Advanced algorithms for the s-t shortest path problem: landmarks

Giovanni Righini

University of Milan

Based on: A.V. Goldberg, C. Harrelson, Computing the Shortest Path: A^* Search Meets Graph Theory, SODA, 2005.

The s-t shortest path problem

Data:

- a digraph $\mathcal{D} = (\mathcal{N}, \mathcal{A})$;
- a cost function $c: A \mapsto \Re_+$;
- two nodes s and t (origin and destination).

Problem: find a shortest (minimum cost) path from s to t.

Several applications require computation of s-t shortest paths on very large weighted digraphs (millions of nodes and arcs) in almost real-time (milliseconds).

However the queries concern

- the same digraph
- with different s and t.

The idea is to precompute useful pieces of information that depend on the digraph, but not on s and t.

Landmarks

Landmarks are a technique to compute lower bounds π owing to pre-computed shortest distances.

Consider a landmark L (typically, a node of the digraph) and let dist(i, L) and dist(L, i) be the shortest distances from $i \in \mathcal{N}$ to L and from L to $i \in \mathcal{N}$.

Then, by the triangle inequality,

$$dist(i, L) - dist(j, L) \le dist(i, j)$$
 $dist(L, j) - dist(L, i) \le dist(i, j)$ $\forall i, j \in \mathcal{N}$.

This holds for any landmark L. Therefore one can select $\pi_t(i) = \max_L \{ dist(i, L) - dist(t, L), dist(L, t) - dist(L, i) \}$ (and the same for π_s).

- Pre-compute shortest distances from/to several (e.g. 16) landmarks (independently of s and t).
- Given an (s, t) pair select some landmarks (e.g. 4) providing the largest lower bounds on dist(s, t).

Landmarks selection

Landmark selection techniques to select *k* landmarks in a given digraph:

- Random: select k nodes at random in \mathcal{N} .
- Farthest: iteratively select the node that maximizes the minimum distance from/to all selected landmarks. Variant: consider the number of arcs, instead of the distance (run BFS instead of Dijkstra).
- Planar (for road networks): find a node c closest to the median of the graph. Partition the region into k sectors centered at c, each containing approximately the same number of nodes. For each sector, pick a node farthest away from c (in the sense of the number of arcs).
- Optimized farthest: repeatedly remove a landmark and replace it with the farthest one from the remaining set of landmarks.
- Optimized planar: repeatedly remove a landmark and replace it by the best landmark in a set of candidates. To rate the candidates, compute a score for each one, based on lower bounds tightness for some randomly chosen pairs of nodes

 Avoid. Given a set S of already selected landmarks, compute a shortest-path tree T_r rooted at some node r.

Then, for each $v \in \mathcal{N}$ compute its weight, defined as the difference between dist(r, v) and the lower bound for dist(r, v) given by S.

For each $v \in \mathcal{N}$ compute its size s(v), which depends on T_v , the subtree of T_r rooted at v.

If T_{ν} contains a landmark, then $s(\nu) = 0$; otherwise, $s(\nu)$ is the sum of the weights of all vertices in T_{ν} .

Let w be the vertex of maximum size. Traverse T_w , starting from w and always following the child with the largest size, until a leaf is reached.

Make this leaf a new landmark.

A natural way of selecting r is uniformly at random. Better results are obtained by selecting r with higher probability from the nodes that are far from S.

• Max cover. Define $\overline{c}^L(i,j) = c(i,j) - d(L,j) + d(L,i)$. If $\overline{c}^L(i,j) = 0$, then L covers (i,j). Define $Cost(S) = |\{(i, j) \in \mathcal{A} : \min_{L \in S} \{\overline{c}^L(i, j)\} > 0\}|.$ Initialize a set C of k candidate landmarks by Avoid. Iteratively remove each landmark from C with probability 1/2 and generate more landmarks (using *Avoid*) until they are k again. Add all newly generated landmarks to C. Repeat until either |C| = 4k or *Avoid* is executed 5k times. Interpreting each landmark as the set of arcs that it covers, solve an instance of the maximum cover problem (NP-hard). Multistart heuristic: each iteration starts with a random subset S of C with k landmarks and runs a local search procedure. Return the best solution found after $\lfloor \log_2 k + 1 \rfloor$ iterations. Local search: iteratively replace a candidate landmark $u \in S$ with $v \in C \backslash S$. Among swaps with positive profit $Cost(S) - Cost(S \setminus \{u\} \cup \{v\})$, pick one at random with probability proportional to the profit. Stop when no improving

swaps exist. Each local search iteration takes O(km) time.

Active landmarks

Static landmarks. Select h landmarks providing the best lower bounds of the s-t distance.

Trade-off between:

- number of labelled nodes,
- number of landmarks to be examined for each label extension.

Active landmarks

Dynamic landmarks. Initially select 2 landmarks L_1 and L_2 , providing the best lower bounds of the s-t distance to L_1 and from L_2 . The search reaches a *checkpoint* when the lower bound for completing the s-t path from the current node is 90%, 80%, 70% and so on of the initial s-t lower bound and at least 100 nodes have been labelled since the last checkpoint.

At a checkpoint at a node v, all landmarks are considered to test whether some of the inactive landmarks provide a lower bound from node v that is larger than $1 + \epsilon$ times the current lower bound (e.g. $\epsilon = 0.01$).

If this is the case, the new landmark is made active (at most 6 active landmarks are accepted) and the potentials are updated.

When π_t and π_s are updated because the active landmarks have been updated, the keys of all labeled vertices are updated and the heaps are updated. This takes O(|F| + |B|) time.

Bounding

Consider a forward iteration in which A^* scans a permanently labelled node i (the same holds symmetrically for backward iterations). Consider one of the outgoing arcs, (i,j). The algorithm should check whether $d_s(i) + c(i,j) < d_s(j)$. If so, $d_s(j)$ is updated in the forward priority queue.

Using lower bounds, the algorithm also checks if $d_s(i) + c(i,j) + \pi_t(j) < U$, where π_t is a feasible forward lower bounding function. When the test fails, the shortest s-t path through (i,j) cannot improve upon the current shortest path. Therefore, there is no need to store an updated value of $d_s(j)$.

The lower bound functions π_t and π_s used for bounding in either direction do not need to be consistent.

