Preprocessing
Discrete optimization

Giovanni Righini

UNIVERSITA DEGLI STUDI DI MILANO

Preprocessing

Computational complexity theory classifies problems.

However, when we run algorithms, this is because we are confronted
with specific problem instances.

The practical difficulty of solving a specific instance may well depend
on its data, but it always depends on its size.

Hence, before running any algorithm to solve a discrete optimization
problem instance, it is often useful to pre-process it to possibly reduce
its size.

Goals

Pre-processing aims at:

e restricting bounds on variables;

® inserting constraints;

e fixing variables;

® removing redundant constraints;

¢ detecting infeasibility.
This can be done repeatedly for all sub-problems generated in
algorithms based on decomposition and implicit enumeration.

Constraint programming is a discipline exploiting these techniques at
their best.

Bounds tightening: example

If we have a constraint
y <ux

being y a continuous variable and x a binary variable, and we relax
x € {0,1}

into
0<x<1,

it is important that u take the smallest possible value, i.e. the
maximum value y can take in any feasible solution.

Bounds tightening: example

Vi +ye =1.46
Y +)a =0.72

—Y2 —V3 +Ys5 =0
Ye =0.32

~¥s —Yso +yrz =0
0<yi<Mx; Vvi=1,...,7
xe{0,1} Vi=1,...

From this system, we can derive:

n < 1.46X1

)z < 1.46X2

y3 < 0.72x3

Ya < 0.72X4

5 < (1.46 +0.72) x5

Ye = 0.32

y7 <(1.46 +0.72 + 0.32)x7

Constraints insertion: example

Given the constraint
dax<b
J
with g > 0 Vjand x; € {0,1} Vj, we can insert cover inequalities
Y x<|Cl-1VC:> a>b.
jeC jeC

Strengthening bounds and inserting constraints yield tighter
formulations.

X1+ X2 <1
Xx+(1-x)<1 =x=0
X1,X2€{0,1}

Redundant constraints detection: example

—3Xo —2x53 < -2
—4x1 —3xo —3x3 < —6
2x1 —2X2o +6x3 <5

x e B3
We definex; =1—-x; Vi=1,...,3.
3Xo+2X3 <3 =Xo+X3<1
4X1 4+ 3Xx2+3x3 <4

2X1 +2Xo +6X3 <7 =Xo+x3<1
xeBd

Therefore X, = 0, i.e. xo = 1.

Redundant constraints detection: example

+2x3 <3 redundant
4X1+3x3 <4 =X1+Xx3<1
2x1+6x3 <7 =Xxi+x3<1
xenBd

Therefore x; + x3 = 1.
And so on...

Fixing variables and removing redundant constraints yield smaller
instances.

Preprocessing options

State-of-the-art solvers have powerful pre-processing capabilities.

They offer the possibility of turning pre-processing algorithms them
on/off.

Domain reduction for integer variables and constraint propagation are
two main concepts developed and exploited in constraint
programming algorithms.

There are solvers based on constraint programming.

They are especially useful when finding a feasible solution is difficult,
because of many sets of constraints.

Elementary pre-processing techniques
Given a mixed-integer problem,
MIP)min{cx + hy : Ax+ Gy < b,x € B",y € ™}
with bounds
[<yj<uy Vj=1,....m

where some of the y variables can be constrained to be
integer-valued, we consider, one at a time, the constraints

Yoax+ Yy axt > gyt Y gy<b

jeBt jes jec; jec

where
a>0VvjeB"
a<0 VjeB
gi>0VjeCH
gi<0VvjeC

We indicate the i constraint with ax + g’y < b;.

Infeasibility

Y a0+ > at+> gh+ Y gu>b

jeB’ jeB;” ject jec

then the problem instance is infeasible.

The minimum value the left-hand-side can take is too large.

Redundancy

doat+ > a0+ gu+ Y gj<b

jeBt jeB; jeGt jec;

then the constraint is redundant.

The maximum value the left-hand-side can take is small enough.

Bounds tightening

Let define foreach k =1,...,m
Zj = min { Yoax+ Y ax+ Y gyi+ > 9y—gik -
jeBf jeB” ject jec

It corresponds to the minimum value the left-hand-side of constraint i
can take neglecting the term g, y«.

If k € C,.Jr we must have gf(+ g,’;yk < b; for all feasible values of y.

Therefore we can set

. b —
Uk = min < Uk, ;
9k

Analogously, if k € C;” we can set

i _ P
Ik := max {lk7 2k /b’}
_gk

Elementary probing techniques

They consists in tentatively fixing a binary variable to 0 or to 1 and
analyzing the consequences.

They can lead to:
¢ variable fixing
¢ coefficients improvement.

Variable fixing

Let defineforeach k =1,....n

A iy i ai i, i,
Zj = min { Dax+ D ax-axct D gt) gm} -
jeB;’ jeB” ject jeG

If k € B and z}, + &, > b;, then we can fix x, := 0.

If k € B~ and z}, > bj, then we can fix x; := 1.

Coefficients improvement

Consider a variable index k € B/ and define
2l = max { S dx-adxct > ax+ > g+ Y. g}yf}
jeB’ jeB” ject jec
If Z, < b;, then constraint i is redundant for x, = 0.

Hence, when xx = 0 we can reduce both aj(and b; by an amount
(slack) 6 = b; — Z.

This modification is valid also when xx = 1 because we subtract the
same amount from both sides of the inequality.

Therefore we can make constraint i tighter by setting:
a.=a, -6 b:=b-¢

Analogously we can improve coefficients for k € B;".

Computational complexity

The bounds Z' and z' can be computed in O(mn).

¢ Infeasibility: z' > b;
¢ Redundancy: Z <b
Uk > bi—(Zg']i—QL/k) ke CI+

. “k
(z *gj;’,{()*bi k ¢ Cf

k

® Bounds tightening:
Kk <

Z+a >b keBf

zZ'—a. >b keB

2’:—aj(<b,- ke BF

Z +a,<b keB~
They are O(mn) tests. Each of them takes constant time.

e Variable fixing:

¢ Coefficients improvement:

Advanced preprocessing techniques

They are similar to the elementary preprocessing and probing
techniques, but they consider more than one constraint at a time.

They are based on logical implications: by fixing a binary variable and
running the elementary preprocessing techniques on the resulting
constraint system, we can fix additional variables or strengthen the
coefficients of other variables.

These logical implications can be used for:
e Advanced probing
e Constraints insertion
e Variable elimination

Advanced probing

We tentatively fix x, = 0 (or xx = 1) and we run the elementary
preprocessing techniques.

If the resulting instance is infeasible, then we can fix xx = 1 (or
Xk = O)

If a constraint i is redundant, then we can improve the coefficient of
Xk in constraint i.

Logical inequalities
Consider a logical relation
If x; =1 then y; = v,

where v; is a datum. The relation can be translated into linear
inequalities in this way:
{ Yp 2 b+ (v = h)x
Y < U= (U = vj)xi

This allows for automatic disaggregation of constraints. From an
aggregated constraint like

D y< O u)x
j

J
we obtain logical implications

If x; =0 then y; =0 Vj
and therefore the disaggregated constraints

Yi < upx; V.

Clique inequalities

A logical relation between two binary variables can be expressed as
If x; =1 then x{ =0

where each x’ can be a variable or its complement. The relation
states that it is not allowed that both variables take value 1.

The incompatibility graph G = (B°, B¢, E) is defined as follows:
e B°is the vertex set corresponding to the original variables,
e B¢ s the vertex set corresponding to their complement,
e F has an edge for each pair of incompatible variables.
In G every clique C is made by two subsets C° C B° and C¢ C B°.

Clique inequalities

Every clique C of G corresponds to a valid inequality
Z Xj + Z 7]' <1.
j:B/.OECO j:BfGCC
Moreover, if there is only one variable index k : B € C° A B € C°,
then
Xj=0 Vj:BeC%j#k
Xi=1Vj: B €C°j#k

If, instead, there are two or more indices k such that
Bp € C° A Bf € C°, then the instance is infeasible.

Variable elimination

X=0 =y=y -
”{x,-—1 ~Yyi=v then y; = v;.

=0 ==} g
If{x,-_ Y=y then y; = i + (u; — I))x;.

In these cases we obtain equality constraints and hence we can
eliminate variables by substitution.

Probing on constraints

We tentatively fix the value of the right-hand-side of an inequality
constraint and we analyze the consequences.

For instance, with a clique inequality Ziecxj < 1 we can have two
cases:

* either > ;.o X =0
® or Z/GCXJ = 1.

If we fix >, o x; = 1 and we obtain an infeasible instance, then we
cansetx; =0Vjc C.

If we fix >, c x; = 1 and we find a redundant constraint /, then we
can improve the coefficients of x; Vj € C in constraint /.

