Maximum flow problem (part |)

Giovanni Righini

University of Milan

UNIVERSITA DEGLI STUDI DI MILANO



Definitions

A flow network is a digraph D = (N, .A) with two particular nodes s
and t acting as source and sink of a flow.

The flow is a quantity that can traverse the arcs from their tails to their
heads, starting from s and reaching t.

The digraph D is weighted with a capacity v : A — R7.

The capacity of an arc is the upper limit to the amount of flow that can
traverse the arc.

¢ An arc with no flow is empty.
e An arc with a flow equal to its capacity is saturated.



The max-flow problem

An (s, t)-cut is a subset of arcs such that if they are removed from A,
the resulting digraph D’ is disconnected and s and ¢ belong to
different components S’ and 7.

Every (s, f)-cut C is made by a subset F(C) of forward arcs and a
subset B(C) of backward arcs.

An arc (i,j) € Cis forward if i € S’ and j € T’ and backward in the
other case.

The capacity of a cut Cis u(C) = >_(; e 7(c) Ui-

Problem (Maximum Flow Problem). Find a maximum flow from s to
t not exceeding any arc capacity.



A formulation

We use a continuous and non-negative variable x; to indicate the
amount of flow on each arc (i, j) € A.

A mathematical model of the max-flow problem is:

maximize z
-z j=s
s.t. Z Xijj — Z Xji = 0 Vj#£s,t
iEN(i,f)eA iEN(j,i))eA z j=t
0 < x; < uj v(i,j) € A.

Constraints impose:
¢ flow conservation,
® arc capacity.



Constraint matrix

The coefficients in the left-hand-side of the constraints
2 XN— D %
ieN:(i,j)eA IEN:(j,i))EA
define a totally unimodular matrix, since each variable appears
exactly once with coefficient 1 and once with coefficient -1.

Therefore if capacities u are all integer, the optimal flows x are also
integer.



The dual problem: min s — t cut

As with any LP model, one can write the dual problem:

maximize z
4 j=s
s.t. Z Xj — Z x,-,-_{ 0 vi#st [y
iEN:(i,))EA iEN:(j,i)EA z j=t
0 < x; < uj v(i,j)e A [wi
minimize w = > ujw;
(if)eA
st.y—yi+w; >0 v(i,j) e A [xi]
Ys— Vi > 1 (]
yi unrestricted Vie N

Primal: max (s — t) flow problem. Dual: min (s — t) cut problemnmussmesusmomnise



Max-flow min-cut: weak duality

Given any feasible flow x of value z and any (s — t)-cut C with
capacity u(C), we have:

ZXU ZXU

(i./)eF(C) (i./)eB(C)

and therefore
z(x) < u(0C).

This is the Max-flow Min-cut theorem in its weak form.

It is a special case of the weak duality theorem.



Max-flow min-cut: strong duality

The Max-flow Min-cut theorem in strong form is:
Ix*, C* : z(x*) = u(C*).

This is a special case of the strong duality theorem for linear
programming.

The maximum flow we can send from s to t is equal to the minimum
capacity of an (s, t)-cut.

The minimum capacity (s, t)-cut, C*, is also called the bottleneck.



Figure 10.2

From Harris and Ross [1955): Schematic diagram of the railway network of the Western
Soviet Union and East European countries, with a maximum flow of value 163,000 tons
from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The

bottleneck’.

Figure: Source: A.Schrijvers, Combinatorial optimization, Springer 20&3»



The residual digraph

Given a flow x on the weighted digraph D = (N, A), we define an
auxiliary weighted digraph R = (VV, Ag), called the residual digraph,
with the following arcs Az and weights w:

e an arc (i,j) € Ag for each (i,j) € A which is not saturated, with

Wi = Uj — Xj;
e anarc (j, /) € Ag for each (i,j) € A which is not empty, with
Wi = Xjj-

In the former case we can increase the flow on (i, j); in the latter case
we can decrease it. The capacity w in the residual digraph represents
the maximum allowed increase/decrease of flow in the original
digraph, such that 0 < x; < uj.

We can increase the overall flow from s to ¢ by sending flow along any
augmenting path in the residual digraph.

The flow is maximum if and only if there are no augmenting paths.



An example

Figure: Flow on the original digraph. Figure: The residual digraph.



Ford-Fulkerson algorithm (1956)

for (i,j) € Ado
Xjj:=0;
Ap = 0;
for (i,j) € Ado
Ar:=Ar U{(i,))}; \j = true; wj=uy;
Ar:=Ar U{(j,i)}; \j := false; w;;:=0;
while 3Path(Agr) do
d:=min{w; : (i,]) € Path(Ag)};
for (/,j) € Path(Ag) do
if \; then
Xijj:=Xjj + 65 Wii=Wj; — 0; Wj:=Wj + 0,
else
Xji=Xjj — 0; Wjji=Wjj — 0; Wji:=Wj; + 0;




Computing the augmenting paths

After every iteration one more arc is saturated; § is always strictly
positive. Hence, if capacities are integer, the algorithm converges to
an optimal solution in a finite number of steps.

However its computational complexity depends on how the
augmenting path is chosen.

For a bad choice of the paths ((s, 1,2, t) and (s,2, 1, t) alternately)
the number if iterations may depend on the capacities (and it may be
very large).



Complexity

Assume U is the maximum capacity:

U= Ujj
(;j;)aexA{ i}

Then the minimum capacity among all (s, f)-cuts is limited by nU.

Each augmenting path can be detected in O(m).

The update of the residual graph takes O(n), because no more than
n arcs can belong to the augmenting path.

Hence the computational complexity of the max-flow algorithm can be
as bad as O(nmU).



Maximum capacity augmenting paths

A possible choice is: choose the augmenting path that maximizes 6.

This can be done with a variation of Dijkstra’s algorithm for shortest
paths: instead of minimum cost paths, we look for maximum capacity
paths.

The label of each node represents the maximum amount of flow that
can be sent from s to that node.



Dijkstra’s algorithm for max capacity paths

T:=0;
foric N do
Yi < 0; m < nil; flag(i) < 0
Vs < o0; ms « S; flag(s) + 1
last < s;
while flag(t) = 0 do
fori c N do
if (flag(i) = 0) A min{Yiast, Clast.i} > yi) then
Vi < min{}//ash C/ast,i}; m; < last
ymax — O
foric N do
if (flag(i) = 0) A (yi > y™) then
last « i; yma < y;
T < T U {(mast, last)}; flag(last) < 1




Visualization

Figure: Flow on the original digraph. Figure: The residual digraph.
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Visualization

Figure: Flow on the original digraph. Figure: The residual digraph.



Visualization

Figure: Flow on the original digraph. Figure: The residual digraph.
The augmenting path is made by 4 arcs and § = 2.



Complexity

The complexity of Dijkstra algorithm (basic implementation) is O(n?).

In order to find the complexity of the overall algorithm, we have to
bound the number of iterations, i.e. the number of augmentations
needed to reach the maximum flow.

Assume that:
® x is a current flow,
® Zzis its value,
e z* is the value of the maximum flow.



Complexity

If there are no more than m (s, t)-paths with overall residual capacity
z* — z, then the maximum capacity of a path is

zt -z
el

6>
Consider a sequence of 2m consecutive augmentations, indexed by
k =1,...,2m; the corresponding maximum capacities o, are
obviously non-increasing.

If all of them have §, > Z;;,Z, then z* is reached and the algorithm
stops.

Else, the last maximum capacity must be o < Z5-% < 161, i.e. the

value of the maximum capacity has been at least halved.

Since 1 < §x < U for all k, then O(mlog U) iterations are sufficient to
reach the optimum.



Complexity

With respect to the general case
e the number of iterations is O(mlog U) instead of O(nU),
e but the complexity of each iteration is O(n?)

and this yields an overall complexity of O(mn? log U) for the max-flow
algorithm.

Improvement: capacity scaling algorithm, where the augmenting
path is not chosen as a maximum capacity path but as a path with

large enough capacity, i.e. with a capacity not smaller than a suitable
threshold.



Capacity scaling

For any given current flow x, the arc set in the residual graph is
Ar(x) ={(i,j)) e Nx N: ((i,j) € Anxj < uj) vV ((j,i) € AN Xx; > 0)}
Let indicate by r; the residual capacity or each arc of Ag(x).

Let A > 1 be an integer parameter.

We define _
Ap(x,A) = {(i,)) € Ar(x) : rj > A}

as the set of arcs with a “large enough” residual capacity.

The value of A is iteratively decreased; a scaling phase is the set of
operations that are done with constant value of A.



Capacity scaling: correctness

During each scaling phase only the arcs in Ag(x, A) are used to find
augmenting paths.

Therefore § > A for all augmenting paths.
A scaling phase ends when no augmenting paths exist in Ag(x, A).
When A = 1 all arcs in the residual graph are considered.

Therefore, if a scaling phase with A = 1 terminates, then no
augmenting paths exist and the flow is maximum.



Capacity scaling: complexity

To establish the complexity we have to prove
® an upper bound on the number of scaling phases;

® an upper bound on the number of augmentations during each
scaling phase;

e the complexity of each augmentation.

Number of scaling phases.
The value of A is initialized at 2'°sU) and iteratively decreased to 1
by halving it [log U] times.

Therefore the number of scaling phases is 1 + |log U].



Complexity

Number of augmentations during each scaling phase.
Consider a scaling phase p ending with flow x’ and value z’.

Let indicate by S the set of nodes reachable from s in Ag(x’, A).
Let S be the complement of S.

Since there are no augmenting paths in Ag(x’, A), then t ¢ S and
rj < A for all arcs (/, /) traversing the cut (S, S) (from Sto S).

Therefore the residual capacity of the cut (S, S) is r(S, S) < mA.
For the max-flow min-cut theorem, we obtain z* — 2’ < mA.

The next scaling phase p + 1 will look for augmenting paths with
§>5.

Since no more than z* — Zz’ units of flow can be added in phase p + 1,
no more than 2m augmentations can be done in phase p + 1. This
bounds holds for all phases.



Complexity

Complexity of each augmentation.

Since we are no longer looking for maximum capacity augmenting
paths but to any augmenting path in Ag(x, A), any algorithm to visit
the residual graph is enough to detect an augmenting path if one
exists.

This can be done with complexity O(m).

Therefore we have:
¢ upper bound on the number of scaling phases: 1 + [log U]

e upper bound on the number of augmentations during each
scaling phase: 2m
e complexity of each augmentation: O(m).
Hence the overall complexity of the resulting max-flow algorithm is
O(m?log U). This is a polynomial complexity because m? log U is
polynomial in the number of bits needed to describe a problem
instance.



Shortest augmenting path

Improvement: choose the path with the minimum number of arcs.

We define a distance function d : N — Z, such that

e d(t)=0

e d(i) < d(j)+1,V(i,j) € Ar.
It represents a lower bound to the number of arcs a unit of flow must
traverse to go from any node to node t in the residual graph.

If d(s) > n, then there no augmenting paths in the residual graph.



Exact distance

We say the distance is exact when

e d(t)=0

* d(i) =1+ ming ea {d()}-
The exact distance d(/) represents the minimum number of arcs from
node i to node t in the residual graph.

An arc (i, ) is admissible if and only if d(i) = 1 + d(j).

A path is admissible if and only if it contains only admissible arcs.



Visualization

Figure: Flow on the original digraph. Figure: The residual digraph.
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Visualization

Figure: Flow on the original digraph. Figure: The residual digraph.



Visualization

Figure: Flow on the original digraph. Figure: The residual digraph.

The augmenting path is made of 3 arcs and § = 1.



Shortest augmenting path algorithm

If BFS were executed for each augmentation, it would take O(m)
each time.

The number of augmentations would be O(nm).
Hence, the resulting complexity would be O(nm?) (not so good).

The complexity can be improved by a variation of the DFS algorithm
to visit the residual graph, that exploits the property of the distance
function of being non-decreasing.

This algorithm uses three basic operations:
* Advance

® Retreat
° Augment



Shortest augmenting path algorithm

x <+ 0
d < ExactDistance
i« s
while d(s) < ndo
if 3(/, j) admissible then
Advance(i)
if i =t then
Augment
i+ s
else
Retreat (i)




Procedures

Algorithm 1 Procedure Advance(i)

pred(j) < i
IRy

Algorithm 2 Procedure Retreat(i)

d(i) < 1+ min{d(j) : r(i,j) > 0}
if i # s then
i+ pred(i)




Correctness

Every Advance, Retreat or Augment operation maintains valid
distance values d.

Each Retreat operation strictly increases the distance of some node.

Proof (by induction): assume d is valid before an operation and prove
that it remains valid after it.

Basis of the induction: the initial labeling computed by ExactDistance
is valid.

Procedure Advance does not modify distances and capacities; hence
it does not affect the validity of d.



Correctness
Procedure Augment modifies residual capacities on the arcs of the
augmenting path P.
Such arcs must be admissible: if (i,j) € P then d(i) = d(j) + 1.

When (i, /) is saturated and disappears from the residual graph, this
deletes a constraint (d(i) < d(j) + 1).

A new arc (j, /) may appear in the residual graph and this generates a
new constraint: d(j) < d(i) + 1.

However, this is always satisfied because d(i) = d(j) + 1 and
therefore the constraint is d(j) < (d(j) +1) + 1.



Correctness

Procedure Retreat does not modify residual capacities r, but it implies
relabeling some node i, changing d(/) into

d()=1+ min {d()}.

(i,f):ry>0
This is done when no admissible arc leaves i:
A0 J) = (rj > 0) A (d(i) = 1+ d()))-

This means that d(i) < 1+ d(j) V(i,j):r; > 0.
Therefore:

e d'(i) > d(i) (the distance is strictly increasing).

e d'(i) <1+d(j) Y(i,j): rj > 0 (the distance remains valid for all

arcs outgoing from ).

For incoming arcs, d(k) < 1+ d(i) V(k,i): rg > 0.
Since d’(i) > d(i) the inequality remains true:

d(k) <1+ d'(i) Y(k,i): rg > 0.



Complexity: scanning the out-star

Data-structure: the outstar A; of each node i is stored as a list.
The list is scanned to search for admissible arcs.
Every time the current node is set to /, the search in A; resumes.

When the end of the list is reached without finding admissible arcs, d;
is recomputed and the search restarts from the head of the list.

Between two relabeling operations, the search for admissible arcs
takes O(|Aj|) (each arc in A; is considered once).

When a relabeling occurs, the time needed to compute d! is O(|A;|)
(each arc in A; must be considered once).

If each node is relabeled at most k times, these operations take
O(km) overall.



Complexity: saturating arcs

If the algorithm relabels each node at most k times, then it does not
saturate arcs more than km times.

Proof. Between two consecutive saturations of an arc (i, ), both
distances d; and d; must have been recomputed.

Therefore if each distance is updated at most k times, then each arc
is saturated at most k times.



Complexity

The values of the distances are always bounded by n.
Therefore, each distance label increases at most n times.

Therefore
* the number of Retreat operations is at most O(n?);
e the number of saturations is at most nm.

Therefore, the number of Augment operations (complexity O(n)) is at
most nm.

The number of Advance operations is O(n® + n°m), because
e O(n*m) Advance operations are needed to build O(nm)
augmenting paths of length O(n);
e O(n?) Advance operations are “undone” by O(n?) Retreat
operations.

Therefore, the shortest augmenting path algorithm runs in O(nzm)



Improved end test

The shortest augmenting path algorithm terminates only when
d(s) > n.

When a minimum (s — t)-cut is saturated, it separates the digraph into
two subsets of nodes

e S reachable from s,
e S, unreachable from s.

The algorithm keeps recomputing d(/i) for nodes i € S until d(s) > n.

Idea: immediately detect when an s — f-cut becomes saturated.



Data-structure

Keep an additional array of integers, number, indexed from0to n— 1.

The value in number|[k] is the number of nodes whose label d is
equal to k.

Initialization: with BFS, when computing the initial exact distances.

Update: at each Relabel(i), number is updated:
number[d(i)] <— number[d(i)] — 1

EndTest

d(i) « d(j) +1

number[d(i)] «+ number[d(i)] + 1

The EndTest is simply number[d(i)] = 0.



End test

When number[k] = 0 for some value k such that
S ={ieN:d(i)>k}and S" = {i e N: d(i) < k} are non-empty,
then S’ and S” define the saturated (s — t)-cut.

Proof.
® s e §'; otherwise there would be no point in relabeling a node i
with d(i) = k.
® t ¢ S”, because d(t) = 0.
e By the definition of S’ and S”, d(i) > d(j)+1 Vie §', Vje §",
because d(i) > k > d(j).

e For the properties of a valid distance function d(i) < d(j) + 1 for
all arcs in the residual graph. Hence r; =0 Vie S, Vj € §”.

Therefore (S',S") is a saturated (s, t)-cut.



Improvements of the capacity scaling algorithm

We have derived an O(m? log U) bound for the capacity scaling
algorithm.

It can be improved to O(nmlog U) using the shortest augmenting
path algorithm as a subroutine.

We define the distance labels on the restricted residual digraph using
only the arcs in Ag(x,A) = {(i,j) € Ag: rj > A}.

Each scaling phase includes only O(m) augmentations.

Hence, the overall complexity of the augmentations is O(nm), instead
of O(?m).



Data-structure

The worst-case bound O(nm) to the number of augmentations is
tight.

Further improvements can be obtained only by reducing the time
needed for each augmentation.

This can be obtained with dynamic trees, that reduce the average
time for each augmentation from O(n) to O(log n) and consequently
the complexity of the shortest augmenting path algorithm from
O(n?m) to O(nmlog n).



Layered network

A layered network consists of the arcs (i, ) of the residual graph
satisfying the condition d(i) = d(j) + 1.

It can be constructed by BFS or DFS in O(m).

Nodes are partitioned into subsets Ny, Ny, No, ..., Ny« such that
nodes in Ny are at distance k from t.

Arcs of the layered network connect nodes in consecutive layers.

Therefore every (s, t)-path in the layered network is a shortest
(s, t)-path.



Dinic algorithm

Dinic algorithm sends flow only along the arcs of the layered network.

When a reverse arc (j, i) is generated by sending flow along (i, /), it is
not inserted in the layered network, because d(j) # d(i) + 1 (actually
d(i)y =d(j) +1).

Since every (s, t)-path in the layered network is a shortest (s, t)-path,
a shortest augmenting path can be found in O(n) time on average
(same argument used for the shortest augmenting path algorithm).

Each augmentation saturates at least one arc: there are at most
O(m) augmentations.

In O(nm) a blocking flow is found: no further augmentations are
possible in the layered network.



Dinic algorithm

When a blocking flow is found, exact distances are recomputed in
O(m) and another iterations starts on a new layered network.

At each iteration the distance d(s) increases by at most 1 unit.

When s becomes unreachable from t in the exact distance
computation, the algorithm stops.

The number of layered networks is bounded by n.

Therefore the complexity of Dinic algorithm is O(n?m).



Special cases of max flow

Unoriented graphs. We can replace each edge [/, j] with a pair of
arcs (i,j) and (j, /) with same capacity of the edge.

Arcs in both directions. When A contains pairs (i, /) and (j, ), the
auxiliary graph would contain four arcs between i and j. To avoid this,
we replace one of the two original arcs (e.g. (j, /)) by two arcs and an
intermediate dummy node (i.e. (j, k) and (k,i)). The two new arcs
must have the same capacity of the original arc.

Capacitated nodes. We can split a capacitated node i into two
copies, i’ and i and an arc (i, i) with the same capacity of node i.
All arcs entering i enter /' and all arcs leaving i leave /”.

Given flow. To find a flow equal to a pre-specified amount z, we can
connect s (or t) to a dummy node s’ with an arc (s’, s) of capacity z
and then search for a maximum flow from s’.



