The problem Dijkstra algorithm Bi-directional Dijkstra algorithm A* algorithm Bi-directional A* algorithm
0000 000000 000000000 00000000000 0000 0000000000

The s — t shortest path problem

Giovanni Righini

Partially based on: Ye, Han, Lin, A Note on the Connection between
the Primal-Dual and the A* Algorithm

UNIVERSITA DEGLI STUDI DI MILANO

The problem
€000

The s — t shortest path problem

Data:
e adigraph D = (N, .A) with |[A| = n nodes and |.A| = m arcs;
e a source node s € A/ and a target node t € NV;
e acostfunctionc: A— R,.

The (s, t) Shortest Path Problem.
Find a minimum cost (i.e. shortest) path from s to t.

Owing to the assumption that arc costs are non-negative, we do not
need to explicitly forbid cycles.

The problem
0®00

SPP: primal formulation

minimize z = Z CiiX;j

(ij)eA
-1 i=s

Z Xji — Z xj=4 0 Vie N\{s t}
U.hes” (i))esf 1 i=t

Observation 1. The constraint matrix is totally unimodular.
Observation 2. The right-hand-sides of the constraints are integers.

Hence, every base solution of the continuous relaxation has integer
coordinates.

The problem Dijkstra algorithm Bi-directional Dijkstra algorithm A* algorithm Bi-directional A* algorithm
[ele] e} 000000 000000000 00000000000 0000 0000000000

A primal-dual pair

minimize z = Z CiiX;j

(i))eA

-1 i=s
s.t. Z Xji — Z Xjj = 0 VI'E./\/‘\{S7 t}
(.)es; (iJ)€d} 1 i=t
xj >0 V(i,j) € A
maximize w =y; — ys
sty —yi<gj v(i,j) € A
y; free Vie N.

The dual variable ys can be set to 0; its corresponding primal
constraint is redundant. o

UNIVERSITA DEGLI STUDI DI MILANO

The problem Dijkstra algorithm Bi-directional Dijkstra algorithm A* algorithm Bi-directional A* algorithm
[elele] } 000000 000000000 00000000000 0000 0000000000

Complementary slackness conditions (CSC)

minimize z = > ¢jx;

(i.)eA
[0 VieN\{st}
G.nes; (i.)es!

Xj >0 ¥(i,j) € A.

maximize w =y;
st yj—yi<c V(i,j) e A
y; free Vi e N\{s}.

Primal CSCs: x;(c; + yi — y;) = 0.
Basic primal variables correspond to active dual constraints. -
Only arcs (/,/) for which y; + ¢;j = y; can carry flow Xx;. R

UNIVERSITA DEGLI STUDI DI MILANO

The Jrca\en Dijkstra algorithm

,,,,,,,, @00000

Mono-directional s — t Dijkstra algorithm (dual ascent)

onal DM tra algorithrr

O« {s}; E«0;, o+ 0; y(s)«<0; 7(s)« s
while (O # 0) A (t ¢ E) do
J = argmin,co{c(n(v),v) — (y(v) = y(x(v)))}

0 c(rl)f) (W) - y(x())
b—d+0

for k € Odo
y(k) + @
O« O\{j}; E«EU{j}
for (j,k) € 67(j) : k ¢ Edo
if kK € O then
if y(j) + c(j, k) < y(n(k)) + c(n(k), k) then
(k) «j
else
O+ OU{k}; y(k)+« &; w(k)+j

The problem Dijkstra algorithm
0000 0®0000

tra algorithrr

Mono-directional s — t Dijkstra algorithm (dual ascent) simplified

We exploit y(k) = w Yk € O at any iteration.

O« {s}; E«0;, o+ 0; y(s)«<0; 7(s)« s
while (O £ 0) A (t € E) do
J < argmin,o{c(n(v),v) — (¢ — y(7(v)))}
0« c(n()).j) = (® = y(x())))
P+~ P40
O« O\{j E«<EU{j}i v«
for (j,k) € 67(j) : k ¢ E do
if kK € O then
if &+ c(j, k) < y(n(k)) + c(n(k), k) then
(k) «j
else

O« OU{k}; n(k)«j

The Jrca\en Dijkstra algorithm B\ qweumn | Dijkstra algorithrr

The label d

Bi-directional A* algorithm

Let introduce d(j) such that:

. dist(s,) Vjie E
)= G0 > ety Vi< O

The label d(/) is the shortest current distance from s to i.

The label d(j) is defined only for nodes in E U O, i.e. for nodes with a
predecessor.

The predecessor is guaranteed to be in E: d(x(j)) = dist(s, 7 (})).

The problem Dijkstra algorithm Bi-directional Dijkstra algorithm A™ algorithm Bi-directional A* algorithm
0000 [e]e]e] Je]e] 000000000 00000000000 0000 0000000000

The selection criterion

Since ¢ does not depend on any specific node,

argmin, o { C((v), V)~ -y (r(v))} = argmin, o{c(x(v), v)+¥(x(v)))}.
Since 7(v) € E, by definition y(r(v)) = dist(s, 7(v)) = d(w(v)).
argmin, ¢ o {C(x(v), v)+y(x(v)))} = argmin,o{c(r(v), v)+d(x(v)))}.
For each v € O, by definition d(v) = d(=(v)) + c(7(v), v).

argmin,.o{c(n(v), v) + d(x(v)))} = argmin,.o{d(v)}.

Dijkstra algorithm
[e]e]e]e] Jo]

Mono-directional s — t Dijkstra algorithm (labels d)

O« {s}; E«0; d(s)«+0; =n(s)«+ s
while (O # 0) A (t ¢ E) do
J = argmin, . o{d(v)}
0« O\{j}; E+ EU{j}
for (j,k) € 67(j) : k ¢ Edo
if kK € O then
if d(k) > d(j) + c(j, k) then
d(k) < d(j) +c(j,k); m(k)<«j
else
O+ OU{k}; d(k)<« d(j)+c(,k); m(k)<+j

The set O can be implemented with a heap H.

Dijkstra algorithm
O0000e

Mono-directional s — t Dijkstra algorithm: implementation

fori e N do
(i) < nil
d(s)«0; 7(s)+ s H<«nil
Insert(s, d(s))
repeat
(J, d(j)) « ExtractMin
if j £ t then
for (j, k) € 67 (j) do
if 7(k) # nil then
if d(k) > d(j) + c(j, k) then
DecreaseKey(k, d(j) + c(j, k))
m(k) «j
else
Insert(k, d(j) + c(J, k))
(k) < §
until (H=nil) v (j=1)

Bi-directional Dijkstra algorithm
000000000

Bi-directional Dijkstra algorithm

By symmetry, instead of cost labels d(/) representing shortest current
distances from s to /i, one can use cost labels representing shortest
current distances from j to t.

The same algorithm is executed from t backwards, using reversed
arcs.

The idea of the bi-directional algorithm is to do both things
simultaneously.

Intuitively, this allows to decrease the number of extensions needed
to find a shortest s — t path.

Correctness and complexity proofs remain unchanged.

algorithm Bi-directional Dijkstra algorithm A

al A* algorithn
0O®@0000000 0000

The problen Dijks

Data-structures

Two labels and two predecessor are associated with each node:
e a forward cost label d’(/): current shortest distance from s to /;
e a backward cost label d”(i): current shortest distance from i to ¢;

¢ a forward predecessor 7'(i): predecessor along the current
shortest path from s to i;

¢ a backward predecessor "/ (i): successor along the current
shortest path from i to t.

Initially, d'(s) = d”(t) = 0 and 7'(s) = s and 7/(t) = .

Only non-permanent cost labels are kept in two heaps H' and H".

Bi-directional Dijkstra algorithm
00@000000

Upper bounds

For each node i in the digraph, the sum of its two labels, d’(i) + d” (i),
represents the cost of an s — t path visiting .

Therefore it is an upper bound to the optimal value.

We record the best incumbent upper bound:
U = minjea{d'(i) + d"(i)}.

When both labels d’(i) and d” (i) are permanent, then their sum is the
cost of the shortest s — t path visiting /.

Bi-directional Dijkstra algorithm
000@00000

Lower bounds and termination test

When a label is not permanent, it can still decrease down to the value
of the smallest non-permanent label in its direction, i.e. the label at
the root of the corresponding heap.

We indicate these minimum non-permanent labels by Top(H) for
each heap H.

So, Top(H') and Top(H'") are lower bounds for the values of
non-permanent forward and backward labels, respectively.

Termination test: U < Top(H') + Top(H").

Bi-directional Dijkstra algorithm
0000@e0000

Termination test

Label extensions from j € O’ to j € E” (forward) or from j € O” to
i € E’ (backward) can be disregarded, because they would produce a
same path twice.

Hence, no arc is used forward and backward.

New paths can be found only by traversing arcs (i, j) with i € O’ and
j € O”,in either direction.

Labels d’ and d” generated traversing these arcs are not smaller
than Top(H') and Top(H"), respectively.

Hence, new paths cannot be shorter than Top(H') + Top(H").

Bi-directional Dijkstra algorithm
000008000

Bi-directional s — t Dijkstra algorithm (labels d)

O+ {s}; E'+ 0, d(s)«0;, 7/(s)+s
O+ {t};, E'"+0;, d"(t)«0; #"(t)«t
L'—0; L"+<0 U+
while (O' £ D) A (O £ A (L' +L" < U) do
/* Select direction */
if direction = forward then
PropagateFw
else
PropagateBw

Bi-directional Dijkstra algorithm
000000800

Label propagation (forward)

j < argmin, o, {d'(v)}
L'+ d'(j)
O« O\{j}; E'+ E'U{j}
for (j,k) € 67(j): k¢ E'UE" do
if kK € O then
if d'(k) > d'(j) + c¢(j, k) then
d'(k) « d'(j)+c(, k), 7'(k)+j
else
O + O Uik}, d(k)«d()+c(,k), 7'(k)+j
if (k€ O") A (d'(k)+ d’(k) < U) then
U<+ d'(k)+d"(k)

Backward propagation is symmetric.

The problen

Dijkstra algorithm Bi-directional Dijkstra algorithm
000 o) 000000080

Bi-directional Dijkstra algorithm (implementation)

tional A* algorithn

d'(s) < 0; 7'(s)«+s
d’(t)« 0; «'(f)+t
Insert(s,d'(s), H')
Insert(t,d"(t), H")
U+
while (Top(H') + Top(H") < U) do
if (Top(H') < Top(H")) then
PropagateFw
else
PropagateBw

Bi-directional Dijkstra algorithm
00000000 e

PropagateFw

(/, d'(j)) « ExtractMin(H")
for (j, k) € 67(j) do
if 7' (k) # nil then
if d’() > d'(j) + c(j, k) then
d'(K) + d'(j) + c(j.k): (k) ¢
DecreaseKey(k,d'(k),H’)
else
d'(k) < d'(j) +c(, k); 7'(k)+j
Insert(k,d'(k), H")
if (7”(k) # nil) A (d'(k) + d”(k) < U) then
U« d'(k) + d"(k)

PropagateBw is symmetric.

A* algorithm
900000000 000000

The A* algorithm (Hart, Nilsson, Raphael, 1968)

We define a bounding function h : N — R such that:

e h(t)=0

e h(i) — h(j) < c(i,j) v(i,j) € A.
It represents a lower bound for the minimum distance from each node
to node ¢, i.e. dist(i, t).

A trivial bounding function is h(i) = 0 Vi € A/, which yields Dijkstra
algorithm.

Running A* on the original graph is equivalent to running Dijkstra
algorithm on a digraph with modified costs

c(i,j) = c(i,j) + h(j) — h(i) V(i,j) € A.

A* algorithm
0000000000000 0

Dual constraints

Dual constraints:
yi—yi<ci V(i,j)e A
Lower bounding function:

{ h(t) =0
h(i) — h(j) < ¢; ¥(i,j) € A

Feasible dual solutions:
y(i)=0 VieN;
y(i)y=—h(i) VieN.

The primal-dual algorithm
corresponding to Dijkstra
algorithm can be slightly modified
to represent the A* algorithm.

c(i,j)

A* algorithm
00e000000000000

Primal-dual algorithm (A*)

O« {s}; E«~0; &« 0; y(s)«-h(s), n(s)« s
while (O # 0) A (t ¢ E) do
Jj + argmin, co{c(n(v), v) = y(v) + y(x(v))}
0+ c(n(j).J) — y() + y(x()))
P+—Pd40
for k € Odo
y(k) + -h(k) + ¢
O« O\{j}; E<EU{j}
for (j,k) € 6"(j): k ¢ Edo
if kK € O then
if y(j) + c(j, k) < y(7(k)) + c(n(k), k) then
(k) < §
else
O« OU{k}; y(k)+ -h(k)+®; =n(k)+j

A* algorithm
000e00000000000

The primal-dual algorithm (A*)

At each iteration 6 indicates the minimum slack of the constraints
corresponding to arcs crossing the (E, O) cut.

The variable ¢ indicates the cumulative amount of slack, from the
beginning of the algorithm.

The dual variable y(s) remains fixed at —h(s).
When the algorithm terminates ¢ = y(t).

Then, at the end, ¢ — y(s) gives the optimal value:
®—y(s)=y(t) - y(s) = w".

For each node in E, y(i) — y(s) = dist(s, i).
For each node in O, y(i) = —h(i) + ¢.
For each node in O, y(i) — y(s) = h(s) — h(i) + & < dist(s, i).

A* algorithm
000080000 000000

Primal-dual algorithm (A*)

We now exploit three facts:
° y(i)=—h(i)+¢ Vie O;
e the predecessor 7(i) Vi € O always exists and is unique;
e predecessors of nodes in O must be in E.

Therefore we rewrite the algorithm, by replacing y(i) with —h(i) + ®
for all nodes i € O, with no need to explicitly update the values of
non-permanent dual variables.

Now y (/i) appears only for nodes in E.

A* algorithm
0O0000e000000000

Primal-dual algorithm (A*) (revised)

O« {s}; E«~0; &« 0; y(s)«-h(s), n(s)« s
while (O£ D) A (t & E) do
j = argmin, co{c(m(v), v) + h(v) — &+ y(7(v))}
0 < c(n()),) + h(j) — ® + y(=(j))
O+ O\{j}; E<EU{j}i o< o+0; y(j) < -h(j)+
for (j,k) € 67(j): k ¢ Edo
if Kk € O then
if y(j) + c(j, k) < y(n(k)) + c(r(k), k) then
(k) < §
else
O+ OU{k}; =(k)«j

A* algorithm
000000800 000000

The label d

Let introduce d(j) such that:

. dist(s, j) Vjie E
dm‘{ d(x()) + c(r().j) Vi€ O

The label d(j) is defined only for nodes in E U O, i.e. for nodes with a
predecessor. Their predecessor is guaranteed to be in E.

The problem Dijkstra algorithm Bi-directional Dijkstra algorithm A* algorithm Bi-directional A* algorithm
0000 000000 000000000 00000000 000000 0000000000

The selection test

We now exploit the relation y (i) — y(s) = dist(s,i) Vi € E to rewrite
the selection criterion

J < argmin,co{c(n(v), v) — y(v) + y(7(v))}
in an equivalent way:

o(m(v),v) =y (v) + y(n(v)) =

c(m(v),v) — (® WD+H())

o(m(v),v) +y(n(v)) + h(v) -

c(m(v), v) + (y(n(v)) = y(s)) + () +y(s) =
c(m(v),v) +) =

, dist(s,m(v)) + h(v) — ¢+y()

(c(m(v), v) + d(7(v))) + h(v) = ® + y(s) =
d(v) + h(v) — (¢ — y(s))-

Since ® — y(s) does not depend on the nodes,

Jj < argmin,_o{d(v)+ h(v)}.

A* algorithm
0O0000000e000000

The A* algorithm (with labels 0)

O+ {s}; E«~0; d(s)« 0
while (O # 0) A (t ¢ E) do
j + argmin, co{d(v) + h(v)}
0« O\[j}; E+ EU{j}
fork € 67(j): k ¢ E do
if kK € O then
if d(k) > d(j) + c(j, k) then
d(k) < d(j)+c(,k); m(k)<«j
else
O« OU{k}; d(k)« d(j) +c(j,k);, n(k)+j

A* algorithm
000000000 e00000

Selection rule

After defining f(i/) = d(i) + h(i), the nodes are scanned in
non-decreasing order of f.

In Dijkstra algorithm, they are scanned in non-decreasing order of d.
If i enters E before j, then f(i) < 1()).

Then, for each i € E we have f(i) < dist(s, t), because
f(j) > f(i) Vi€ E,j ¢ E and dist(s, t) > max,eN{f(i}

The “most promising” node is selected, instead of the closest to s.

The properties of h guarantee that its label selected in this way is
permanent.

A* algorithm
000000000 080000

Dominance

Given two bounding functions hy and hy, if hy(i) > h(i) for each
i € N, then E; C E> when t is closed and the algorithm stops.

This means that h; dominates ho.

The larger is h, the more efficient A* is: it needs considering fewer
nodes.

The trivial bounding function h = 0 is dominated by any other.

The ideal bounding function is such that h(i) = dist(i, t).
In such an ideal case, only the nodes in P* are inserted in E.

A* algorithm
00000000000 e000

Finding a bounding function

A bounding function h can be obtained from an associated function H
defined for all pairs of nodes, although they are not connected by
arcs.

Properties of H: (N x N) — Ry:

® H(i,j)>0 Vi,je N

® H(i,iy=0VieN

® c(i,j)+ H(j,k) > H(i,k) Y(i.j) e AL ke N
This yields h(i) = H(i,t) Vi€ N.

A typical example is the Euclidean distance, when we compute
shortest paths on street networks.

A* algorithm
000000000000 e00

Strengthening the bounding function

Assume to run Dijkstra algorithm from t backwards and to stop it at a
generic iteration, before making the label of s permanent.

The selected basic arcs form an arborescence T rooted in £, including
nodes with a permanent label (set ET) and nodes with a
non-permanent label (O7).

The following function provides a valid lower bound:

BT (] dist(i, t) vie ET
()= minjcer{H(i,j) + dist(j,t)} Vig ET

Therefore h(i) = H(i, t) < hHT(i) < dist(i, t).

Then, h"'T gives a stronger lower bound than h', but it takes more
time to evaluate.

A* algorithm
0000000000000 e0

Proof (1).

By definition of distance: H(i,) < H(i,j) + H(j,t) Vj € N.
Since H(j, t) < dist(j,t) Vj € N, then

H(i, t) < H(i,j) + dist(j, t) ¥je€ N.

Hence,

H(i, 1) < minen{H(i, j) + dist(j, 1)} < minjcgr{H(i,j) + dist(j,)} =
hHT

Proof (2).
Let j be a node in ET along the shortest path from i to t. Then

WHT < H(i,]) + dist(], t) < dist(i,]) + dist(j, t) = dist(i,).

A* algorithm
0000000000000 0e

Heuristic A*

Using a bounding function h = eh, with e > 1, we lose the optimality
guarantee, because h is not guaranteed to be a valid lower bounding
function.

However, the resulting algorithm gurantees to provide a (heuristic)
solution whose value is not larger than e times the optimum.

In this way, we may design a constant-factor approximation algorithm,
by suitably tuning the trade-off between solution quality and
computing time.

Bi-directional A* algorithm
0000000000

Bi-directional A*

To make A* bi-directional, we define a forward lower bounding
function ' : N — R, and a backward lower bounding function
' : N — R, such that:

e W(i),h' (i) >0 VieN

e H(t)y=H'(s)=0

o c(ij)+ () = W) V(i) € A

o oi,j) + h'(i) = H'(j) (i,j) € A
Setting y = h” yields another dual feasible solution, suitable for
bi-directional search.

We need sets O', O, E' and E".
We also need dual variables y’ and y”” and primal variables 7' and =".

Bi-directional A* algorithm
0@00000000

Forward and backward labels

Forward labels d’(/) represent best incumbent distances from s to .
Backward labels d” (i) represent best incumbent distances from i to t.
The node set NV is subdivided into subsets

e E’: nodes with a permanent forward label d’ (i) = dist(s, i);

e E": nodes with a permanent backward label @’ (i) = dist(i,);

e (O': nodes with a temporary forward label d’'(i) > dist(s, i);

e (O": nodes with a temporary backward label d” (i) > dist(i, t);
other nodes, not yet reached in either direction.
Only O’ and O” can intersect.

Labels in O’ are sorted according to f(i) = d’(i) + h'(i) in a heap F.
Labels in O” are sorted according to b(i) = d”(i) + (i) in a heap B.

A best incumbent upper bound U is possibly updated every time a
new s — t path is found.

Bi-directional A* algorithm
00@0000000

Bi-directional A*

When a node is reached in both directions, i.e. 3i € O’ N O”, then a
feasible s — t path is found, visiting .

Its cost is
Ui = c(x' (i), i) + y'(='(1)) = y'(s) + e(i, =" (D)) + y" (=" (1)) — y"(t)
and it is a valid upper bound.
We record the best incumbent upper bound U.
y'(t) = y/'(s) < dist(s,t) < U
y"(s) — y"(t) < dist(s,t) < U
The search stops when

max{y'(t) — y'(s),y"(s) = y"(t)} = U.

The probler Dijks: Bi-directional A* algorithm
0000 00C 0008000000

algorithm Bi-dir

Dijkstra algorithn A

Potential functions and lower bounds

A potential function h: N — R is used to define the reduced costs:
c"(i.j) = c(i,j) — h(i) + h(j).
A potential function h is feasible iff
ch'(i,j) > 0V(i,j) € A.

Property. A shortest s — t path with respect to ¢ is a shortest s — t
path with respect to c.

If h(t) < 0and his feasible, then his a lower bounding function i.e.
h(i) < dist(i, t) Vi € N,

where dist(i, t) is the shortest path cost from i to f.

Bi-directional A* algorithm
0000@00000

Property 1

Property 1. If his a feasible potential function, then p = h+ K is also
a feasible potential function for any constant K.

Proof.
Reduced costs do not change by adding K: ¢"(i,j) > 0 implies
cP(i,j) > 0V(i,j) € A.

Bi-directional A* algorithm
00000@0000

Property 2

Property 2. If hy and h, are feasible potential (lower bounding)
functions, then p = max{h1, h»} is a feasible potential (lower
bounding) function.

Proof.

(') Feasibility.
If (h1 (i) > ha(1)) A (h1(j) > h2())), then p = hy which is feasible.
If (h1(i) < ha(i)) A (h1(j) < h2(j)), then p = hy which is feasible.
If (he (i) = ha(i)) A (M (J) < he

c(i,j) — hi(i) + hi(j) = " (i.j) > 0
), then

c®(i,)) = ¢(i,f) = (i) + ha(j
If (A (7) < ho(i)) A (hi(j) =
cP(i,j) = c(ij) = he(i) + i (j) > c(i,j) — ha(i) + he(j) = ¢™(i.) > 0.

(i) Lower bounding.
hi(t) < 0and hy(t) < 0imply p(t) <O0.

/]
(), then
) =
ha(j

Bi-directional A* algorithm
000000e000

Symmetric and consistent bi-directional A*

In bi-directional A* let i’ and A" be the two lower bounding functions
used in the forward and backward search, respectively.

The two lower bounding functions are consistent iff V/(i, j) € A the
forward and backward reduced costs are the same:

(i) = (i, j) = W' (i) + W) = c(i,f) = H' () + H' (i) = " (i.)).
This is equivalent to /(i) + h’(i) = K for some constant K.

One can use the same lower bounding algorithm (the best available
one) to compute A’ and h” separately. In this case the two lower
bounding functions are symmetric.

Bi-directional A* algorithm
0000000e00

Symmetric and consistent potentials
Let /" and h” be two lower bounding functions:

h' (i) < dist(i, t), h'(i) < dist(s,i) VieN.
Two options for bi-directional A*:

e Symmetric algorithm. Use h’ and A" independenty in forward
search and backward search.

Pro: one can use the tightest available lower bounds in each
direction.

e Consistent algorithm. Combine ' and A" to obtain two
consistent potentials.

Pro: optimality is guaranteed as soon as the two searches meet.

Bi-directional A* algorithm
0000000080

Symmetric bi-directional A*

Pohl (1971), Kwa (1989). Using two independent lower bounds A’
and /', run the forward and backward searches, alternating in some
way.

Each time a forward search scans an arc (j, k) s.t. k € O”, if

d'(j) + c(j, k) + d”’(k) < U, then update U.

Each time a forward search selects a node j € O’ and moves it to E’,
if j € O”, remove it from O”.

Do the same symmetrically during backward search.

Termination. Stop as soon as one of these three conditions hold:
e forward search scans a node i € O’ with f(i) > U,
e backward search scans a node i € O with b(i) > U;

¢ one of the two searches has no nodes with temporary labels:
(O =0)v (0" =0).

Bi-directional A* algorithm
000000000e

Consistent bi-directional A*

T. lkeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, K.
Mitoh, A Fast Algorithm for Finding Better Routes by Al Search Techniques. In Proc.
Vehicle Navigation and Information Systems Conference. IEEE, 1994.

Let # and h” be valid (fw and bw, resp.) bounding functions:
c(i,jy—H({i)+H () >0 V(ijeA H(t)=D0.
c(i,j)—h'(j)) + H'(i) >0 V(i,j)e A h'(s)=0.
Then, p’ and p” are valid (fw and bw, resp.) bounding functions:
p(i) = (W (i) = W'(i) + h'(1)) /2
p(i) = (h'(i) = (i) + W (s))/2.
They are consistent: p'(i) + p”(i) = (h"(t) + H'(s))/2 Vi e N.
Termination condition for the bi-directional consistent A* algorithm:

Top(F) + Top(B) > U + (h"(t) + H'(s))/2.

	The problem
	The problem

	Dijkstra algorithm
	Dijkstra algorithm

	Bi-directional Dijkstra algorithm
	Bi-directional Dijkstra algorithm

	A* algorithm
	A* algorithm

	Bi-directional A* algorithm
	Bi-directional A* algorithm

