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All-pairs max flows

A maximum flow for each pair of nodes s and tin a graph G = (V, )
can be obviously found by running any maxflow algorithm O(n?)
times, where n = |V)|.

For undirected graphs it is possible to do better: a Gomory-Hu tree,
representing all minimum cuts in the graph, can be found in O(n)
runs of any maxflow algorithm.



Gomory-Hu tree (1961)

Let G = (V,€)agraph and u: £ — R, a capacity function.

A Gomory-Hu tree for G and uis atree T = (V, F) (not necessarily a
subgraph of G) such that Ve = [s, f] € F, its weight is the minimum
capacity of an (s, t)-cut §(S) of G, where S is one of the two
components of 7\{e}.

Property 1. For any G and u a Gomory-Hu tree exists.

Property 2. A Gomory-Hu tree can be computed in O(n) maxflow
computations.



An example
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Figure: From Vazirani, Approximation algorithms, Springer, 2004.
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An example
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Gomory-Hu trees and min cuts

For any two distinct vertices s and tin V, let r(s, t) be the minimum
capacity of an (s, t)-cut.

Property. The following triangle inequality holds:

t) > i k k, t)} Vs, t : t.
r(s, )_ke\rp\u&t}{r(s, ), r(k,t)} Vs,teV:s+#



Gomory-Hu trees and min cuts

Let s and t be two distinct vertices in graph G with capacity function u.
Let 7 be a Gomory-Hu tree for G and u.

Let P be the (unique) (s, t)-path in T.

Let e = [/, j] the edge of P with minimum value of r.

Let S be one of the two components of 7\{e}.

Theorem. The capacity r(s, t) = r(i,j) and §(S) is a minimum
capacity (s, f)-cut.
Proof. Inductively, r(s,t) > r(i,j) for the triangle inequality.
J(S) is an (s, t)-cut, since deleting e = [/, j] disconnects s from t.
r(s,t) < u(4(S)) by definition of r(s, t).
u(6(S)) = r(i,j) by the property of Gomory-Hu trees.
Therefore r(s, t) <u(§(S)) = r(i,)).
( pu—

Therefore r(s, t) = r(i,)).



A lemma

To prove the existence of a Gomory-Hu tree for any graph G and
capacity function u, a lemma in needed.

Lemma.
® Let s and t be two distinct vertices in graph G,
® let 6(S) be a minimum capacity (s, t)-cutin G,
e let/j and j be two distinct vertices in S.

Then, there exists a minimum capacity (i, j)-cut 6(X) with X C S.



Existence: proof of the lemma

Proof. Consider a minimum (i, j)-cut 6(X).

W.l.o.g. assume s € Sand t ¢ S (otherwise swap s and f).
W.L.o.g. assume s € X (otherwise swap X and S\ X).
W.l.o.g. assume i € X and j ¢ X (otherwise swap i and j).
Two cases may occur: t ¢ X and t € X.
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Figure: From by A. Schrijver, Combinatorial optimization, Springer 2003,
page 249.



Two inequalities

For any two vertex sets Aand B
u(6(AN B)) + u(6(AU B)) < u(6(A)) + u(é(B)). (1)
u(3(A\B)) + u(6(B\A)) < u(5(A)) + u(5(B)). 2
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(1):(c+d+e)+(a+b+c)<(a+c+e+f)+(b+c+d+f).
@:(a+d+fH+(b+e+f)<(a+c+e+f)+(b+c+d+1).



Proof of the lemma - case 1

Both §(S N X) and §(S\ X) are (i, j)-cuts.
If t ¢ X, then 6(SU X) is an (s, t)-cut.
For inequality (1):

u(3(SN X)) + u(6(S U X)) < u(5(S)) + u(8(X)).

Since §(S U X) an (s, t)-cut and by definition §(S) is @ minimum
capacity (s, t)-cut,
u(6(SU X)) > u(s(S)).

Hence
u(6(Sn X)) < u(6(X)).

Since by definition §(X) is a minimum capacity (i, j)-cut, then also
J(S N X) is a minimum capacity (i, j)-cut.




Proof of the lemma - case 2

If t € X, then 6(X\S) is an (s, t)-cut.
For inequality (2):

u(6(S\X)) + u(3(X\S)) < u(4(8)) + u(s(X)).

Since §(X\S) is an (s, t)-cut and by definition S is a minimum
capacity (s, t)-cut,
u(0(X\S)) = u(4(S)).

Hence
u(6(S\X)) < u(6(X)).

Since by definition X is a minimum capacity (i, j)-cut, then also
5(S\X) is a minimum capacity (/, j)-cut.




Nested minimum capacity cuts

Intuitive meaning: minimum capacity cuts do not intersect.




Construction of the Gomory-Hu tree

Theorem. For any graph G = (V, £) and any capacity function
u: &~ R, there exists a Gomory-Hu tree for G and wv.

Proof. The proof is by induction.

For each R C V consider
e atree 7T = (R, F),
e a partition of V into subsets C; Vr € R, such that:
°reCr Vreh,
* for each edge e = [s, t] in F, 6(S) is a minimum capacity (s, t)-cut,
where S = [ J, .« Ck and K is a component of T\{e}.
C, is made by the vertices that lie on the same side as r in some
minimum capacity cut.



Construction of the Gomory-Hu tree

If |R| = 1, the conditions are trivially satisfied. Then, assume |R| > 2.

Let 6(W) be a minimum capacity cut separating at least one pair of
vertices in R.

Contract V\ W into a single vertex, v/, yielding graph G'.

Consider the vertex subset R = Rn W.

By induction, G’ has a Gomory-Hu tree (R’, F'), with a partition of R’
in subsets C; Vr € R'.

Similarly, contract W into a single vertex, v”, yielding graph G”.
Consider the vertex subset R = R\ W.

By induction, G” has a Gomory-Hu tree (R”, "), with a partition of
R" in subsets C/ Vr € R".



Construction of the Gomory-Hu tree

Let r' € R be such that v/ € CJ..
Let r'” € R” be such that v’ € C/,,.

Consider F = F'UF" U |[r, r"].
Consider C,» = C/,\{v'} and C; = C; for all the other r € R'.
Consider C,» = C/,\{v""} and C, = C/ for all the other r € R".

Now the tree 7 = (R, F) and the partition C, form a Gomory-Hu tree
for R.

Proof.
For any e € F with e # [r’, "], the Gomory-Hu properties follow from
the Lemma.

If e=[r',r"],then S = W and r(W) is a minimum capacity
(r', r'")-cut, because it is one with minimum capacity over all cuts
separating at least one pair of vertices in R.



Procedure GomoryHuTree(G, R)
if |[R| = 1 then
/I Recursion base //
Select r such that R = {r}
T+ ({r},0)
else
Selectry,ro € R
6(W) < MinCut(ry, r2)
// Create two sub-instances of the problem //
Gy < Shrink(G,V\W,v1); Ry + RN W
Go <+ Shrink(G, W, w); R +— R\W
/I Recursive step //
(71, C") < GomoryHuTree(G1, Ry)
(T2, C?) < GomoryHuTree(Gs, Ro)
/I Vertex selection //
Select r’ € Ry such that vy € C},
Select "’ € Ry such that v, € C2,
/I Compute tree and partitions for (G, R) //
T + (Rt URp, E(T1) UE(T2) U{[r', r"1})
C + ComputePartitions(Ry, Ro, C', C2,r', ')
return (7,C)

UNIVERSITA DEGLI STUDI DI MILANO



Construction of the Gomory-Hu tree

Procedure ComputePartitions(Ry, Rz, C', C2,r', r'"")
// Remove vy and v» from C,» and C, //
forre Ry:r#r'do
Cr < C;
C,/ «— C:,\{V1}
forrec Ro:r#r"do
Cr < C,2
Crr C,2N\{V2}
return C

Vertices in C, must appear on the same side of r in some min cut.
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Construction of the Gomory-Hu tree

T, T

From two Gomory-Hu trees a larger one is obtained, recursively.




Construction of the Gomory-Hu tree

When two trees are merged in a larger one,
¢ all the edges of 71 and 7z correspond to min cuts, because T,
and 7, are Gomory-Hu trees and because the Lemma
guarantees that each subtree can be considered separately
because min cuts do not cross;
e the new edge [r’, r"] also corresponds to a min cut (this can be
easily proven by contradiction).

Vertices r; and r» can be selected arbitrarily: the correctness of the
algorithm is not affected.

The number of calls to MinCut is the same as the number of edges in
the final Gomory-Hu tree, that is n — 1.



