The min cost flow problem (part I)

Giovanni Righini

University of Milan

UNIVERSITA DEGLI STUDI DI MILANO

Problem properties
©000000000000000

Definitions

A flow network is a digraph D = (N, .A) with two particular nodes s
and t acting as source and sink of a flow.

The flow is a quantity that can traverse the arcs from their tails to their
heads, starting from s and reaching t.

The digraph D is weighted with
e acapacity u: A~ RT;
e gcostc: A RT;

Arc capacity: limit to the amount of flow that can traverse the arc.
Arc cost: cost to be paid for each unit of flow traversing the arc.

¢ An arc with no flow is empty.
e An arc with a flow equal to its capacity is saturated.

Problem properties
0®00000000000000

A formulation

We use a continuous and non-negative variable x; to indicate the
amount of flow on each arc (i, j) € A.

A mathematical model of the min-cost flow problem is:

minimize z = > ¢;x;

(i,j)eA

s.t. Z Xijj — Z Xji = b; Vie N
JEN(i,j)EA JEN:(j,i)eA
OSX,'I'SU,] V(i,j)E.A.

We assume that:
e all data are integer;
® Yien bi=0;
¢ capacities and costs are non-negative.
Reverse arcs in the residual graph have negative cost.

Problem properties Cycle canceling
00®0000000000000 00000000000000000000000

Optimality conditions

A feasible solution x* is optimal if and only if
1. the residual digraph R(x) does not contain any negative cost
cycle;
2. there is a dual vector y such that the reduced cost
¢l = cj—yi+y; > 0 for all arcs in the residual digraph R(x);

1)
3. complementary slackness conditions hold.

All these conditions are equivalent.

Problem properties C
000®000000000000 @

Flow decomposition

The difference between two feasible flows of the same value, is a set
of directed cycles.

Figure: Two feasible flows, x; and x..

Problem properties Cycle canceling
0000@00000000000 00000000000000000000000

Flow decomposition

Figure: The difference xi — x.

Figure: Decomposition in 4 directed
cycles.

UNIVERSITA DEGLI STUDI DI MILANO

Problem properties
00000®0000000000

Negative cycles optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if the residual graph R(x) does not contain any negative
cost cycle.

Proof (1): x optimal = No negative cycles in R(x).

By construction of the residual digraph, any directed cycle in R(x) is
an augmenting cycle for x.

Then, sending a unit of flow along a negative cost cycle decreases
the cost, without violating any constraint.

Therefore, if R(x) contains a negative cost cycle, x cannot be optimal.

Problem properties
0000008000000000

Negative cycles optimality conditions

Proof (2): No negative cycles in R(x) = x optimal.

Assume that x* is feasible, x° is optimal (i.e. a min cost flow) with
x° = x* and R(x*) has no negative cost cycles.

The difference vector x° — x* can be decomposed into a set of
augmenting cycles with respect to x* on R(x*) and the sum of the
costs of the flows along them is equal to cx° — cx*.

Since there are no negative cost cycles, cx® — cx* > 0 for each
augmenting cycle: hence cx° > cx*.

Since x° is a min cost flow, then cx° < cx*.

Therefore cx° = cx* and x* is also optimal.

Problem properties
0000000800000000

Reduced cost optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if there exists a vector of node potentials y satisfying the
condition

cj = cj— ¥i+y; >0 V(ij) € R(x).

Proof (1): 3y : ¢/ > 0(/,j) € R(x) = x optimal.

If cj’ > 0V(i,j) € R(x), then > ; hew c’]’ > 0 for any cycle W in R(x).

[/

For every cycle W, 3= hcw ¢ = >
cancel out along the cycle.

i j)ew Cij» because potentials

Therefore for every cycle W in R(x), >=; yew Ci = 0, i.e. R(x) does
not contain any negative cost cycle. Therefore x is optimal.

Problem properties
0000000080000000

Reduced cost optimality conditions

Proof (2): x optimal = 3y : ¢ > 0(i,j) € R(x).

If x is optimal, then R(x) has no negative cost cycles.

Consider a feasible flow x* such that R(x*) has no negative cost
cycles.

Then the shortest path problem is well-defined on R(x*).

Compute min cost paths from s to all nodes in R(x*): let d; be the
resulting min cost Vi € N.

From optimality conditions for shortest paths
d; < di+c¢; V(i,j) € R(x™).
Now choosing y = —d, we obtain

cj — Yi+y; =0 V(i,j) € R(x").

Cycle canceling
0000000000000 000O0O000000

Problem properties
0000000008000000

The dual problem

minimize z = > ¢jx;

(i,j)eA

st. > x—). xi=b VieN [y]
JEN(i,j)EA JEN:(j,i)eA
0< Xjj < Uji V(i,j) c A [—/\,'j]

maximize w = Z biyi — Z UjAji

ieN (i))eA

st yi—y—Ni<gj v(i.j)eA [x]
y; free VieN
Aj>0 v(i,j) € A.

Integer capacities = integer optimal solution.

UNIVERSITA DEGLI STUDI DI MILANO

Problem properties Cycle canceling
0000000000e00000 00000000000000000000000

Complementary slackness conditions

Primal C.S.C.

xj(cj+y—yi+XNj) =0 VY(i,j) €A
Dual C.S.C.

Aj(uj = x;) =0 V(i,j) € A

While the previous optimality conditions are formulated on the
residual digraph, the c.s. optimality conditions are formulated on the
original digraph.

Problem properties
0000000000080000

Complementary slackness optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if for some node potential y, the reduced costs ¢’ and the
flow values x satisfy the following c.s.c. for each arc (i, /) € A:

e if ¢/ > 0 then x; = 0;
e if 0 < x; < uj then ¢/ = 0;

e if ¢ < 0then x; = uj.

Proof. From linear programming duality.

This is a notable case of LP with bounded variables: flow variables x
can be non-basic in two different ways: either because they are at
their lower bound (0) or because they are at their upper bound (u).

Problem properties
000000000000e000

Optimal flows and optimal potentials

Question 1. Given an optimal flow x*, how can we obtain optimal
node potentials y*?

Question 2. Given optimal node potentials y*, how can we obtain an
optimal flow x*?

Answer 1. By computing a shortest path.

Answer 2. By computing a maximum flow.

Problem properties
0000000000000e00

From x* to y*

Let R(x*) be the residual graph corresponding to an optimal flow x*.
Since x* is optimal, R(x*) does not contain any negative cost cycle.

Let d be the vector of shortest distances from node s to all the other
nodes, using ¢ as arc lengths.

Shortest path optimality conditions imply
d <d+cj Y(ij) e R(x")
Let yj = —d; Vie N. Then
ci—Yi+y; >0 V(i,j) e R(x").

Then y is an optimal vector of node potentials.

Problem properties
00000000000000e0

From y* to x*

Let y* be an optimal vector of node potentials.
We can compute the corresponding reduced costs:

*

cg =cj—y +y Y(ij)eA

We examine each arc (/,j) € A:
o if ¢/ >0, then x; = 0: delete (/.).
o if c{ < 0, then x; = uj: set b; == bj — uy; by := bj + uy; delete
(i.J)-
o if cg = 0, then we have the constraint 0 < x; < uj.

Insert a dummy source s and a dummy sink t'.
Insert an arc (', i) for each i € N with b} > 0.
Insert an arc (i, t') for each i € N with b} < 0.
Send a maximum flow x* from s’ to t'.

Problem properties
000000000000000e

Algorithms

Algorithms for the min-cost flow problem can be roughly classified
according to the optimality conditions they exploit.

1. Cycle-canceling algorithms find a maximum flow first and then
iteratively improve its cost by detecting negative cost cycles.

2. Successive shortest path algorithms iteratively increase a
min-cost flow by detecting minimum cost augmenting paths.

3. Primal-dual algorithms send an augmenting flow at each iteration
instead of using a single augmenting path.

4. Out-of-kilter algorithm.

Cycle canceling
©0000000000000000000000

Cycle-canceling algorithms

Algorithm 1 Cycle-canceling algorithm
Compute a max flow x and the corresponding residual graph R(x);
while R(x) contains a negative cost cycle do
Select a negative cost cycle W;
§ < ming pew{rj};
Send ¢ units of flow along W and update R(x);

Cycle canceling
0®000000000000000000000

Problem propet

Cycle-canceling algorithms: complexity

Let define
e C= max(,-J)eA{C,-j};
o J= max(,-,j)eA{u,j};

Then mCU is a trivial upper bound on the cost of the initial maximum
flow.

Then the algorithm terminates in at most mCU iterations, since 6 > 1
at each iteration.

If negative cost cycles are identified in O(nm) (with Moore algorithm
with FIFO policy), the overall complexity is O(nm?CU), which is not
polynomial.

Problem properties Cycle canceling

0000000000000 000 0000000000000 0000O000000

Polynomial-time implementations

Two possible polynomial-time implementations of the generic
cycle-canceling algorithm select

® a negative cost cycle with maximum residual capacity:
O(mlog (mCU))

® a negative cost cycle with minimum mean cost:
O(min{nmlog (nC), nm? log n}).

Both of them yield algorithms with polynomial-time complexity.

UNIVERSITA DEGLI STUDI DI MILANO

Cycle canceling
000®0000000000000000000

Cycle with maximum residual capacity

Any two feasible flows on a given network can be obtained from each
other by at most m augmenting cycles in the residual graph.

Let x be a feasible flow and x* an optimal flow.

Then the cost cx* equals cx plus the (negative) cost of at most m
cycles in R(x).

The improvement in cost is cx — cx*.

Consequently, at least one of the augmenting cycles must produce a
decrease of at least (cx — cx*)/m.

Then, by selecting the cycle yielding maximum improvement, the
algorithm requires O(mlog (mCU)) iterations.

Unfortunately, finding the maximum improvement cycle is an NP-hard
problem.

However a slight modification of this approach yields an overall
polynomial-time complexity.

Cycle canceling
0000@000000000000000000

Cycle with minimum mean cost

The mean cost of a cycle is its cost divided by the number of arcs it
contains.

A cycle with minimum mean cost can be identified in O(nm) or
O(v/nmlog (nC)).

If the cycle canceling algorithm always selects a minimum mean cost
cycle, it requires O(min{nmlog (nC), nm? log n}) iterations.

Therefore it is strongly polynomial.

Cycle canceling
00000 @00000000000000000

A basic property

Basic property. Given any flow x and its corresponding residual
graph R(x), for each cycle W in R(x) and for each choice of the node

potentials y,
> oa= > 9
(i) ew (i) ew

where c,f =c; — yj+ Vi V(i,j) € R(x), because the potentials cancel
out along the cycle.

Cycle canceling
000000@0000000000000000

e-optimality
Definition. A flow x is e-optimal if 3y : c}]’ v(i,j) € R(x).

Given a vector of potentials y, let define

Then

Therefore x is e-optlmal for e = ¢(x).

For different choices of y, we can have different values for ¢/(x).
Let ¢(x) be the minimum value of ¢”(x) for which x is €’ (x)-optimal:

e(x) = myin{ey(x)}.

Cycle canceling
0000000@000000000000000

Reduced costs along cycles

Let 1(x) be the mean cost of the minimum mean cost cycle in R(x).

If x is e-optimal, then for each cycle W of R(x) and for each vector of

potentials y
dYooci= Y ==X

(ij))ew (i) ew

If W* is the minimum mean cost cycle in R(x), then
u(x) =~ (x)

and

Cycle canceling
00000000800000000000000

Lemma 1: relationship between n(x) and e(x)

Lemma 1. Consider a sub-optimal flow x # x*. Then e(x) = —pu(x).

Proof. Let modify the costs c into ¢’ as follows:
cj = cj — pu(x) Y(i,j) € A.

The resulting digraph R’(x) has the same arcs as R(x).

The cost modification reduces the mean cost of all cycles by p(x)
(which is negative).

The mean cost of W* is zero in R'(x).

Therefore R'(x) does not contain cycles with negative cost.

Cycle canceling
00000000080000000000000

Lemma 1: relationship between n(x) and e(x)

Select a node s € N and consider the shortest paths arborescence
from sin R'(x).

Let d’ be the shortest distances.

df < df + = dl + ¢ — u(x) ¥(i.j) € R'(x).
Setting y; = —d; Vj € N we have
=Y < =Yi+cj— p(x) V(i.j) € R(x)
c) > u(x) ¥(i.j) € R(x)

Therefore x is (—u(x))-optimal.

Since u(x) does not depend on y, then e(x) = —u(x).

Pr J\ m propertie: Cycle canceling
000¢)O00000 00000000008000000000000

Lemma 2: relationship between ¢” and p(x) and e(x)

Lemma 2. Consider a sub-optimal flow x £ x*. Then
Ay ¢ = —e(x) = p(x) ¥(i,j) e W

Proof. Selecting y as before, c{ > u(x) v(i,j) € R(x).
By definition

= Y c= >, ¢ =ul)w.

(i,))ew= (i,j)ew=

So, the mean value of ¢ along W* is 1(x) and all values of ¢} are at
least p(x). Therefore

of = nx) ¥(i.j) e W

and from Lemma 1

¢ = —e(x) (i,j) € W*.

)

Cycle canceling
00000000000e00000000000

Lemma 3: monotonicity of ¢(x)

Lemma 3. Consider a sub-optimal flow x # x*. After deleting W*,
¢(x) does not increase and u(x) does not decrease.

Proof. Consider a dual vector y such that

ol =—e(x) V(i,j) e W*
{ > —e(x) V(i) € R(x)

Let x’ be the flow and R’(x’) the residual graph after the cancellation
of W*.

At least one arc of R(x) does not belong to R’(x’) (because it has
been saturated).

Problem properties Cycle canceling
0000000000000000 000000000000e0000000000

Lemma 3: monotonicity of ¢(x)
Some new arcs may appear in R'(x’) that were not in R(x).
For all (i,j) € R'(x'):

i (i) € Ax) ¢ > —(x)
{"mn¢mm o -

In the latter case ¢/ = —cj = ¢(x) > 0 > —¢(x).

Problem properties Cycle canceling
0000000000000000 0000000000000 8000000000

Lemma 3: monotonicity of ¢(x)

Therefore, in both cases

c) > —e(x) V(i,j) € R'(X).

,'jf

Then x’ is still e(x)-optimal: ¢(x’) < e(x).

W= Y = 2

(i.yew+’ (i.pew=’

Therefore p(x’) > p(x).

UNIVERSITA DEGLI STUDI DI MILANO

Cycle canceling
00000000000000800000000

Lemma 4: decrease rate of ¢(x)
Lemma 4. Within at most m iterations, e decreases by a factor at
least (1 — 1).
Proof. We have already proven that

Ay ¢ > —e(x) V(i,)) € R(x).

Type-1 iterations: cj < 0 V(i,j) € W*
Type-2 iterations: otherwise.

Every type-1 iteration deletes an arc with negative reduced cost from
the residual graph.

All arcs inserted by type-1 iterations have positive reduced cost.

Therefore the algorithm can execute at most m consecutive type-1
iterations.

Cycle canceling
000000000000000e0000000

Lemma 4: decrease rate of ¢(x)

When a type-2 iteration is done, the eliminated cycle W* contains at
least one arc with non-negative reduced cost.

Therefore it contains at most |W*| — 1 arcs with negative reduced
cost.

Let x’ and x” be the flows before and after the iteration.
cj > —e(x') ¥(i,j) € W*
(W)=Y ¢
(i.j)e W~
(W) > (IW*] = 1)(—e(x"))
uw(x') = c(W*)/|W~|
Then

) = B et

Cycle canceling
0000000000000000e000000

Lemma 4: decrease rate of ¢(x)

Problem properties
0000000000000 000

u(x') > %(—e(x')).

From Lemma 3, p(x”) > p(x’).
Then
) =) 2) > (1= g) (e = (1= 1) (et

Therefore

Cycle canceling
00000000000000000800000

Lemma 5: stop criterion

Lemmas. If e < 1n every e-optimal flow is also optimal.

Proof. If x is e-optimal, then a dual vector y exists such that c{ > —€
for all arcs in R(x).

Let W be a cycle in R(x). Then

c(W)= > ¢/ >—elW|>—en>—1.
(i.))ew

Since c(W) is integer, ¢(W) > —1 implies c(W) > 0.

Then R(x) contains no negative cost cycle, and x is optimal.

Cycle canceling
000000000000000000e0000

Lemma 6: exponential decrease rate

Lemma 6. Consider an integer o > 1 and a series of real numbers
such that z, 1 < (1 — %)zk for each k. Then zx,, < sz for any k.

Proof. From z.,1 < (1 — 1)z, we obtain

Zk41
Zx 2 Zipt + .
+ a—1

The same holds replacing k with k + 1:

Zk42
Zk41 = Zkyo + -

Combining the two inequalities:

Zk42 Zk+41
+ —
-1 a—1

Zk 2 Zky2 +

1

because zx 2 < zk 1.

Problem properties Cycle canceling
0000000000000000 0000000000000000000e000

Lemma 6: exponential decrease rate

Repeating the same procedure we get

Zk+3
Zk > Zki3 + 3 +
a—1

Zk+4
Zk > Zkia + 4 +
a—1

and so on. In general

Zk+
Zk > Zkta + a Ofl

This inequality can be rewritten as

Zi > Zkta (1 + %) > 2 Zkya-

UNIVERSITA DEGLI STUDI DI MILANO

Cycle canceling
00000000000000000000e00

Proof of complexity

Let C be the maximum cost of an arc in the original digraph.
Initially the trivial bound ¢(x) < C holds: every flow is C-optimal.

For every m consecutive iterations ¢(x) decreases by a factor (1 — 1)

n
at least.
When ¢ < 1 the algorithm stops.

Therefore ¢ must decrease by a factor of nC in the worst case.

Cycle canceling
000000000000000000000e0

Proof of complexity

Selecting o = n and letting k be the index of type-2 iterations we
know that e(x)k11 < (1 — 2)e(X)x.

For Lemma 6 we have ¢(x)in < 3e(X)k.

Using an index h to count all iterations, since there can be up to m
type-1 iterations for each single type-2 iteration, ¢(x)p.mn < %€(X)h.

Therefore ¢(x) is halved after at most nm iterations.

Hence the number of iterations is bounded by nmlog, (nC).

Cycle canceling
0000000000000000000000e

Proof of complexity

Detecting the minimum mean cost cycle requires O(nm).

Therefore the overall worst-case time complexity of the cycle
cancelling algorithm is O(n?m? log (nC)).

Strongly polynomial complexity can be also proven (see Network
flows, chapter 10).

	Problem properties
	Problem properties

	Cycle canceling
	Cycle canceling

