
Preprocessing
Discrete optimization

Giovanni Righini

Preprocessing

Computational complexity theory classifies problems.

However, when we run algorithms, this is because we are confronted

with specific problem instances.

The practical difficulty of solving a specific instance may well depend
on its data, but it always depends on its size.

Hence, before running any algorithm to solve a discrete optimization

problem instance, it is often useful to pre-process it to possibly reduce
its size.

Goals

Pre-processing aims at:

• restricting bounds on variables;

• inserting constraints;

• fixing variables;

• removing redundant constraints;

• detecting infeasibility.

This can be done repeatedly for all sub-problems generated in
algorithms based on decomposition and implicit enumeration.

Constraint programming is a discipline exploiting these techniques at

their best.

Bounds tightening: example

If we have a constraint

y ≤ ux

being y a continuous variable and x a binary variable, and we relax

x ∈ {0, 1}

into
0 ≤ x ≤ 1,

it is important that u take the smallest possible value, i.e. the

maximum value y can take in any feasible solution.

Bounds tightening: example







































y1 +y2 = 1.46

y3 +y4 = 0.72

−y2 −y3 +y5 = 0
y6 = 0.32

−y5 −y6 +y7 = 0

0 ≤ yi ≤ Mxi ∀i = 1, . . . , 7
xi ∈ {0, 1} ∀i = 1, . . . , 7

From this system, we can derive:







































y1 ≤ 1.46x1

y2 ≤ 1.46x2

y3 ≤ 0.72x3

y4 ≤ 0.72x4

y5 ≤ (1.46 + 0.72)x5

y6 = 0.32

y7 ≤ (1.46 + 0.72 + 0.32)x7

Constraints insertion: example

Given the constraint
∑

j

ajxj ≤ b

with aj > 0 ∀j and xj ∈ {0, 1} ∀j, we can insert cover inequalities

∑

j∈C

xj ≤ |C| − 1 ∀C :
∑

j∈C

aj > b.

Strengthening bounds and inserting constraints yield tighter
formulations.

Variable fixing: example







x1 + x2 ≤ 1
x1 + (1 − x2) ≤ 1

x1, x2 ∈ {0, 1}
⇒ x1 = 0

Redundant constraints detection: example















−3x2 − 2x3 ≤ −2
−4x1 − 3x2 − 3x3 ≤ −6

2x1 − 2x2 + 6x3 ≤ 5

x ∈ B3

We define x i = 1 − xi ∀i = 1, . . . , 3.















3x2 + 2x3 ≤ 3 ⇒ x2 + x3 ≤ 1
4x1 + 3x2 + 3x3 ≤ 4

2x1 + 2x2 + 6x3 ≤ 7 ⇒ x2 + x3 ≤ 1

x ∈ B3

Therefore x2 = 0, i.e. x2 = 1.

Redundant constraints detection: example















+2x3 ≤ 3 redundant
4x1 + 3x3 ≤ 4 ⇒ x1 + x3 ≤ 1

2x1 + 6x3 ≤ 7 ⇒ x1 + x3 ≤ 1

x ∈ B3

Therefore x1 + x3 = 1.

And so on...

Fixing variables and removing redundant constraints yield smaller
instances.

Preprocessing options

State-of-the-art solvers have powerful pre-processing capabilities.

They offer the possibility of turning pre-processing algorithms them

on/off.

Domain reduction for integer variables and constraint propagation are
two main concepts developed and exploited in constraint

programming algorithms.

There are solvers based on constraint programming.

They are especially useful when finding a feasible solution is difficult,

because of many sets of constraints.

Elementary pre-processing techniques

Given a mixed-integer problem,

MIP)min{cx + hy : Ax + Gy ≤ b, x ∈ Bn, y ∈ ℜm}

with bounds
lj ≤ yj ≤ uj ∀j = 1, . . . ,m

where some of the y variables can be constrained to be
integer-valued, we consider, one at a time, the constraints

∑

j∈B+
i

aj xj +
∑

j∈B−

i

ajxj +
∑

j∈C+
i

gjyj +
∑

j∈C−

i

gjyj ≤ b

where
aj > 0 ∀j ∈ B+

i

aj < 0 ∀j ∈ B−

i

gj > 0 ∀j ∈ C+
i

gj < 0 ∀j ∈ C−

i

We indicate the i th constraint with ai x + gi y ≤ bi .

Infeasibility

If
∑

j∈B+
i

ai
j 0 +

∑

j∈B−

i

ai
j 1 +

∑

j∈C+
i

gi
j lj +

∑

j∈C−

i

gi
j uj > bi

then the problem instance is infeasible.

The minimum value the left-hand-side can take is too large.

Redundancy

If
∑

j∈B+
i

ai
j 1 +

∑

j∈B−

i

ai
j 0 +

∑

j∈C+
i

gi
j uj +

∑

j∈C−

i

gi
j lj ≤ bi

then the constraint is redundant.

The maximum value the left-hand-side can take is small enough.

Bounds tightening

Let define for each k = 1, . . . ,m

z i
k = min







∑

j∈B+
i

ai
j xj +

∑

j∈B−

i

ai
jxj +

∑

j∈C+
i

gi
j yj +

∑

j∈C−

i

gi
j yj−gi

k yk







.

It corresponds to the minimum value the left-hand-side of constraint i

can take neglecting the term gi
k yk .

If k ∈ C+
i we must have z i

k + gi
k yk ≤ bi for all feasible values of yk .

Therefore we can set

uk := min

{

uk ,
bi − z i

k

gi
k

}

Analogously, if k ∈ C−

i we can set

lk := max

{

lk ,
z i

k − bi

−gi
k

}

Elementary probing techniques

They consists in tentatively fixing a binary variable to 0 or to 1 and

analyzing the consequences.

They can lead to:

• variable fixing

• coefficients improvement.

Variable fixing

Let define for each k = 1, . . . , n

z i
k = min







∑

j∈B+
i

ai
j xj +

∑

j∈B−

i

ai
jxj−ai

k xk +
∑

j∈C+
i

gi
j yj +

∑

j∈C−

i

gi
j yj







.

If k ∈ B+
i and z i

k + ai
k > bi , then we can fix xk := 0.

If k ∈ B−

i and z i
k > bi , then we can fix xk := 1.

Coefficients improvement

Consider a variable index k ∈ B+
i and define

z i
k = max







∑

j∈B+
i

ai
jxj−ai

kxk +
∑

j∈B−

i

ai
j xj +

∑

j∈C+
i

gi
j yj +

∑

j∈C−

i

gi
j yj







If z i
k ≤ bi , then constraint i is redundant for xk = 0.

Hence, when xk = 0 we can reduce both ai
k and bi by an amount

(slack) δ = bi − z i
k .

This modification is valid also when xk = 1 because we subtract the

same amount from both sides of the inequality.

Therefore we can make constraint i tighter by setting:

ai
k := ai

k − δ bi := bi − δ

Analogously we can improve coefficients for k ∈ B−

i .

Computational complexity

The bounds z i and z i can be computed in O(mn).

• Infeasibility: z i > bi

• Redundancy: z
i ≤ bi

• Bounds tightening:
uk >

bi−(z i
−gi

k lk)

gi
k

k ∈ C+
i

lk <
(z i

−gi
k uk)−bi

−gi
k

k ∈ C−

i

• Variable fixing:
z i + ai

k > bi k ∈ B+
i

z i − ai
k > bi k ∈ B−

i

• Coefficients improvement:
z i − ai

k < bi k ∈ B+
i

z i + ai
k < bi k ∈ B−

i

They are O(mn) tests. Each of them takes constant time.

Advanced preprocessing techniques

They are similar to the elementary preprocessing and probing

techniques, but they consider more than one constraint at a time.

They are based on logical implications: by fixing a binary variable and
running the elementary preprocessing techniques on the resulting

constraint system, we can fix additional variables or strengthen the

coefficients of other variables.

These logical implications can be used for:

• Advanced probing

• Constraints insertion

• Variable elimination

Advanced probing

We tentatively fix xk = 0 (or xk = 1) and we run the elementary

preprocessing techniques.

If the resulting instance is infeasible, then we can fix xk = 1 (or
xk = 0).

If a constraint i is redundant, then we can improve the coefficient of

xk in constraint i.

Logical inequalities

Consider a logical relation

If xi = 1 then yj = vj

where vj is a datum. The relation can be translated into linear

inequalities in this way:
{

yj ≥ lj + (vj − lj)xi

yj ≤ uj − (uj − vj)xi

This allows for automatic disaggregation of constraints. From an

aggregated constraint like
∑

j

yj ≤ (
∑

j

uj)xi

we obtain logical implications

If xi = 0 then yj = 0 ∀j

and therefore the disaggregated constraints

yj ≤ ujxi ∀j.

Clique inequalities

A logical relation between two binary variables can be expressed as

If x ′

i = 1 then x ′

j = 0

where each x ′ can be a variable or its complement. The relation
states that it is not allowed that both variables take value 1.

The incompatibility graph G = (Bo,Bc ,E) is defined as follows:

• Bo is the vertex set corresponding to the original variables,

• Bc is the vertex set corresponding to their complement,

• E has an edge for each pair of incompatible variables.

In G every clique C is made by two subsets Co ⊆ Bo and Cc ⊆ Bc .

Clique inequalities

Every clique C of G corresponds to a valid inequality

∑

j:Bo
j
∈Co

xj +
∑

j:Bc
j
∈Cc

x j ≤ 1.

Moreover, if there is only one variable index k : Bo
k ∈ Co ∧ Bc

k ∈ Cc ,

then
{

xj = 0 ∀j : Bo
j ∈ Co, j 6= k

xj = 1 ∀j : Bc
j ∈ Cc , j 6= k

If, instead, there are two or more indices k such that

Bo
k ∈ Co ∧ Bc

k ∈ Cc , then the instance is infeasible.

Variable elimination

If

{

xi = 0 ⇒ yj = vj

xi = 1 ⇒ yj = vj
then yj = vj .

If

{

xi = 0 ⇒ yj = lj
xi = 1 ⇒ yj = uj

then yj = lj + (uj − lj)xj .

In these cases we obtain equality constraints and hence we can

eliminate variables by substitution.

Probing on constraints

We tentatively fix the value of the right-hand-side of an inequality

constraint and we analyze the consequences.

For instance, with a clique inequality
∑

j∈C xj ≤ 1 we can have two
cases:

• either
∑

j∈C xj = 0

• or
∑

j∈C xj = 1.

If we fix
∑

j∈C xj = 1 and we obtain an infeasible instance, then we

can set xj = 0 ∀j ∈ C.

If we fix
∑

j∈C xj = 1 and we find a redundant constraint i, then we
can improve the coefficients of xj ∀j ∈ C in constraint i.

