or
O(v/nmlog (nC)).

If the cycle canceling algorithm always selects a minimum mean cost
cycle, it requires O(min{nmlog (nC), nm? log n}) iterations.

Therefore it is strongly polynomial.
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A basic property

Basic property. Given any flow x and its corresponding residual
graph R(x), for each cycle W in R(x) and for each choice of the node

potentials y,
> oa= > 9
(i) ew (i) ew

where c,f =c; — yj+ Vi V(i,j) € R(x), because the potentials cancel
out along the cycle.
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e-optimality
Definition. A flow x is e-optimal if 3y : c}]’ v(i,j) € R(x).

Given a vector of potentials y, let define

Then

Therefore x is e-optlmal for e = ¢(x).

For different choices of y, we can have different values for ¢/(x).
Let ¢(x) be the minimum value of ¢”(x) for which x is €’ (x)-optimal:

e(x) = myin{ey(x)}.
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Reduced costs along cycles

Let 1(x) be the mean cost of the minimum mean cost cycle in R(x).

If x is e-optimal, then for each cycle W of R(x) and for each vector of

potentials y
dYooci= Y ==X

(ij))ew (i) ew

If W* is the minimum mean cost cycle in R(x), then
u(x) =~ (x)

and



Cycle canceling
00000000800000000000000

Lemma 1: relationship between n(x) and e(x)

Lemma 1. Consider a sub-optimal flow x # x*. Then e(x) = —pu(x).

Proof. Let modify the costs c into ¢’ as follows:
cj = cj — pu(x) Y(i,j) € A.

The resulting digraph R’(x) has the same arcs as R(x).

The cost modification reduces the mean cost of all cycles by p(x)
(which is negative).

The mean cost of W* is zero in R'(x).

Therefore R'(x) does not contain cycles with negative cost.
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Lemma 1: relationship between n(x) and e(x)

Select a node s € N and consider the shortest paths arborescence
from sin R'(x).

Let d’ be the shortest distances.

df < df + = dl + ¢ — u(x) ¥(i.j) € R'(x).
Setting y; = —d; Vj € N we have
=Y < =Yi+cj— p(x) V(i.j) € R(x)
c) > u(x) ¥(i.j) € R(x)

Therefore x is (—u(x))-optimal.

Since u(x) does not depend on y, then e(x) = —u(x).
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Lemma 2: relationship between ¢” and p(x) and e(x)

Lemma 2. Consider a sub-optimal flow x £ x*. Then
Ay ¢ = —e(x) = p(x) ¥(i,j) e W

Proof. Selecting y as before, c{ > u(x) v(i,j) € R(x).
By definition

= Y c= >, ¢ =ul)w.

(i,))ew= (i,j)ew=

So, the mean value of ¢ along W* is 1(x) and all values of ¢} are at
least p(x). Therefore

of = nx) ¥(i.j) e W

and from Lemma 1

¢ = —e(x) (i,j) € W*.

)



Cycle canceling
00000000000e00000000000

Lemma 3: monotonicity of ¢(x)

Lemma 3. Consider a sub-optimal flow x # x*. After deleting W*,
¢(x) does not increase and u(x) does not decrease.

Proof. Consider a dual vector y such that

ol =—e(x) V(i,j) e W*
{ > —e(x) V(i) € R(x)

Let x’ be the flow and R’(x’) the residual graph after the cancellation
of W*.

At least one arc of R(x) does not belong to R’(x’) (because it has
been saturated).
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Lemma 3: monotonicity of ¢(x)
Some new arcs may appear in R'(x’) that were not in R(x).
For all (i,j) € R'(x'):

i (i) € Ax) ¢ > —(x)
{"mn¢mm o -

In the latter case ¢/ = —cj = ¢(x) > 0 > —¢(x).



Problem properties Cycle canceling
0000000000000000 0000000000000 8000000000

Lemma 3: monotonicity of ¢(x)

Therefore, in both cases

c) > —e(x) V(i,j) € R'(X).

,'jf

Then x’ is still e(x)-optimal: ¢(x’) < e(x).

W= Y = 2

(i.yew+’ (i.pew=’

Therefore p(x’) > p(x).

UNIVERSITA DEGLI STUDI DI MILANO



Cycle canceling
00000000000000800000000

Lemma 4: decrease rate of ¢(x)
Lemma 4. Within at most m iterations, e decreases by a factor at
least (1 — 1).
Proof. We have already proven that

Ay ¢ > —e(x) V(i,)) € R(x).

Type-1 iterations: cj < 0 V(i,j) € W*
Type-2 iterations: otherwise.

Every type-1 iteration deletes an arc with negative reduced cost from
the residual graph.

All arcs inserted by type-1 iterations have positive reduced cost.

Therefore the algorithm can execute at most m consecutive type-1
iterations.
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Lemma 4: decrease rate of ¢(x)

When a type-2 iteration is done, the eliminated cycle W* contains at
least one arc with non-negative reduced cost.

Therefore it contains at most |W*| — 1 arcs with negative reduced
cost.

Let x’ and x” be the flows before and after the iteration.
cj > —e(x') ¥(i,j) € W*
(W)=Y ¢
(i.j)e W~
(W) > (IW*] = 1)(—e(x"))
uw(x') = c(W*)/|W~|
Then

) = B et
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Lemma 4: decrease rate of ¢(x)
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u(x') > %(—e(x')).

From Lemma 3, p(x”) > p(x’).
Then
) =) 2 ) > (1= g ) (e = (1= 1) (et

Therefore
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Lemma 5: stop criterion

Lemmas. If e < 1n every e-optimal flow is also optimal.

Proof. If x is e-optimal, then a dual vector y exists such that c{ > —€
for all arcs in R(x).

Let W be a cycle in R(x). Then

c(W)= > ¢/ >—elW|>—en>—1.
(i.))ew

Since c(W) is integer, ¢(W) > —1 implies c(W) > 0.

Then R(x) contains no negative cost cycle, and x is optimal.
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Lemma 6: exponential decrease rate

Lemma 6. Consider an integer o > 1 and a series of real numbers
such that z, 1 < (1 — %)zk for each k. Then zx,, < sz for any k.

Proof. From z.,1 < (1 — 1)z, we obtain

Zk41
Zx 2 Zipt + .
+ a—1

The same holds replacing k with k + 1:

Zk42
Zk41 = Zkyo + -

Combining the two inequalities:

Zk42 Zk+41
+ —
-1 a—1

Zk 2 Zky2 +

1

because zx 2 < zk 1.
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Lemma 6: exponential decrease rate

Repeating the same procedure we get

Zk+3
Zk > Zki3 + 3 +
a—1

Zk+4
Zk > Zkia + 4 +
a—1

and so on. In general

Zk+
Zk > Zkta + a Ofl

This inequality can be rewritten as

Zi > Zkta (1 + %) > 2 Zkya-
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Proof of complexity

Let C be the maximum cost of an arc in the original digraph.
Initially the trivial bound ¢(x) < C holds: every flow is C-optimal.

For every m consecutive iterations ¢(x) decreases by a factor (1 — 1)

n
at least.
When ¢ < 1 the algorithm stops.

Therefore ¢ must decrease by a factor of nC in the worst case.
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Proof of complexity

Selecting o = n and letting k be the index of type-2 iterations we
know that e(x)k11 < (1 — 2)e(X)x.

For Lemma 6 we have ¢(x)in < 3e(X)k.

Using an index h to count all iterations, since there can be up to m
type-1 iterations for each single type-2 iteration, ¢(x)p.mn < %€(X)h.

Therefore ¢(x) is halved after at most nm iterations.

Hence the number of iterations is bounded by nmlog, (nC).
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Proof of complexity

Detecting the minimum mean cost cycle requires O(nm).

Therefore the overall worst-case time complexity of the cycle
cancelling algorithm is O(n?m? log (nC)).

Strongly polynomial complexity can be also proven (see Network
flows, chapter 10).
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