The min cost flow problem (part I)

Giovanni Righini

University of Milan

Definitions

A flow network is a digraph $\mathcal{D} = (\mathcal{N}, \mathcal{A})$ with two particular nodes s and t acting as *source* and *sink* of a flow.

The flow is a quantity that can traverse the arcs from their tails to their heads, starting from *s* and reaching *t*.

The digraph \mathcal{D} is weighted with

- a capacity $u: A \mapsto \Re_+^m$;
- a cost $c: A \mapsto \Re^m_+$;

Arc capacity: limit to the amount of flow that can traverse the arc.

Arc cost: cost to be paid for each unit of flow traversing the arc.

- An arc with no flow is empty.
- An arc with a flow equal to its capacity is saturated.

A formulation

We use a continuous and non-negative variable x_{ij} to indicate the amount of flow on each arc $(i,j) \in A$.

A mathematical model of the min-cost flow problem is:

minimize
$$z = \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$

s.t. $\sum_{j \in \mathcal{N}: (i,j) \in \mathcal{A}} x_{ij} - \sum_{j \in \mathcal{N}: (j,i) \in \mathcal{A}} x_{ji} = b_i$ $\forall i \in N$
 $0 \le x_{ij} \le u_{ij}$ $\forall (i,j) \in \mathcal{A}$.

We assume that:

- all data are integer;
- $\sum_{i\in\mathcal{N}}b_i=0$;
- capacities and costs are non-negative.

Reverse arcs in the residual graph have negative cost.

Optimality conditions

A feasible solution x^* is optimal if and only if

- 1. the residual digraph R(x) does not contain any negative cost cycle;
- 2. there is a dual vector y such that the reduced cost $c_{ij}^y = c_{ij} y_i + y_j \ge 0$ for all arcs in the residual digraph R(x);
- complementary slackness conditions hold.

All these conditions are equivalent.

Flow decomposition

The difference between two feasible flows of the same value, is a set of directed cycles.

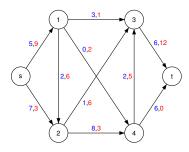


Figure: Two feasible flows, x_1 and x_2 .

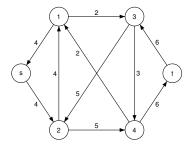


Figure: The difference $x_1 - x_2$.

Flow decomposition

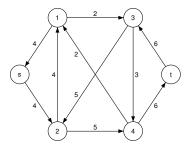


Figure: The difference $x_1 - x_2$.



Figure: Decomposition in 4 directed cycles.

Negative cycles optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if and only if the residual graph R(x) does not contain any negative cost cycle.

Proof (1): x optimal \Rightarrow No negative cycles in R(x).

By construction of the residual digraph, any directed cycle in R(x) is an augmenting cycle for x.

Then, sending a unit of flow along a negative cost cycle decreases the cost, without violating any constraint.

Therefore, if R(x) contains a negative cost cycle, x cannot be optimal.

Negative cycles optimality conditions

Proof (2): No negative cycles in $R(x) \Rightarrow x$ optimal.

Assume that x^* is feasible, x^o is optimal (i.e. a min cost flow) with $x^o \neq x^*$ and $R(x^*)$ has no negative cost cycles.

The difference vector $x^o - x^*$ can be decomposed into a set of augmenting cycles with respect to x^* on $R(x^*)$ and the sum of the costs of the flows along them is equal to $cx^o - cx^*$.

Since there are no negative cost cycles, $cx^o - cx^* \ge 0$ for each augmenting cycle: hence $cx^o \ge cx^*$.

Since x^o is a min cost flow, then $cx^o \le cx^*$.

Therefore $cx^o = cx^*$ and x^* is also optimal.

Reduced cost optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if and only if there exists a vector of node potentials y satisfying the condition

$$c_{ij}^{y}=c_{ij}-y_{i}+y_{j}\geq 0 \ \forall (i,j)\in R(x).$$

Proof (1): $\exists y : c_{ij}^y \geq 0 \ \forall (i,j) \in R(x) \Rightarrow x \text{ optimal.}$

If
$$c_{ij}^y \ge 0 \ \forall (i,j) \in R(x)$$
, then $\sum_{(i,j) \in W} c_{ij}^y \ge 0$ for any cycle W in $R(x)$.

For every cycle W, $\sum_{(i,j)\in W} c_{ij}^{\nu} = \sum_{(i,j)\in W} c_{ij}$, because potentials cancel out along the cycle.

Therefore for every cycle W in R(x), $\sum_{(i,j)\in W} c_{ij} \geq 0$, i.e. R(x) does not contain any negative cost cycle. Therefore x is optimal.

Reduced cost optimality conditions

Proof (2):
$$x$$
 optimal $\Rightarrow \exists y : c_{ij}^y \geq 0 \ \forall (i,j) \in R(x)$.

If x is optimal, then R(x) has no negative cost cycles. Consider a feasible flow x^* such that $R(x^*)$ has no negative cost cycles.

Then the shortest path problem is well-defined on $R(x^*)$.

Compute min cost paths from s to all nodes in $R(x^*)$: let d_i be the resulting min cost $\forall i \in N$.

From optimality conditions for shortest paths

$$d_j \leq d_i + c_{ij} \ \forall (i,j) \in R(x^*).$$

Now choosing y = -d, we obtain

$$c_{ij}-y_i+y_j\geq 0 \ \forall (i,j)\in R(x^*).$$

The dual problem

$$\begin{aligned} & \text{minimize } z = \sum_{(i,j) \in \mathcal{A}} c_{ij} \textbf{x}_{ij} \\ & \text{s.t. } \sum_{j \in \mathcal{N}: (i,j) \in \mathcal{A}} \textbf{x}_{ij} - \sum_{j \in \mathcal{N}: (j,i) \in \mathcal{A}} \textbf{x}_{ji} = b_i \qquad \forall i \in \mathcal{N} \qquad [y_i] \\ & 0 \leq \textbf{x}_{ij} \leq u_{ij} \qquad \qquad \forall (i,j) \in \mathcal{A}. \quad [-\lambda_{ij}] \end{aligned}$$

$$\begin{aligned} \text{maximize } w &= \sum_{i \in \mathcal{N}} b_i y_i - \sum_{(i,j) \in \mathcal{A}} u_{ij} \lambda_{ij} \\ \text{s.t. } y_i - y_j - \lambda_{ij} \leq c_{ij} & \forall (i,j) \in \mathcal{A} & [\textbf{\textit{x}}_{ij}] \\ y_i \text{ free} & \forall i \in \mathcal{N} \\ \lambda_{ij} \geq 0 & \forall (i,j) \in \mathcal{A}. \end{aligned}$$

Integer capacities ⇒ integer optimal solution.

Complementary slackness conditions

Primal C.S.C.

$$\mathbf{x}_{ij}(\mathbf{c}_{ij}+\mathbf{y}_i-\mathbf{y}_i+\lambda_{ij})=0 \quad \forall (i,j)\in \mathcal{A}$$

Dual C.S.C.

$$\lambda_{ij}(u_{ij}-\mathbf{x}_{ij})=0 \quad \forall (i,j)\in \mathcal{A}$$

While the previous optimality conditions are formulated on the residual digraph, the c.s. optimality conditions are formulated on the original digraph.

Complementary slackness optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if and only if for some node potential y, the reduced costs c^y and the flow values x satisfy the following c.s.c. for each arc $(i,j) \in A$:

- if $c_{ii}^y > 0$ then $x_{ij} = 0$;
- if $0 < x_{ij} < u_{ij}$ then $c_{ij}^{y} = 0$;
- if $c_{ij}^{y} < 0$ then $x_{ij} = u_{ij}$.

Proof. From linear programming duality.

This is a notable case of LP with bounded variables: flow variables x can be non-basic in two different ways: either because they are at their lower bound (0) or because they are at their upper bound (u).

Optimal flows and optimal potentials

Question 1. Given an optimal flow x^* , how can we obtain optimal node potentials y^* ?

Question 2. Given optimal node potentials y^* , how can we obtain an optimal flow x^* ?

Answer 1. By computing a shortest path.

Answer 2. By computing a maximum flow.

From x^* to y^*

Let $R(x^*)$ be the residual graph corresponding to an optimal flow x^* . Since x^* is optimal, $R(x^*)$ does not contain any negative cost cycle.

Let d be the vector of shortest distances from node s to all the other nodes, using c as arc lengths.

Shortest path optimality conditions imply

$$d_j \leq d_i + c_{ij} \quad \forall (i,j) \in R(\mathbf{x}^*)$$

Let $y_i = -d_i \ \forall i \in \mathcal{N}$. Then

$$c_{ij} - \mathbf{y}_i + \mathbf{y}_j \geq 0 \ \forall (i,j) \in R(\mathbf{x}^*).$$

Then *y* is an optimal vector of node potentials.

From y^* to x^*

Let y^* be an optimal vector of node potentials. We can compute the corresponding reduced costs:

$$c_{ij}^{y^*} = c_{ij} - y_i^* + y_j^* \quad \forall (i,j) \in \mathcal{A}.$$

We examine each arc $(i, j) \in A$:

- if $c_{ij}^{y^*} > 0$, then $x_{ij}^* = 0$: delete (i, j).
- if $c_{ij}^{y^*} < 0$, then $x_{ij}^* = u_{ij}$: set $b_i := b_i u_{ij}$; $b_j := b_j + u_{ij}$; delete (i,j).
- if $c_{ij}^{y^*} = 0$, then we have the constraint $0 \le x_{ij}^* \le u_{ij}$.

Insert a dummy source s' and a dummy sink t'. Insert an arc (s',i) for each $i\in\mathcal{N}$ with $b_i'>0$. Insert an arc (i,t') for each $i\in\mathcal{N}$ with $b_i'<0$. Send a maximum flow \mathbf{x}^* from s' to t'.

Algorithms

Algorithms for the min-cost flow problem can be roughly classified according to the optimality conditions they exploit.

- Cycle-canceling algorithms find a maximum flow first and then iteratively improve its cost by detecting negative cost cycles.
- Successive shortest path algorithms iteratively increase a min-cost flow by detecting minimum cost augmenting paths.
- 3. Primal-dual algorithms send an augmenting flow at each iteration instead of using a single augmenting path.
- 4. Out-of-kilter algorithm.

Cycle-canceling algorithms

Algorithm 1 Cycle-canceling algorithm

Compute a max flow x and the corresponding residual graph R(x); while R(x) contains a negative cost cycle **do**

Select a negative cost cycle W;

 $\delta \leftarrow \min_{(i,j) \in W} \{r_{ij}\};$

Send δ units of flow along W and update R(x);

Cycle-canceling algorithms: complexity

Let define

- $C = \max_{(i,j) \in A} \{c_{ij}\};$
- $U = \max_{(i,j) \in A} \{u_{ij}\};$

Then *mCU* is a trivial upper bound on the cost of the initial maximum flow.

Then the algorithm terminates in at most mCU iterations, since $\delta \geq 1$ at each iteration.

If negative cost cycles are identified in O(nm) (with Moore algorithm with FIFO policy), the overall complexity is $O(nm^2CU)$, which is not polynomial.

Polynomial-time implementations

Two possible polynomial-time implementations of the generic cycle-canceling algorithm select

- a negative cost cycle with maximum residual capacity:
 O(mlog (mCU))
- a negative cost cycle with minimum mean cost:
 O(min{nm log (nC), nm² log n}).

Both of them yield algorithms with polynomial-time complexity.

Cycle with maximum residual capacity

Any two feasible flows on a given network can be obtained from each other by at most *m* augmenting cycles in the residual graph.

Let x be a feasible flow and x^* an optimal flow.

Then the cost cx^* equals cx plus the (negative) cost of at most m cycles in R(x).

The improvement in cost is $cx - cx^*$.

Consequently, at least one of the augmenting cycles must produce a decrease of at least $(cx - cx^*)/m$.

Then, by selecting the cycle yielding maximum improvement, the algorithm requires $O(m \log (mCU))$ iterations.

Unfortunately, finding the maximum improvement cycle is an *NP*-hard problem.

However a slight modification of this approach yields an overall polynomial-time complexity.

Cycle with minimum mean cost

The mean cost of a cycle is its cost divided by the number of arcs it contains.

A cycle with minimum mean cost can be identified in O(nm) or $O(\sqrt{nm}\log(nC))$.

If the cycle canceling algorithm always selects a minimum mean cost cycle, it requires $O(\min\{nm \log{(nC)}, nm^2 \log{n}\})$ iterations.

Therefore it is strongly polynomial.

A basic property

Basic property. Given any flow x and its corresponding residual graph R(x), for each cycle W in R(x) and for each choice of the node potentials y,

$$\sum_{(i,j)\in W} c_{ij} = \sum_{(i,j)\in W} c_{ij}^{y}$$

where $c_{ij}^y = c_{ij} - y_j + y_i \ \forall (i,j) \in R(x)$, because the potentials cancel out along the cycle.

ϵ -optimality

Definition. A flow x is ϵ -optimal if $\exists y : c_{ii}^y \ge -\epsilon \ \ \forall (i,j) \in R(x)$.

Given a vector of potentials y, let define

$$\epsilon^{\mathbf{y}}(\mathbf{x}) = -\min_{(i,j)\in R(\mathbf{x})} \{c_{ij}^{\mathbf{y}}\}.$$

Then

$$\begin{cases} c_{ij}^{y} \geq -\epsilon^{y}(x) \ \forall (i,j) \in R(x) \\ \exists (u,v) \in R(x) : c_{uv}^{y} = -\epsilon^{y}(x) \end{cases}$$

Therefore \mathbf{x} is ϵ -optimal for $\epsilon = \epsilon^{\mathbf{y}}(\mathbf{x})$.

For different choices of y, we can have different values for $\epsilon^y(x)$. Let $\epsilon(x)$ be the minimum value of $\epsilon^y(x)$ for which x is $\epsilon^y(x)$ -optimal:

$$\epsilon(x) = \min_{y} \{ \epsilon^{y}(x) \}.$$

Reduced costs along cycles

Let $\mu(x)$ be the mean cost of the minimum mean cost cycle in R(x).

If x is ϵ -optimal, then for each cycle W of R(x) and for each vector of potentials y

$$\sum_{(i,j)\in W} c_{ij} = \sum_{(i,j)\in W} c_{ij}^{y} \geq -\epsilon^{y}(x)|W|.$$

If W^* is the minimum mean cost cycle in R(x), then

$$\mu(\mathbf{x}) \geq -\epsilon^{\mathbf{y}}(\mathbf{x})$$

and

$$\exists y: c_{ii}^y = -\epsilon(x) \ \forall (i,j) \in W^*.$$

Lemma 1: relationship between $\mu(x)$ and $\epsilon(x)$

Lemma 1. Consider a sub-optimal flow $\mathbf{x} \neq \mathbf{x}^*$. Then $\epsilon(\mathbf{x}) = -\mu(\mathbf{x})$.

Proof. Let modify the costs c into c' as follows:

$$c'_{ij} = c_{ij} - \mu(x) \ \forall (i,j) \in A.$$

The resulting digraph R'(x) has the same arcs as R(x).

The cost modification reduces the mean cost of all cycles by $\mu(x)$ (which is negative).

The mean cost of W^* is zero in R'(x).

Therefore R'(x) does not contain cycles with negative cost.

Lemma 1: relationship between $\mu(x)$ and $\epsilon(x)$

Select a node $s \in N$ and consider the shortest paths arborescence from s in R'(x).

Let d' be the shortest distances.

$$\mathbf{d}_{j}' \leq \mathbf{d}_{i}' + \mathbf{c}_{ij}' = \mathbf{d}_{i}' + \mathbf{c}_{ij} - \mu(\mathbf{x}) \ \forall (i,j) \in R'(\mathbf{x}).$$

Setting $y_j = -d'_i \ \forall j \in N$ we have

$$-y_{j} \leq -y_{i} + c_{ij} - \mu(x) \ \forall (i,j) \in R(x)$$
$$c_{ij}^{y} \geq \mu(x) \ \forall (i,j) \in R(x)$$

Therefore \mathbf{x} is $(-\mu(\mathbf{x}))$ -optimal.

Since $\mu(x)$ does not depend on y, then $\epsilon(x) = -\mu(x)$.

Lemma 2: relationship between c^y and $\mu(x)$ and $\epsilon(x)$

Lemma 2. Consider a sub-optimal flow $x \neq x^*$. Then $\exists y : c_{ii}^y = -\epsilon(x) = \mu(x) \ \forall (i,j) \in W^*$.

Proof. Selecting y as before, $c_{ij}^y \ge \mu(x) \ \forall (i,j) \in R(x)$. By definition

$$c(W^*) = \sum_{(i,j) \in W^*} c_{ij} = \sum_{(i,j) \in W^*} c_{ij}^y = \mu(x)|W^*|.$$

So, the mean value of c_{ij}^{y} along W^{*} is $\mu(x)$ and all values of c_{ij}^{y} are at least $\mu(x)$. Therefore

$$c_{ij}^{y} = \mu(x) \quad \forall (i,j) \in W^{*}$$

and from Lemma 1

$$c_{ij}^{y} = -\epsilon(x) \quad \forall (i,j) \in W^*.$$

Lemma 3: monotonicity of $\epsilon(x)$

Lemma 3. Consider a sub-optimal flow $x \neq x^*$. After deleting W^* , $\epsilon(x)$ does not increase and $\mu(x)$ does not decrease.

Proof. Consider a dual vector *y* such that

$$\begin{cases} c_{ij}^{y} = -\epsilon(x) & \forall (i,j) \in W^{*} \\ c_{ij}^{y} \geq -\epsilon(x) & \forall (i,j) \in R(x) \end{cases}$$

Let x' be the flow and R'(x') the residual graph after the cancellation of W^* .

At least one arc of R(x) does not belong to R'(x') (because it has been saturated).

Lemma 3: monotonicity of $\epsilon(x)$

Some new arcs may appear in R'(x') that were not in R(x). For all $(i,j) \in R'(x')$:

$$\left\{ \begin{array}{ll} \text{if } (i,j) \in R(x) & c_{ij}^{y} \geq -\epsilon(x) \\ \text{if } (i,j) \not\in R(x) & c_{ji}^{y} = -\epsilon(x)((j,i) \in W^{*}) \end{array} \right.$$

In the latter case $c_{ij}^y = -c_{ji}^y = \epsilon(x) > 0 > -\epsilon(x)$.

Lemma 3: monotonicity of $\epsilon(x)$

Therefore, in both cases

$$c_{ij}^{y} \geq -\epsilon(x) \ \forall (i,j) \in R'(x').$$

Then x' is still $\epsilon(x)$ -optimal: $\epsilon(x') \leq \epsilon(x)$.

$$\mu(\mathbf{X}') = \sum_{(i,j) \in \mathbf{W}^{*'}} \frac{\mathbf{c}_{ij}}{|\mathbf{W}^{*'}|} = \sum_{(i,j) \in \mathbf{W}^{*'}} \frac{\mathbf{c}_{ij}^{\mathbf{Y}}}{|\mathbf{W}^{*'}|} \ge \min_{(i,j) \in \mathbf{W}^{*'}} \{\mathbf{c}_{ij}^{\mathbf{Y}}\} \ge -\epsilon(\mathbf{X}) = \mu(\mathbf{X}).$$

Therefore $\mu(x') \ge \mu(x)$.

Lemma 4: decrease rate of $\epsilon(x)$

Lemma 4. Within at most m iterations, ϵ decreases by a factor at least $(1 - \frac{1}{n})$.

Proof. We have already proven that

$$\exists y: c_{ij}^{y} \geq -\epsilon(x) \ \forall (i,j) \in R(x).$$

Type-1 iterations: $c_{ii}^y < 0 \ \forall (i,j) \in W^*$

Type-2 iterations: otherwise.

Every type-1 iteration deletes an arc with negative reduced cost from the residual graph.

All arcs inserted by type-1 iterations have positive reduced cost.

Therefore the algorithm can execute at most *m* consecutive type-1 iterations.

Lemma 4: decrease rate of $\epsilon(x)$

When a type-2 iteration is done, the eliminated cycle W^* contains at least one arc with non-negative reduced cost.

Therefore it contains at most $|W^*| - 1$ arcs with negative reduced cost.

Let x' and x'' be the flows before and after the iteration.

$$c_{ij}^{y} \geq -\epsilon(x') \ \forall (i,j) \in W^*$$

$$c(W^*) = \sum_{(i,j) \in W^*} c_{ij}^{y}$$

$$c(W^*) \geq (|W^*| - 1)(-\epsilon(x'))$$

$$\mu(x') = c(W^*)/|W^*|$$

Then

$$\mu(\mathbf{X}') \geq \frac{|\mathbf{W}^*| - 1}{|\mathbf{W}^*|} (-\epsilon(\mathbf{X}')).$$

Lemma 4: decrease rate of $\epsilon(x)$

$$\mu(\mathbf{X}') \geq \frac{|\mathbf{W}^*| - 1}{|\mathbf{W}^*|} (-\epsilon(\mathbf{X}')).$$

From Lemma 3, $\mu(x'') \ge \mu(x')$.

Then

$$-\epsilon(\mathbf{x}'') = \mu(\mathbf{x}'') \ge \mu(\mathbf{x}') \ge \left(1 - \frac{1}{|\mathbf{W}^*|}\right) \left(-\epsilon(\mathbf{x}')\right) \ge \left(1 - \frac{1}{n}\right) \left(-\epsilon(\mathbf{x}')\right).$$

Therefore

$$\epsilon(x'') \leq \left(1 - \frac{1}{n}\right) \epsilon(x').$$

Lemma 5: stop criterion

Lemma 5. If $\epsilon < \frac{1}{n}$, every ϵ -optimal flow is also optimal.

Proof. If x is ϵ -optimal, then a dual vector y exists such that $c_{ij}^y \ge -\epsilon$ for all arcs in R(x).

Let W be a cycle in R(x). Then

$$c(W) = \sum_{(i,j) \in W} c_{ij}^{y} \ge -\epsilon |W| \ge -\epsilon n > -1.$$

Since c(W) is integer, c(W) > -1 implies $c(W) \ge 0$.

Then R(x) contains no negative cost cycle, and x is optimal.

Lemma 6: exponential decrease rate

Lemma 6. Consider an integer $\alpha > 1$ and a series of real numbers such that $z_{k+1} \le (1 - \frac{1}{\alpha})z_k$ for each k. Then $z_{k+\alpha} \le \frac{1}{2}z_k$ for any k.

Proof. From $z_{k+1} \leq (1 - \frac{1}{\alpha})z_k$ we obtain

$$z_k \geq z_{k+1} + \frac{z_{k+1}}{\alpha - 1}.$$

The same holds replacing k with k + 1:

$$z_{k+1}\geq z_{k+2}+\frac{z_{k+2}}{\alpha-1}.$$

Combining the two inequalities:

$$z_k \geq z_{k+2} + \frac{z_{k+2}}{\alpha - 1} + \frac{z_{k+1}}{\alpha - 1} > z_{k+2} + 2\frac{z_{k+2}}{\alpha - 1}$$

Lemma 6: exponential decrease rate

Repeating the same procedure we get

$$z_k > z_{k+3} + 3 \frac{z_{k+3}}{\alpha - 1}$$

$$Z_k > Z_{k+4} + 4\frac{Z_{k+4}}{\alpha - 1}$$

and so on. In general

$$z_k > z_{k+\alpha} + \alpha \frac{z_{k+\alpha}}{\alpha - 1}$$
.

This inequality can be rewritten as

$$z_k > z_{k+\alpha} \left(1 + \frac{\alpha}{\alpha - 1}\right) > 2 z_{k+\alpha}.$$

Proof of complexity

Let *C* be the maximum cost of an arc in the original digraph.

Initially the trivial bound $\epsilon(x) \leq C$ holds: every flow is C-optimal.

For every *m* consecutive iterations $\epsilon(x)$ decreases by a factor $(1 - \frac{1}{n})$ at least.

When $\epsilon < \frac{1}{n}$ the algorithm stops.

Therefore ϵ must decrease by a factor of nC in the worst case.

Proof of complexity

Selecting $\alpha = n$ and letting k be the index of type-2 iterations we know that $\epsilon(x)_{k+1} \leq (1 - \frac{1}{n})\epsilon(x)_k$.

For Lemma 6 we have $\epsilon(x)_{k+n} \leq \frac{1}{2} \epsilon(x)_k$.

Using an index h to count all iterations, since there can be up to m type-1 iterations for each single type-2 iteration, $\epsilon(x)_{h+mn} \leq \frac{1}{2}\epsilon(x)_h$.

Therefore $\epsilon(x)$ is halved after at most *nm* iterations.

Hence the number of iterations is bounded by $nm \log_2(nC)$.

Proof of complexity

Detecting the minimum mean cost cycle requires O(nm).

Therefore the overall worst-case time complexity of the cycle cancelling algorithm is $O(n^2 m^2 \log (nC))$.

Strongly polynomial complexity can be also proven (see *Network flows*, chapter 10).

