The all-pairs shortest path problem

Giovanni Righini

University of Milan

UNIVERSITA DEGLI STUDI DI MILANO

UNIVERSITA DEGLI STUDI DI MILANO

All-pairs shortest paths

By a repeated execution (n times) of the Bellman-Ford algorithm, it is
possible to compute shortest paths from any node to any other node
in a weighted digraph D = (N, A). However the complexity is
O(r?m).

The same result can be obtained more efficiently with an algorithm
due to Kleene (1956), Roy (1959), McNaughton e Yamada (1960),
Warshall (1962), Floyd (1962), known as Floyd-Warshall algorithm.

The Floyd-Warshall algorithm is a dynamic programming algorithm.

Floyd-Warshall algorithm (1962)

Consider an arbitrary ordering of the nodes vy, vo, ..., vy.

For each pair of nodes s € AV and t € N and foreach k =0,1,...,n
we define di(s, t), as the cost of the optimal path from s to t using
only intermediate nodes in {v1, ..., v}.

Initially, with kK = 0, we have dy(s, t) = cs for each arc (s, t) € A and
do(s, t) = oo for each pair (s, t) & A.

The following recursive property holds:
dk(s, t) = min{dk_1(s, t), dk—1(S, Vk) + dk—1(vk, 1)} Vk=1,2,...,n.

A matrix = of optimal predecessors is also computed and it is used to
reconstruct the shortest paths, recursively: we update [s, t] ;== k
whenever dk_1(S, Vk) + dk—1(Vk, t) < dk_1(S,).

Floyd-Warshall algorithm (1962)

Algorithm 1 Floyd-Warshall algorithm

foru=1,...,ndo
forv=1,....ndo
if u = v then
d0,u,v]+ 0
else
d[0, u, v] < cuv
mlu,v] < 0
fork=1,...,ndo
foru=1,...,ndo
forv=1,...,ndo
if dlk —1,u,k] + d[k — 1,k,v] < d[k — 1, u, v] then
dlk,u,v] < dlk —1,u, k] + dlk — 1,k, V]
mlu, v] < k
else
dlk,u,v] < dlk—1,u,v]

The computational complexity is O(r°).

Negative circuits

If the digraph contains negative cost circuits, then the Floyd-Warshall
algorithm detects at least one of them and stops.

A negative cost circuit corresponds to a negative entry on the main
diagonal (at any iteration).

Therefore the Floyd-Warshall algorithm can be used as a
pre-processing sub-routine, to check whether a given digraph
contains negative cost circuits or not.

Johnson algorithm

We now consider the case in which
e the digraph is strongly connected;
¢ there are no negative cost circuits;
e arc costs can be negative.

We can run:
* Bellman-Ford n times, once from each node: O(n?m).
e Floyd-Warshall: O(n®).

¢ Dijkstra n times, once from each node, if all arc costs are
non-negative: O(nm + n? log n).

Johnson algorithm (1977) allows for O(nm + n? log n) complexity even
when arc costs can be negative.

Johnson algorithm

Johnson algorithm runs in three steps:

¢ run Bellman-Ford from a node s to all the other nodes;
¢ define modified arc costs such that:
® the new costs are non-negative;

¢ the rank of paths does not change (shortest paths remain shortest
paths);

® negative cost circuits are not introduced;
® the new cost is computed in O(m) (i.e. O(1) for each arc);
¢ run Dijkstra from the other n — 1 nodes.

Johnson algorithm

Consider a potential function p : A — R and a new cost function

Cj = cj—pi+p; Y(i,j) € A.
Effects on paths:
C(P(1,k)) =Cia+Cog + ...+ Cx—1k =
=Ci2—P1 +P2+C3—P2+P3+ ...+ Ck—1k— Pk—1+ Pk =
=c(P(1,k)) — p1 + P
For each pair of nodes (1, k) all path costs are modified by the same

amount px — py: in particular, the shortest paths between the two
nodes remain the same.

Effects on circuits:
c(C)=cCia+C3+...+Cx1 =
=C2—P1+P2+C3—Po+P3+...+Ck—Pxtp1=
= ¢(C).

For each circuit C, the cost does not change: in particular, no
negative cost circuits are introduced.

Johnson algorithm

The potential function we use is
pi = —dist(s,i) Vie N,

where dist(s, i) is the shortest path cost from s to i, computed with
Bellman-Ford algorithm.

With this choice, the modified arc costs are the reduced costs.
Cj = cj — pi + pj = ¢ + dist(s, i) — dist(s, j).

These reduced costs are all non-negative. The optimality conditions
for shortest path (feasibility conditions for the dual problem) are:

dist(s,j) — dist(s,i) < ¢;j V(i,j) € A

from which
cj >0 V(i,j) € A

