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Problem properties Cycle canceling

Definitions

A flow network is a digraph D = (N ,A) with two particular nodes s
and t acting as source and sink of a flow.

The flow is a quantity that can traverse the arcs from their tails to their

heads, starting from s and reaching t.

The digraph D is weighted with

• a capacity u : A 7→ ℜm
+;

• a cost c : A 7→ ℜm
+;

Arc capacity: limit to the amount of flow that can traverse the arc.

Arc cost: cost to be paid for each unit of flow traversing the arc.

• An arc with no flow is empty.

• An arc with a flow equal to its capacity is saturated.
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A formulation

We use a continuous and non-negative variable xij to indicate the

amount of flow on each arc (i, j) ∈ A.

A mathematical model of the min-cost flow problem is:

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

We assume that:

• all data are integer;

• ∑

i∈N
bi = 0;

• capacities and costs are non-negative.

Reverse arcs in the residual graph have negative cost.
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Optimality conditions

A feasible solution x∗ is optimal if and only if

1. the residual digraph R(x) does not contain any negative cost

cycle;

2. there is a dual vector y such that the reduced cost

c
y
ij = cij − yi + yj ≥ 0 for all arcs in the residual digraph R(x);

3. complementary slackness conditions hold.

All these conditions are equivalent.
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Flow decomposition

The difference between two feasible flows of the same value, is a set
of directed cycles.
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Figure: Two feasible flows, x1 and x2.
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Flow decomposition
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Figure: The difference x1 − x2.
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Negative cycles optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if the residual graph R(x) does not contain any negative

cost cycle.

Proof (1): x optimal⇒ No negative cycles in R(x).

By construction of the residual digraph, any directed cycle in R(x) is

an augmenting cycle for x .

Then, sending a unit of flow along a negative cost cycle decreases
the cost, without violating any constraint.

Therefore, if R(x) contains a negative cost cycle, x cannot be optimal.
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Negative cycles optimality conditions

Proof (2): No negative cycles in R(x)⇒ x optimal.

Assume that x∗ is feasible, xo is optimal (i.e. a min cost flow) with

xo 6= x∗ and R(x∗) has no negative cost cycles.

The difference vector xo − x∗ can be decomposed into a set of
augmenting cycles with respect to x∗ on R(x∗) and the sum of the

costs of the flows along them is equal to cxo − cx∗.

Since there are no negative cost cycles, cxo − cx∗ ≥ 0 for each
augmenting cycle: hence cxo ≥ cx∗.

Since xo is a min cost flow, then cxo ≤ cx∗.

Therefore cxo = cx∗ and x∗ is also optimal.
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Reduced cost optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if there exists a vector of node potentials y satisfying the

condition

c
y
ij = cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x).

Proof (1): ∃y : c
y
ij ≥ 0 ∀(i, j) ∈ R(x)⇒ x optimal.

If c
y
ij ≥ 0 ∀(i, j) ∈ R(x), then

∑

(i,j)∈W c
y
ij ≥ 0 for any cycle W in R(x).

For every cycle W ,
∑

(i,j)∈W c
y
ij =

∑

(i,j)∈W cij , because potentials
cancel out along the cycle.

Therefore for every cycle W in R(x),
∑

(i,j)∈W cij ≥ 0, i.e. R(x) does

not contain any negative cost cycle. Therefore x is optimal.
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Reduced cost optimality conditions

Proof (2): x optimal⇒ ∃y : c
y
ij ≥ 0 ∀(i, j) ∈ R(x).

If x is optimal, then R(x) has no negative cost cycles.

Consider a feasible flow x∗ such that R(x∗) has no negative cost
cycles.

Then the shortest path problem is well-defined on R(x∗).

Compute min cost paths from s to all nodes in R(x∗): let di be the
resulting min cost ∀i ∈ N.

From optimality conditions for shortest paths

dj ≤ di + cij ∀(i, j) ∈ R(x∗).

Now choosing y = −d , we obtain

cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x∗).
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The dual problem

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = bi ∀i ∈ N [yi ]

0 ≤ xij ≤ uij ∀(i, j) ∈ A. [−λij ]

maximize w =
∑

i∈N

bi yi −
∑

(i,j)∈A

uijλij

s.t. yi − yj − λij ≤ cij ∀(i, j) ∈ A [xij ]

yi free ∀i ∈ N
λij ≥ 0 ∀(i, j) ∈ A.

Integer capacities⇒ integer optimal solution.
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Complementary slackness conditions

Primal C.S.C.

xij(cij + yj − yi + λij) = 0 ∀(i, j) ∈ A
Dual C.S.C.

λij(uij − xij) = 0 ∀(i, j) ∈ A

While the previous optimality conditions are formulated on the
residual digraph, the c.s. optimality conditions are formulated on the

original digraph.
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Complementary slackness optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if for some node potential y , the reduced costs cy and the

flow values x satisfy the following c.s.c. for each arc (i, j) ∈ A:

• if c
y
ij > 0 then xij = 0;

• if 0 < xij < uij then c
y
ij = 0;

• if c
y
ij < 0 then xij = uij .

Proof. From linear programming duality.

This is a notable case of LP with bounded variables: flow variables x

can be non-basic in two different ways: either because they are at

their lower bound (0) or because they are at their upper bound (u).
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Optimal flows and optimal potentials

Question 1. Given an optimal flow x∗, how can we obtain optimal
node potentials y∗?

Question 2. Given optimal node potentials y∗, how can we obtain an

optimal flow x∗?

Answer 1. By computing a shortest path.

Answer 2. By computing a maximum flow.
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From x∗ to y∗

Let R(x∗) be the residual graph corresponding to an optimal flow x∗.
Since x∗ is optimal, R(x∗) does not contain any negative cost cycle.

Let d be the vector of shortest distances from node s to all the other

nodes, using c as arc lengths.

Shortest path optimality conditions imply

dj ≤ di + cij ∀(i, j) ∈ R(x∗)

Let yi = −di ∀i ∈ N . Then

cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x∗).

Then y is an optimal vector of node potentials.
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From y∗ to x∗

Let y∗ be an optimal vector of node potentials.
We can compute the corresponding reduced costs:

c
y∗

ij = cij − y∗
i + y∗

j ∀(i, j) ∈ A.

We examine each arc (i, j) ∈ A:

• if c
y∗

ij > 0, then x∗
ij = 0: delete (i, j).

• if c
y∗

ij < 0, then x∗
ij = uij : set bi := bi − uij ; bj := bj + uij ; delete

(i, j).

• if c
y∗

ij = 0, then we have the constraint 0 ≤ x∗
ij ≤ uij .

Insert a dummy source s′ and a dummy sink t ′.
Insert an arc (s′, i) for each i ∈ N with b′

i > 0.

Insert an arc (i, t ′) for each i ∈ N with b′
i < 0.

Send a maximum flow x∗ from s′ to t ′.
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Algorithms

Algorithms for the min-cost flow problem can be roughly classified
according to the optimality conditions they exploit.

1. Cycle-canceling algorithms find a maximum flow first and then

iteratively improve its cost by detecting negative cost cycles.

2. Successive shortest path algorithms iteratively increase a

min-cost flow by detecting minimum cost augmenting paths.

3. Primal-dual algorithms send an augmenting flow at each iteration

instead of using a single augmenting path.

4. Out-of-kilter algorithm.
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Cycle-canceling algorithms

Algorithm 1 Cycle-canceling algorithm

Compute a max flow x and the corresponding residual graph R(x);
while R(x) contains a negative cost cycle do

Select a negative cost cycle W ;

δ ← min(i,j)∈W{rij};
Send δ units of flow along W and update R(x);
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Cycle-canceling algorithms: complexity

Let define

• C = max(i,j)∈A{cij};
• U = max(i,j)∈A{uij};

Then mCU is a trivial upper bound on the cost of the initial maximum

flow.

Then the algorithm terminates in at most mCU iterations, since δ ≥ 1
at each iteration.

If negative cost cycles are identified in O(nm) (with Moore algorithm

with FIFO policy), the overall complexity is O(nm2CU), which is not
polynomial.
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Polynomial-time implementations

Two possible polynomial-time implementations of the generic
cycle-canceling algorithm select

• a negative cost cycle with maximum residual capacity:

O(m log (mCU))

• a negative cost cycle with minimum mean cost:

O(min{nm log (nC), nm2 log n}).

Both of them yield algorithms with polynomial-time complexity.
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Cycle with maximum residual capacity

Any two feasible flows on a given network can be obtained from each

other by at most m augmenting cycles in the residual graph.

Let x be a feasible flow and x∗ an optimal flow.
Then the cost cx∗ equals cx plus the (negative) cost of at most m

cycles in R(x).
The improvement in cost is cx − cx∗.

Consequently, at least one of the augmenting cycles must produce a

decrease of at least (cx − cx∗)/m.
Then, by selecting the cycle yielding maximum improvement, the

algorithm requires O(m log (mCU)) iterations.

Unfortunately, finding the maximum improvement cycle is an NP-hard

problem.

However a slight modification of this approach yields an overall
polynomial-time complexity.
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Cycle with minimum mean cost

The mean cost of a cycle is its cost divided by the number of arcs it
contains.

A cycle with minimum mean cost can be identified in O(nm) or

O(
√

nm log (nC)).

If the cycle canceling algorithm always selects a minimum mean cost

cycle, it requires O(min{nm log (nC), nm2 log n}) iterations.

Therefore it is strongly polynomial.
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A basic property

Basic property. Given any flow x and its corresponding residual
graph R(x), for each cycle W in R(x) and for each choice of the node

potentials y ,
∑

(i,j)∈W

cij =
∑

(i,j)∈W

c
y
ij

where c
y
ij = cij − yj + yi ∀(i, j) ∈ R(x), because the potentials cancel

out along the cycle.
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ǫ-optimality

Definition. A flow x is ǫ-optimal if ∃y : c
y
ij ≥ −ǫ ∀(i, j) ∈ R(x).

Given a vector of potentials y , let define

ǫy(x) = − min
(i,j)∈R(x)

{cy
ij }.

Then
{

c
y
ij ≥ −ǫy(x) ∀(i, j) ∈ R(x)

∃(u, v) ∈ R(x) : c
y
uv = −ǫy (x)

Therefore x is ǫ-optimal for ǫ = ǫy (x).

For different choices of y , we can have different values for ǫy (x).
Let ǫ(x) be the minimum value of ǫy (x) for which x is ǫy(x)-optimal:

ǫ(x) = min
y
{ǫy(x)}.



 

Problem properties Cycle canceling

Reduced costs along cycles

Let µ(x) be the mean cost of the minimum mean cost cycle in R(x).

If x is ǫ-optimal, then for each cycle W of R(x) and for each vector of

potentials y
∑

(i,j)∈W

cij =
∑

(i,j)∈W

c
y
ij ≥ −ǫy(x)|W |.

If W ∗ is the minimum mean cost cycle in R(x), then

µ(x) ≥ −ǫy(x)

and

∃y : c
y
ij = −ǫ(x) ∀(i, j) ∈W ∗.
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Lemma 1: relationship between µ(x) and ǫ(x)

Lemma 1. Consider a sub-optimal flow x 6= x∗. Then ǫ(x) = −µ(x).

Proof. Let modify the costs c into c′ as follows:

c′
ij = cij − µ(x) ∀(i, j) ∈ A.

The resulting digraph R′(x) has the same arcs as R(x).

The cost modification reduces the mean cost of all cycles by µ(x)
(which is negative).

The mean cost of W ∗ is zero in R′(x).

Therefore R′(x) does not contain cycles with negative cost.
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Lemma 1: relationship between µ(x) and ǫ(x)

Select a node s ∈ N and consider the shortest paths arborescence
from s in R′(x).

Let d ′ be the shortest distances.

d ′
j ≤ d ′

i + c′
ij = d ′

i + cij − µ(x) ∀(i, j) ∈ R′(x).

Setting yj = −d ′
j ∀j ∈ N we have

−yj ≤ −yi + cij − µ(x) ∀(i, j) ∈ R(x)

c
y
ij ≥ µ(x) ∀(i, j) ∈ R(x)

Therefore x is (−µ(x))-optimal.

Since µ(x) does not depend on y , then ǫ(x) = −µ(x).
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Lemma 2: relationship between cy and µ(x) and ǫ(x)

Lemma 2. Consider a sub-optimal flow x 6= x∗. Then
∃y : c

y
ij = −ǫ(x) = µ(x) ∀(i, j) ∈W ∗.

Proof. Selecting y as before, c
y
ij ≥ µ(x) ∀(i, j) ∈ R(x).

By definition

c(W ∗) =
∑

(i,j)∈W∗

cij =
∑

(i,j)∈W∗

c
y
ij = µ(x)|W ∗|.

So, the mean value of c
y
ij along W ∗ is µ(x) and all values of c

y
ij are at

least µ(x). Therefore

c
y
ij = µ(x) ∀(i, j) ∈W ∗

and from Lemma 1

c
y
ij = −ǫ(x) ∀(i, j) ∈W ∗.
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Lemma 3: monotonicity of ǫ(x)

Lemma 3. Consider a sub-optimal flow x 6= x∗. After deleting W ∗,
ǫ(x) does not increase and µ(x) does not decrease.

Proof. Consider a dual vector y such that

{

c
y
ij = −ǫ(x) ∀(i, j) ∈W ∗

c
y
ij ≥ −ǫ(x) ∀(i, j) ∈ R(x)

Let x ′ be the flow and R′(x ′) the residual graph after the cancellation

of W ∗.

At least one arc of R(x) does not belong to R′(x ′) (because it has

been saturated).
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Lemma 3: monotonicity of ǫ(x)

Some new arcs may appear in R′(x ′) that were not in R(x).
For all (i, j) ∈ R′(x ′):

{

if (i, j) ∈ R(x) c
y
ij ≥ −ǫ(x)

if (i, j) 6∈ R(x) c
y
ji = −ǫ(x)((j, i) ∈ W ∗)

In the latter case c
y
ij = −c

y
ji = ǫ(x) > 0 > −ǫ(x).
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Lemma 3: monotonicity of ǫ(x)

Therefore, in both cases

c
y
ij ≥ −ǫ(x) ∀(i, j) ∈ R′(x ′).

Then x ′ is still ǫ(x)-optimal: ǫ(x ′) ≤ ǫ(x).

µ(x ′) =
∑

(i,j)∈W∗
′

cij

|W ∗′ | =
∑

(i,j)∈W∗
′

c
y
ij

|W ∗′ | ≥ min
(i,j)∈W∗

′

{cy
ij } ≥ −ǫ(x) = µ(x).

Therefore µ(x ′) ≥ µ(x).
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Lemma 4: decrease rate of ǫ(x)

Lemma 4. Within at most m iterations, ǫ decreases by a factor at

least (1− 1
n
).

Proof. We have already proven that

∃y : c
y
ij ≥ −ǫ(x) ∀(i, j) ∈ R(x).

Type-1 iterations: c
y
ij < 0 ∀(i, j) ∈ W ∗

Type-2 iterations: otherwise.

Every type-1 iteration deletes an arc with negative reduced cost from
the residual graph.

All arcs inserted by type-1 iterations have positive reduced cost.

Therefore the algorithm can execute at most m consecutive type-1

iterations.
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Lemma 4: decrease rate of ǫ(x)

When a type-2 iteration is done, the eliminated cycle W ∗ contains at
least one arc with non-negative reduced cost.

Therefore it contains at most |W ∗| − 1 arcs with negative reduced

cost.
Let x ′ and x ′′ be the flows before and after the iteration.

c
y
ij ≥ −ǫ(x ′) ∀(i, j) ∈W ∗

c(W ∗) =
∑

(i,j)∈W∗

c
y
ij

c(W ∗) ≥ (|W ∗| − 1)(−ǫ(x ′))

µ(x ′) = c(W ∗)/|W ∗|
Then

µ(x ′) ≥ |W
∗| − 1

|W ∗| (−ǫ(x ′)).
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Lemma 4: decrease rate of ǫ(x)

µ(x ′) ≥ |W
∗| − 1

|W ∗| (−ǫ(x ′)).

From Lemma 3, µ(x ′′) ≥ µ(x ′).

Then

−ǫ(x ′′) = µ(x ′′) ≥ µ(x ′) ≥
(

1− 1

|W ∗|

)

(−ǫ(x ′)) ≥
(

1− 1

n

)

(−ǫ(x ′)).

Therefore

ǫ(x ′′) ≤
(

1− 1

n

)

ǫ(x ′).
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Lemma 5: stop criterion

Lemma 5. If ǫ < 1
n
, every ǫ-optimal flow is also optimal.

Proof. If x is ǫ-optimal, then a dual vector y exists such that c
y
ij ≥ −ǫ

for all arcs in R(x).

Let W be a cycle in R(x). Then

c(W ) =
∑

(i,j)∈W

c
y
ij ≥ −ǫ|W | ≥ −ǫn > −1.

Since c(W ) is integer, c(W ) > −1 implies c(W ) ≥ 0.

Then R(x) contains no negative cost cycle, and x is optimal.
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Lemma 6: exponential decrease rate

Lemma 6. Consider an integer α > 1 and a series of real numbers
such that zk+1 ≤ (1− 1

α
)zk for each k . Then zk+α ≤ 1

2
zk for any k .

Proof. From zk+1 ≤ (1− 1
α
)zk we obtain

zk ≥ zk+1 +
zk+1

α− 1
.

The same holds replacing k with k + 1:

zk+1 ≥ zk+2 +
zk+2

α− 1
.

Combining the two inequalities:

zk ≥ zk+2 +
zk+2

α− 1
+

zk+1

α− 1
> zk+2 + 2

zk+2

α− 1

because zk+2 < zk+1.
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Lemma 6: exponential decrease rate

Repeating the same procedure we get

zk > zk+3 + 3
zk+3

α− 1

zk > zk+4 + 4
zk+4

α− 1

and so on. In general

zk > zk+α + α
zk+α

α− 1
.

This inequality can be rewritten as

zk > zk+α

(

1 +
α

α− 1

)

> 2 zk+α.
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Proof of complexity

Let C be the maximum cost of an arc in the original digraph.

Initially the trivial bound ǫ(x) ≤ C holds: every flow is C-optimal.

For every m consecutive iterations ǫ(x) decreases by a factor (1− 1
n
)

at least.

When ǫ < 1
n

the algorithm stops.

Therefore ǫ must decrease by a factor of nC in the worst case.



 

Problem properties Cycle canceling

Proof of complexity

Selecting α = n and letting k be the index of type-2 iterations we
know that ǫ(x)k+1 ≤ (1− 1

n
)ǫ(x)k .

For Lemma 6 we have ǫ(x)k+n ≤ 1
2
ǫ(x)k .

Using an index h to count all iterations, since there can be up to m
type-1 iterations for each single type-2 iteration, ǫ(x)h+mn ≤ 1

2
ǫ(x)h.

Therefore ǫ(x) is halved after at most nm iterations.

Hence the number of iterations is bounded by nm log2 (nC).
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Proof of complexity

Detecting the minimum mean cost cycle requires O(nm).

Therefore the overall worst-case time complexity of the cycle

cancelling algorithm is O(n2m2 log (nC)).

Strongly polynomial complexity can be also proven (see Network
flows, chapter 10).
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