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Problem definition

We are given a strongly connected digraph D = (N ,A) with a cost

function c : A 7→ ℜ.

The arc costs are unrestricted in sign; negative cost cycles may exist.

We want to find the cycle of minimum mean cost.
The mean cost of a cycle is the average value of costs of the arcs in

the cycle.



 

Directed walks

A directed walk on a digraph is a sequence of nodes, including

possible repetitions as well as cycles.

 

 

 

 

Every directed walk is composed by a directed path and possibly

some directed cycles.



 

The algorithm

Let s ∈ N be a node.

Let dk (j) be the cost of the minimum cost directed walk from s to j

with k arcs.

{

d0(j) = ∞ ∀j ∈ N , j 6= s

dk (j) = min(i,j)∈A{dk−1(i) + c(i, j)} ∀j ∈ N

From the values dk (j) for all nodes one computes the values dk+1(j)
for all nodes in O(m).

Since k = 0, . . . , n, the overall time complexity is O(mn).



 

The optimal solution

Let µ∗ be the mean cost of the minimum mean cost cycle.

Then

µ∗ = min
j∈N

max
0≤k≤n−1

{

dn(j) − dk (j)

n − k

}

Therefore µ∗ can be computed with the above labelling algorithm in
O(mn).

Now we must prove this statement on µ∗ in two cases: when µ∗ = 0

and when µ∗ 6= 0.



 

Proof: µ∗ 6= 0

The main part of the proof concerns the case when both the lhs and

the rhs are zero, i.e. when the digraph contains a cycle of zero cost

and no negative cost cycles.

When µ∗ 6= 0, consider what happens if all arc costs are decreased

by an amount ∆ (unrestricted in sign):

• The optimum µ∗ (the lhs) is reduced by ∆.

• Every value dk (j) is decreased by k∆.

• The rhs
dn(j)−dk (j)

n−k
is decreased by n∆−k∆

n−k
, that is by ∆.

Then both the lhs and the rhs are reduced by the same amount ∆.

Then, selecting ∆ = µ∗ we prove that the statement remains true, if it
is true for µ∗ = 0.



 

Proof: µ∗
= 0 (1)

We can assume now that µ∗ = 0.

Then

• the digraph contains a cycle C with zero cost (the optimal
solution);

• the digraph does not contain any cycle with negative cost.

Since the digraph does not contain negative cost cycles, the shortest
path problem is well defined.

Let d(j) be the cost of the shortest path from s to j for each j ∈ N .



 

Proof: µ∗
= 0 (2)

Compute the shortest path arborescence Ts from s to all the other

nodes.

The reduced costs of the arcs are

c(i, j) = c(i, j) + d(i) − d(j) ∀(i, j) ∈ A.

For the properties of the shortest paths arborescence, the following

relations hold:

• c(i, j) ≥ 0 ∀(i, j) ∈ A, because this is required by dual

constraints.

• c(i, j) = 0 ∀(i, j) ∈ C, because the cost reductions +d(i)− d(j)
cancel out along cycles; therefore for each cycle the sum of the

reduced costs is the same as the sum of the original costs.

• c(i, j) = 0 ∀(i, j) ∈ Ts, because of the complementary slackness

conditions.



 

Proof: µ∗
= 0 (3)

Furthermore, the distances d
k
(j) computed according to the reduced

costs differ by a constant from the distances computed according to

the original costs:

d
k
(j) − dk (j) = λj ∀k = 0, . . . , n ∀j ∈ N

because cost reductions +d(i)− d(j) cancel out in the intermediate

nodes along the path from s to j.
Therefore

dn(j) − dk (j) = d
n
(j) − d

k
(j) ∀j ∈ N ∀k = 0, . . . , n.



 

Proof: µ∗
= 0 (4)

The shortest path from s to j has zero reduced cost, because it

belongs to Ts.

Let k∗(j) be the number of arcs of the shortest path from s to j. Then
k∗(j) < n, because the shortest path contains at most n − 1 arcs.

Since the path is optimal d
k∗(j)

(j) = 0.

In general, for k 6= k∗(j) we have d
k
(j) ≥ 0.

Consider the directed walk of n arcs from s to j. Its reduced cost is

non-negative: d
n
(j) ≥ 0.

Hence d
n
(j)− d

k∗(j)
(j) ≥ 0 and hence

max
0≤k≤n−1

{d
n
(j)− d

k
(j)} ≥ 0 ∀j ∈ N .



 

Proof: µ∗
= 0 (5)

Lemma. There exists a node p ∈ N such that

max
0≤k≤n−1

{d
n
(p) − d

k
(p)} = 0.

Proof. Let j be a node in the optimal cycle C.
Consider a walk of n arcs made by

• the shortest path from s to j;

• the arcs of C, starting from j and running along the cycle until n

arcs have been selected (possibly with repetitions).

Let p be the final node of the walk.

The reduced cost of the walk is 0, because all its arcs are in Ts ∪ C.

The walk must contain at least one cycle, because it has n arcs.
Canceling the cycles from the walk, an (s, p) path is left, with zero

reduced cost and k̂ ≤ n − 1 arcs.

Hence d
n
(p) = d

k̂
(p) = 0, while for k 6= k̂ we have d

k
(p) ≥ 0.

This proves the lemma.



 

Proof: µ∗
= 0 (6)

When µ∗ = 0 we have proven that:

• dn(j)− dk (j) = d
n
(j) − d

k
(j) ∀j ∈ N ∀k = 0, . . . , n

• max0≤k≤n−1{d
n
(j) − d

k
(j)} ≥ 0 ∀j ∈ N

• ∃p ∈ N : max0≤k≤n−1{d
n
(p)− d

k
(p)} = 0

Therefore this proves the statement:

µ∗ = 0 = min
j∈N

max
0≤k≤n−1

{

dn(j) − dk (j)

n − k

}

.


