

Advanced algorithms

for the s − t shortest path problem:

landmarks

Giovanni Righini

University of Milan

Based on: A.V. Goldberg, C. Harrelson, Computing the Shortest Path: A∗ Search
Meets Graph Theory, SODA, 2005.

The s − t shortest path problem

Data:

• a digraph D = (N ,A);

• a cost function c : A 7→ ℜ+;

• two nodes s and t (origin and destination).

Problem: find a shortest (minimum cost) path from s to t.

Several applications require computation of s − t shortest paths on

very large weighted digraphs (millions of nodes and arcs) in almost
real-time (milliseconds).

However the queries concern

• the same digraph

• with different s and t.

The idea is to precompute useful pieces of information that depend

on the digraph, but not on s and t.

Landmarks

Landmarks are a technique to compute lower bounds π owing to

pre-computed shortest distances.

Consider a landmark L (typically, a node of the digraph) and let
dist(i, L) and dist(L, i) be the shortest distances from i ∈ N to L and

from L to i ∈ N .

Then, by the triangle inequality,

dist(i, L)−dist(j, L) ≤ dist(i, j) dist(L, j)−dist(L, i) ≤ dist(i, j) ∀i, j ∈ N .

This holds for any landmark L. Therefore one can select

πt (i) = maxL{dist(i, L)− dist(t , L), dist(L, t) − dist(L, i)} (and the
same for πs).

• Pre-compute shortest distances from/to several (e.g. 16)

landmarks (independently of s and t).

• Given an (s, t) pair select some landmarks (e.g. 4) providing the

largest lower bounds on dist(s, t).

Landmarks selection

Landmark selection techniques to select k landmarks in a given

digraph:

• Random: select k nodes at random in N .

• Farthest: iteratively select the node that maximizes the minimum

distance from/to all selected landmarks. Variant: consider the
number of arcs, instead of the distance (run BFS instead of

Dijkstra).

• Planar (for road networks): find a node c closest to the median of
the graph. Partition the region into k sectors centered at c, each

containing approximately the same number of nodes. For each

sector, pick a node farthest away from c (in the sense of the
number of arcs).

• Optimized farthest: repeatedly remove a landmark and replace it
with the farthest one from the remaining set of landmarks.

• Optimized planar: repeatedly remove a landmark and replace it

by the best landmark in a set of candidates. To rate the
candidates, compute a score for each one, based on lower

bounds tightness for some randomly chosen pairs of nodes.

• Avoid. Given a set S of already selected landmarks, compute a

shortest-path tree Tr rooted at some node r .
Then, for each v ∈ N compute its weight, defined as the

difference between dist(r , v) and the lower bound for dist(r , v)
given by S.
For each v ∈ N compute its size s(v), which depends on Tv , the

subtree of Tr rooted at v .

If Tv contains a landmark, then s(v) = 0; otherwise, s(v) is the
sum of the weights of all vertices in Tv .

Let w be the vertex of maximum size. Traverse Tw , starting from
w and always following the child with the largest size, until a leaf

is reached.

Make this leaf a new landmark.
A natural way of selecting r is uniformly at random. Better results

are obtained by selecting r with higher probability from the nodes

that are far from S.

• Max cover. Define c
L(i, j) = c(i, j) − d(L, j) + d(L, i).

If c
L(i, j) = 0, then L covers (i, j).

Define Cost(S) = |{(i, j) ∈ A : minL∈S{c
L(i, j)} > 0}|.

Initialize a set C of k candidate landmarks by Avoid.

Iteratively remove each landmark from C with probability 1/2 and
generate more landmarks (using Avoid) until they are k again.

Add all newly generated landmarks to C.
Repeat until either |C| = 4k or Avoid is executed 5k times.

Interpreting each landmark as the set of arcs that it covers, solve

an instance of the maximum cover problem (NP-hard).
Multistart heuristic: each iteration starts with a random subset S

of C with k landmarks and runs a local search procedure.

Return the best solution found after ⌊log2 k + 1⌋ iterations.
Local search: iteratively replace a candidate landmark u ∈ S with

v ∈ C\S. Among swaps with positive profit
Cost(S) − Cost(S\{u} ∪ {v}), pick one at random with

probability proportional to the profit. Stop when no improving

swaps exist. Each local search iteration takes O(km) time.

Active landmarks

Static landmarks. Select h landmarks providing the best lower

bounds of the s − t distance.

Trade-off between:

• number of labelled nodes,

• number of landmarks to be examined for each label extension.

Active landmarks

Dynamic landmarks. Initially select 2 landmarks L1 and L2, providing

the best lower bounds of the s − t distance to L1 and from L2.
The search reaches a checkpoint when the lower bound for

completing the s − t path from the current node is 90%, 80%, 70%
and so on of the initial s − t lower bound and at least 100 nodes have
been labelled since the last checkpoint.

At a checkpoint at a node v , all landmarks are considered to test

whether some of the inactive landmarks provide a lower bound from
node v that is larger than 1 + ǫ times the current lower bound (e.g.

ǫ = 0.01).
If this is the case, the new landmark is made active (at most 6 active

landmarks are accepted) and the potentials are updated.

When πt and πs are updated because the active landmarks have

been updated, the keys of all labeled vertices are updated and the
heaps are updated. This takes O(|F |+ |B|) time.

Bounding

Consider a forward iteration in which A∗ scans a permanently labelled

node i (the same holds symmetrically for backward iterations).
Consider one of the outgoing arcs, (i, j). The algorithm should check

whether ds(i) + c(i, j) < ds(j). If so, ds(j) is updated in the forward

priority queue.

Using lower bounds, the algorithm also checks if
ds(i) + c(i, j) + πt (j) < U, where πt is a feasible forward lower

bounding function. When the test fails, the shortest s − t path through
(i, j) cannot improve upon the current shortest path. Therefore, there

is no need to store an updated value of ds(j).

The lower bound functions πt and πs used for bounding in either

direction do not need to be consistent.

