

Reach

Advanced algorithms

for the s − t shortest path problem:

node and arc reach

Giovanni Righini

University of Milan

Reach

References

Main references:

• Reach: R. Gutman, Reach-based routing: a new approach to

shortest path algorithms optimized for road networks, Workshop
on Algorithm Engineering and Experiments (ALENEX), 2004.

• Reach: A.V. Goldberg, H. Kaplan, R.F. Werneck, Reach for A∗:
efficient point-to-point shortest path algorithms, Workshop on

Algorithm Engineering and Experiments (ALENEX), 2006.

Reach

Reach

Given a shortest path P∗(u, v) from u ∈ N to v ∈ N and given a

node i ∈ P∗(u, v),

r(i,P∗(u, v)) = min{dist(u, i), dist(i, v)},

where dist indicates the shortest path distance.

On the whole graph

r(i) = max
u∈N ,v∈N:u 6=v

{r(i,P∗(u, v))}.

Intuitively, the reach r of a node is a measure of how likely the node is

to belong to long shortest paths.

Reach

The use of reach

Let r(i) be an upper bound: r(i) ≥ r(i).

Let d(i, j) be a lower bound: d(i, j) ≤ dist(i, j).

By definition

i ∈ P∗(s, t) =⇒ r(i) ≥ r(i,P∗(s, t)) = min{dist(s, i), dist(i, t)}.

Therefore

r(i) < min{d(s, i), d(i, t)} =⇒ i 6∈ P∗(s, t).

This allows to neglect many nodes (with small reach value) while

running Dijkstra algorithm or A∗.

Reach

The use of reach

When we consider j as a successor of i in a labeling algorithm

(Dijkstra, A∗), we already know dist(s, i).

The following test is done before possibly updating the label of node j
(early pruning):

r (j) < min{dist(s, i) + c(i, j), d(j, t)} implies (i, j) 6∈ P∗(s, t).

A lower bound d(j, t) can be provided

• by the Euclidean distance between j and t, if the nodes are

embedded in a plane;

• by the largest permanent label in the reverse direction, if

bi-directional search is used.

Reach

Bi-directional bounding

In bi-directional search, let γbw the minimum cost of non-permanent

backward labels (labels in Obw).

Consider the iteration in which node i ∈ Ofw is selected for being
permanently labelled. If

r(i) < min{dist(s, i), γbw},

then we can prune the search at i (bi-directional bound).

Reach

Self-bounding

Alternatively (self-bounding) we can prune node i checking whether

r(i) < dist(s, i)

and we stop the search in a direction when

• O in that direction is empty,

• or the minimum distance label in O is at least half of µ,

where µ is an upper bound (best incumbent s − t path).

It is advisable to scan the minimum label among the forward and the

backward candidates.

Each node i can be inserted in E fw (Ebw) only if

dist(s, i) ≤ (≥)dist(i, t).

Reach

Arc sorting

Arc sorting: sort the outstars (in-stars) by non-increasing value of

(estimated) reach of the head (tail) node.

If r(j) < min{dist(s, i), γ}, all the arcs after (i, j) in the out-star of i can
be safely skipped.

Hence, arc sorting may allow to neglect some arcs.

Reach

Computing reach exactly

To compute the reach values exactly:

• Set all reaches to ∞.

• Compute all-pairs shortest paths.

• For each s − t shortest path:
• Compute the reach of all nodes along the path.
• Possibly update the reach of each node with the new value, if it is

larger than the incumbent one.

Complexity: O(nm), impractical for large graphs (even if sparse).

Reach

Computing reach approximately

Three main ideas are combined:

• partial trees

• iterative node deletion

• shortcuts

Preprocessing works in two phases:

• Main phase:
• shortcut arcs are added;
• partial trees are grown and low reach nodes are deleted;

• Refinement phase: upper bounds on reaches are re-evaluated

and possibly strengthened.

Reach

Main phase

Main phase:

• Add shortcuts

• For each iteration k
• Select a threshold value ǫk

• Grow partial trees depending on ǫk

• Eliminate nodes with reach less than ǫk

• Add shortcuts

The threshold values are computed as ǫk = αǫk−1 for some α > 1.

Reach

Canonical paths

Gutman (2004) observed that if more than one shortest path exists

from s to t, only one is included in the partial trees. Therefore all

nodes along alternative shortest paths may not appear in the partial
tree. Therefore they can be misclassified as “low reach nodes” even if

they are “high reach nodes” and they can receive an incorrect upper
bound r(i).

However, this incorrect upper bounding does not prevent a shortest

path algorithm like Dijkstra or A∗ to find at least one shortest s − t
path.

Reach

Canonical paths

Goldberg et al. (2006) introduced the notion of canonical path, i.e. a

shortest path with the additional property of being unique for each

s − t pair.
A small random perturbation is computed for each arc cost.

The perturbation of a path cost is the sum of the perturbations of its
arcs.

When two or more shortest paths exist between s and t, the

canonical one is the path with minimum perturbed cost.

Reach

Partial trees

For each node i compute a partial shortest path arborescence T ǫ(i)
rooted at i (with Dijkstra algorithm).

At a generic iteration the arborescence T of the labelled nodes
includes an arborescence T of nodes with permanent label.

Stop criterion: for all leaves j of T

• either j is a leaf of T ,

• or dist(i ′, j) ≥ 2ǫ,

where i ′ is the node next to i in the (i, j) shortest path.

Let T ǫ(i) be the partial tree T when the algorithm stops.
Nodes with reach larger than ǫ in T ǫ(i) are marked as “high reach

nodes”.

Repeating this procedure for all roots i ∈ N allows to partition nodes
with reach larger than ǫ from nodes with reach smaller than ǫ.

Reach

Proof

Thesis 1. Nodes with reach less than ǫ cannot be marked from any

root i.

Proof. Their reach in T ǫ(i) cannot be larger than their actual reach in
the digraph.

Thesis 2. All nodes k with r(k) ≥ ǫ are guaranteed to be identified as

“high reach nodes” in at least one partial arborescence T ǫ(i) for some
i ∈ N .

Proof. If r(k) ≥ ǫ, then ∃ a path P in which k has reach at least ǫ.
Then, ∃ a minimal canonical path P′ in P, in which k has reach at
least ǫ.
Let x and y be the first and the last node of P′.

Reach

Proof

Consider T ǫ(x), which contains T
ǫ
(x).

Owing to the uniqueness of (perturbed) shortest paths, two cases

can occur:

• Case 1: P′ is completely contained in T
ǫ
(x);

• Case 2: P′ is partially contained in T
ǫ
(x).

Case 1.
In this case k is identified as a “high reach node” in T

ǫ
(x).

Reach

Proof

Case 2.

T
ǫ
(x) contains a subpath of P′, starting at x and ending at a leaf z.

By definition of reach, r(k) ≥ ǫ =⇒ dist(x , k) ≥ ǫ.

Let x ′ be the node next to x along P′.

Since P′ is minimal, dist(x ′, k) < ǫ.

Node z cannot be a leaf of T ǫ(x), because

• it belongs to T
ǫ
(x) (it has a permanent label) and

• it has got at least one successor (the next node along P′).

Hence z being a leaf of T
ǫ
(x) implies dist(x ′, z) ≥ 2ǫ.

dist(k , z) = dist(x ′, z)− dist(x ′, k)>2ǫ− ǫ = ǫ.

Therefore min{dist(x , k), dist(k , z)} ≥ ǫ and k is marked as a “high

reach node” in T
ǫ
(x).

Reach

Long arcs

Assume all arc costs are integer.

Consider the case when an arc (x , y) adjacent to the root x has a

cost equal to Mǫ for some large M.

Then T
ǫ
(x) will extend up to the successors of y , at a distance at

least 2ǫ from y , i.e. at a distance at least (M + 2)ǫ from x .

Therefore the algorithm cannot stop until all nodes within a distance

(M + 2)ǫ have been permanently labelled.

Solution: smaller trees are built, with the drawback that some low
reach nodes can be misclassified as high reach nodes.

This produces weaker upper bounds, but does not affect the

correctness of the s − t shortest path algorithm.

Reach

Smaller trees

Let

• x be the root of the shortest path arborescence T ǫ(x);

• k 6= x a node in T ǫ(x);

• f (k) the successor of x along the shortest path from x to k .

The set of inner nodes of T ǫ(x) is

Iǫ(x) = {x} ∪ {k ∈ T ǫ(x) : (k 6= x) ∧ (dist(f (k), k) ≤ ǫ)}.

The set of outer nodes of T ǫ(x) is its complement.

Oǫ(x) = T ǫ(x)\Iǫ(x).

Reach

Smaller trees

For any outer node w ∈ Oǫ(x), its distance from Iǫ(x) is defined as

min
v∈Iǫ(x)

{dist(v ,w)}.

The algorithm stops growing the shortest paths arborescence when

• all nodes with non-permanent labels are outer nodes, and

• they have distance at least ǫ from Iǫ(x).

x

a b

c d

e0

1 5

1 7

11

1

4

7

1

6

4

Figure: Shortest path tree T ǫ for ǫ = 5.

Red: permanent labels. r(b) = 0.

x

a b

c d

e0

1 5

1 7

12

1

4

7

1

6

4

Figure: Smaller tree T ǫ for ǫ = 5. Red:

permanent labels. r(b) = 5.

Reach

Arc reaches

Let (u, v) be an arc along an s − t shortest path P∗(s, t).

Then r(u, v ,P∗(s, t)) = min{dist(s, v), dist(u, t)}.

On the whole graph r(u, v) = maxs∈N ,t∈N{r(u, v ,P∗(s, t))}.
Node reaches can be computed from arc reaches:

r(i) = max{max(i,j)∈A{r(i, j)},max(j,i)∈A{r(j, i)}}.

The reach of an arc can be smaller than the reaches of its endpoints.

a

b

100

100

10

90

10
90

5010

Figure: r(a) = r(b) = 90. r(a, b) = 10.

Reach

Penalties

When an arc is identified as a “low reach arc” and its reach is

bounded above by the current ǫ, in the next iteration the arc is deleted

and replaced by a penalty, representing upper bounds on the effect of
the deleted arc on the reach of its endpoints.

Let Ak be the set of arcs remaining (not yet upper bounded) at

iteration k .

In-penalties π− and out-penalties π+ are defined as follows for all
nodes that are endpoints of deleted (low-reach) arcs:

π−(i) = max
(j,i)∈A+:(j,i)6∈Ak

{r(j, i)}

π+(i) = max
(i,j)∈A+:(i,j)6∈Ak

{r(i, j)},

where A+ includes both A and the shortcut arcs added in previous
iterations. The definition of reach is generalized as follows:

r(u, v ,P∗(s, t)) = min{dist(s, v) + π+(v), dist(u, t) + π−(u)}.

Reach

Penalties

a b c d

e f

g h

100 10 100

10 10

10

10 10

10

Figure: Red arcs have (low) reach

≤ 30.

a b c d

π
+(b) = 30 π

−(c) = 30

100 10 100

10 10

Figure: Low reach arcs replaced by

penalties when growing partial trees.

Partial trees keep the same definition as before.

Reach

Shortcuts

A node j is by-passable if

• it has only one incoming arc (i, j) and one outgoing arc (j, k)
(one-way by-passable), or

• it has only two incoming arcs (i, j) and (k , j) and only two

outgoing arcs (j, i) and (j, k) (two-ways by-passable).

A line is a path of at least three nodes, where all nodes different from
the endpoints are by-passable.

Lines can be one-way or two-ways.

A by-pass is an arc directly connecting the endpoints of a line.

By-passes can be one-way or two-ways.

Cost and perturbation of shortcut arcs are given by the sum of costs
and perturbation of the by-passed arcs.

Reach

Shortcuts

By-passed nodes are no longer visited in shortest paths containing

their by-passed line.

Therefore shortcuts reduce the reaches of by-passed nodes.

If a line (s, t) has more than two arcs,

• find the node k in it, that minimizes |dist(s, k)− dist(k , t)|
(median node);

• add a shortcut (s, t) (if it is not in the current arc set A+);

• recursively do the same on each subpath (s, k) and (k , t).

Reach

Shortcuts

When a node is by-passed, it is deleted and replaced by a penalty

assigned to its neighbors.

a b c d
100 10 100

A two-ways line with three arcs.

a d

210
π
+
a = 100

π
−

a = 100

π
−

d
= 100

π
+
d

= 100

The by-passed line replaced by π.

To avoid long shortcuts that would imply large partial trees, the

maximum length of shortcuts is limited to
ǫk+1

2
at each iteration k .

Reach

Shortcuts

Given a one-way line (u, v ,w), when a shortcut (u,w) is added, arc

(u, v) will never be used on any shortest path that goes through u

and w anymore.

Any shortest path traversing (u, v) will end either in v or in some
low-reach area neighboring v .

Therefore, a valid upper bound for the reach of (u, v) is

r(u, v) = cuv + π+(v) (and the same holds for (v ,w) symmetrically).

Owing to these upper bounds, one can immediately remove v , (u, v)
and (v ,w) from the graph and update the appropriate penalties.

A similar procedure can be adopted for two-way lines.

Reach

Refinement phase

The use of penalties makes the upper bounds looser and looser as

the algorithm progresses.

This is more evident on nodes with larger reaches.

Therefore the reaches are re-computed in a more accurate way for

the δ nodes with highest reaches, where δ = ⌈10
√

n⌉.

Let Vδ the set of such nodes and Gδ the subgraph induced by Vδ.

A complete shortest path arborescence is computed from each node
in Gδ, using penalties to account for missing nodes.

Reach

Parameter tuning

Select k = min{500, ⌊⌈√n⌉/3⌋} nodes at random.

Grow a partial shortest path arborescence until ⌊n/k⌋ nodes are

permanently labeled.

For each root consider the radius, i.e. the distance of the last label.

Set ǫ1 to twice the minimum among the k radii.

Reach

Parameter tuning

We also have to choose a multiplier α to compute ǫi = αi−1ǫ1 at each

iteration.

• Running time: the smaller α is, the more iterations will be done;

but if α is large, iterations will take longer (since vertices are

eliminated less frequently).

• Number of shortcuts: if α is relatively small, the algorithm has a

better chance of shortcutting vertices before they are eliminated.

• Upper bounds: the error in an arc reach estimate at iteration i

depends on the penalties, which in turn depend on the maximum
reaches of arcs eliminated in previous iterations; the larger α is,

the smaller the sum
∑

j<i ǫj compared to ǫi .

Heuristic rule: keep α = 3 while the number of nodes remains larger

than δ. Then reduce it to α = 1.5.

Reach

Combining reaches with A∗

In A∗ each node i has a label k(i) = d(i) + π(i), where d(i) is the

distance from s and π(i) is a lower bound on the distance to t.

In bi-directional A∗ each node has two labels, f (i) = ds(i) + πt (i)
(forward) and b(i) = d t(i) + πs(i) (backward).

When A∗ is about to make the forward label of node i permanent, it

checks the reach of i: if

r(i) < min{ds(i), π
t (i)},

then i is pruned.

The stop criterion (lower bound = upper bound) is not affected.

	Reach
	Reach

