Advanced algorithms
for the s — t shortest path problem:
landmarks

Giovanni Righini

University of Milan

Based on: A.V. Goldberg, C. Harrelson, Computing the Shortest Path: A* Search
Meets Graph Theory, SODA, 2005.

The s — t shortest path problem

Data:

e adigraph D = (N, A);

e a cost function c: A — R4;

e two nodes s and t (origin and destination).
Problem: find a shortest (minimum cost) path from s to t.
Several applications require computation of s — t shortest paths on
very large weighted digraphs (millions of nodes and arcs) in almost
real-time (milliseconds).
However the queries concern

¢ the same digraph

e with different s and t.

The idea is to precompute useful pieces of information that depend
on the digraph, but not on s and .

Landmarks

Landmarks are a technique to compute lower bounds = owing to
pre-computed shortest distances.

Consider a landmark L (typically, a node of the digraph) and let
dist(i, L) and dist(L, i) be the shortest distances from i € A" to L and
from Ltoic V.

Then, by the triangle inequality,
dist(i, L)—dist(j, L) < dist(i,j) dist(L,j)—dist(L,i) < dist(i,j) Vi,j € N.

This holds for any landmark L. Therefore one can select
() = max {dist(i, L) — dist(t, L), dist(L, t) — dist(L, i)} (and the
same for).

® Pre-compute shortest distances from/to several (e.g. 16)
landmarks (independently of s and t).

e Given an (s, t) pair select some landmarks (e.g. 4) providing the
largest lower bounds on dist(s, t).

Landmarks selection

Landmark selection techniques to select k landmarks in a given
digraph:

e Random: select k nodes at random in .

e Farthest: iteratively select the node that maximizes the minimum
distance from/to all selected landmarks. Variant: consider the
number of arcs, instead of the distance (run BFS instead of
Dijkstra).

¢ Planar (for road networks): find a node c¢ closest to the median of
the graph. Partition the region into k sectors centered at ¢, each
containing approximately the same number of nodes. For each
sector, pick a node farthest away from c (in the sense of the
number of arcs).

e Optimized farthest: repeatedly remove a landmark and replace it
with the farthest one from the remaining set of landmarks.

e Optimized planar: repeatedly remove a landmark and replace it
by the best landmark in a set of candidates. To rate the
candidates, compute a score for each one, based on lower

bounds tightness for some randomly chosen pairs of Nnodegusmsm st

¢ Avoid. Given a set S of already selected landmarks, compute a
shortest-path tree T, rooted at some node r.
Then, for each v € N/ compute its weight, defined as the
difference between dist(r, v) and the lower bound for dist(r, v)
given by S.
For each v € A/ compute its size s(v), which depends on T, the
subtree of T, rooted at v.
If T, contains a landmark, then s(v) = 0; otherwise, s(v) is the
sum of the weights of all vertices in T,.
Let w be the vertex of maximum size. Traverse T,, starting from
w and always following the child with the largest size, until a leaf
is reached.
Make this leaf a new landmark.
A natural way of selecting r is uniformly at random. Better results
are obtained by selecting r with higher probability from the nodes
that are far from S.

e Max cover. Define ¢-(i, j) = c(i,j) — d(L, j) + d(L, i).
If €-(i,j) = 0, then L covers (i,).
Define Cost(S) = |{(i,]) € A : min.es{C"(i,j)} > 0}
Initialize a set C of k candidate landmarks by Avoid.
Iteratively remove each landmark from C with probability 1/2 and
generate more landmarks (using Avoid) until they are k again.
Add all newly generated landmarks to C.
Repeat until either |C| = 4k or Avoid is executed 5k times.
Interpreting each landmark as the set of arcs that it covers, solve
an instance of the maximum cover problem (NP-hard).
Multistart heuristic: each iteration starts with a random subset S
of C with k landmarks and runs a local search procedure.
Return the best solution found after |log, k + 1] iterations.
Local search: iteratively replace a candidate landmark u € S with
v € C\S. Among swaps with positive profit
Cost(S) — Cost(S\{u} U {v}), pick one at random with
probability proportional to the profit. Stop when no improving
swaps exist. Each local search iteration takes O(km) time.

Active landmarks

Static landmarks. Select h landmarks providing the best lower
bounds of the s — t distance.
Trade-off between:

® number of labelled nodes,

e number of landmarks to be examined for each label extension.

Active landmarks

Dynamic landmarks. Initially select 2 landmarks L1 and L, providing
the best lower bounds of the s — t distance to Ly and from Lp.

The search reaches a checkpoint when the lower bound for
completing the s — t path from the current node is 90%, 80%, 70%
and so on of the initial s — t lower bound and at least 100 nodes have
been labelled since the last checkpoint.

At a checkpoint at a node v, all landmarks are considered to test
whether some of the inactive landmarks provide a lower bound from
node v that is larger than 1 + ¢ times the current lower bound (e.g.

e =0.01).

If this is the case, the new landmark is made active (at most 6 active
landmarks are accepted) and the potentials are updated.

When 7; and 75 are updated because the active landmarks have
been updated, the keys of all labeled vertices are updated and the
heaps are updated. This takes O(|F| + |B|) time.

Bounding

Consider a forward iteration in which A* scans a permanently labelled
node i (the same holds symmetrically for backward iterations).
Consider one of the outgoing arcs, (/,/). The algorithm should check
whether ds(i) + ¢(i,)) < ds(j). If so, ds(j) is updated in the forward
priority queue.

Using lower bounds, the algorithm also checks if

ds(i) + c(i,j) + m(j) < U, where 7; is a feasible forward lower
bounding function. When the test fails, the shortest s — t path through
(i) cannot improve upon the current shortest path. Therefore, there
is no need to store an updated value of ds(j).

The lower bound functions 7; and 75 used for bounding in either
direction do not need to be consistent.

