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Le classi P e NP

1]

Un problema di decisione ha un output binario: o “si” 0 “no”.

Sia X linsieme delle possibili istanze e sia Y l'insieme delle istanze

SI.

La classe di complessita P contiene i problemi la cui risposta si puo
determinare con complessita (in spazio e in tempo, nel caso
peggiore) polinomiale, assumendo come esecutore dell’algoritmo una
macchina di Turing.

La classe di complessita AP contiene i problemi la cui risposta
e si pud determinare con complessita polinomiale con una
macchina di Turing non-deterministica (con oracolo);

e si puo verificare, quando & “si”, con complessita polinomiale con
una macchina di Turing.



Riduzioni polinomialie e classe N'Pc

Un problema P;(Xi, Y1) si riduce polinomialmente ad un problema
Pa(Xz, Y2),
Py <poly P

se e solo se
E|f:X1 l—)Xg:f(X1)€ Y2<$X1 S Y1

e f & calcolabile in tempo polinomiale.

La classe di complessita A'Pc comprende i problemi A"P-completi

Pc NP

PENPC(:}{ Q <poy P YQENP



Dimostrazioni di N'P-completezza

Certamente P C NP e NPc C NP.
Famoso problema aperto: P = NP =NPcoP C NP ?

Come conseguenza di Py <poy P,
e se P, & polinomiale, allora P; € polinomiale;
* se P; & N"P-completo, allora P, & N'P-completo.
Le dimostrazioni di A"P-completezza si ottengono tramite riduzioni

polinomiali da problemi N"P-completi.

Punto di partenza (Cook, 1971): SAT € N'Pc.

Riferimento classico: Garey, Johnson, Computers and intractability,
1979.



Esempio 1: STABLE SET

Il problema STABLE SET e N'P-completo (Karp, 1972):
SAT <poyy STABLE SET.

PROBLEMA: STABLE SET.
INPUT: un grafo G e un numero naturale k.
DOMANDA: esiste in G uno stable set di cardinalita k?

PROBLEMA: SATISFIABILITY (SAT).

INPUT:
® un insieme X di variabili booleane;
® una collezione Z di clausole Z;, 2, ..., Zn in congiunzione (A)
tra loro; ogni clausola Z; = {/\},)\,?, L LAMYVi=1,...,méuna

disgiunzione (V) di letterali. Ogni letterale X & M = x, oppure
M =X, peruna x, € X.
DOMANDA: esiste un assegnamento di valori x che soddisfa Z?



Esempio 1: riduzione polinomiale

Da una generica istanza di SAT con m clausole, costruiamo
un’istanza di STABLE SET che ha uno stable set di cardinalita m se
e solo se Z & soddisfacibile.

Per ogni clausola i = 1, ..., mdefiniamo una clique di G con n; vertici.
Inseriamo edges tra vertici incompatibili.

V={vj:iel,....m,je[1,...,n]}
E={lvjviy) : ((=1)AG#]))V(ExeX: (N =x)AN, =%))}
Ogni stable set puod avere al massimo un vertice in ogni clique.

Quindi, se esiste una stable set di cardinalita m, Z € soddisfacibile.

Solo vertici incompatili sono connessi.

Se Z & soddisfacibile, esiste almeno un letterale vero in ogni clique.
Quindi, scegliendone uno in ogni clique, si ha uno stable set di
cardinalita m.



Esempio 2: CLIQUE

PROBLEMA: CLIQUE.
INPUT: un grafo G e un numero naturale k.
DOMANDA: esiste in G una clique di cardinalita k?

Una clique in G & uno stable set nel grafo complementare G.

V(G) = V(G)
E(G) ={li.l € V(G) x V(G) : (i #)) Nli.f] & E(G)}.

Quindi, se esiste uno stable set di cardinalita k in G, allora esiste una
clique di cardinalita k in G e viceversa.



Esempio 3: VERTEX COVER (Karp, 1972)

PROBLEMA: VERTEX COVER.
INPUT: un grafo G e un numero naturale k.
DOMANDA: esiste in G un vertex cover di cardinalita k?

Vertex cover: sottoinsieme di vertici che “coprono” tutti gli edges.

X e un vertex cover di G = (V, E) se e solo se V\ X € uno stable set
in G.



Esempio 4: 3 — DIMENSIONAL MATCHING

PROBLEMA: 3 — DIMENSIONAL MATCHING (3DM).

INPUT: tre insiemi U, V e W di cardinalita m e un set di terne
TCUxVxW.

DOMANDA: esiste un matching 3-dimensionale di cardinalita m?

Matching 3-dimensionale: insieme di terne M C T tale che per ogni
coppia di terne distinte (u, v, w) e (v, v/, w’) in M,

(UAUYAN (VA V)N (W #W).
La riduzione polinomiale € da SAT (Karp, 1972):

Da una generica istanza di SAT descrittada X = {x1,...,xs} €
Z=A{2Z,...,2Zn}, costruiamo un’istanza di 3DM, descritta da
(U, V,W,T) tale che Z & soddisfacibile se e solo se 3M con [M| = m.



Esempio 4: riduzione polinomiale

U={X,XIVi=1,...,nVj=1,...,m}
V={aVi=1,...,n¥j=1,...,mU

{(Vivj=1,....mu

{clvk=1,....n—1vj=1,....m}
W={bVvi=1,....nvj=1,....mu

Wvj=1,...,mu

{dvk=1,...,n=1Yj=1,...,m}
Ty ={(x/,d,b),(x,a"" b))vi=1,...,nvj=1,...,m}
To={(X, Vi, wW)Vi=1,...,nV¥j=1,...,mvx € Z}u

(X Vi, w)vi=1,....nYj=1,...,mVx; € Z}
To={(d,c,d), (X ¢, dyvi=1,....nvj=1,....mvk=1,....n—1}
T=T1UTUTs



Esempio 5: SUBSET SUM

PROBLEMA: SUBSET SUM.
INPUT: N = {c1,Co,...,Cn} € Z" e K € Z.
DOMANDA: esiste SC N: ), ¢ = K?

3DM <01, SUBSET SUM.

Generica istanza di 3DM: (U, V, W, T) con |U| = |V| = |[W| = m.
Per ogni tripla t € T, mettiamo in sequenza i tre vettori caratteristici di
unT,VnTeWnT,formando un vettore di 3m cifre binarie (3 di
esse sono pari a 1, le altre 3m — 3 sono pari a 0).

Interpretiamolo come un numero scritto in una certa base b:

3m

Ct = Z b/71 L.

i=1

Scegliamo K = 33" b'~1: vettore con 3m componenti pari a 1.
Scegliamo base b = |T| + 1: la somma di terne non provoca riporti.



Esempio 6: PARTITION

PROBLEMA: PARTITION.
INPUT: N = {c1,C2,...,Cn} € Z".
DOMANDA: esiste SCN: >, sCi = Zies ci?

SUBSET SUM <, PARTITION.

Generica istanza di SUBSET SUM: {ci,cy,...,cn} € K.

Aggiungiamo un altro numero ¢,1 = | Y1, ¢ — 2K].



Esempio 6: PARTITION

Consideriamo i tre casi possibili:
1. Se >, ¢ = 2K, allora ¢cy1 = 0 e i due problemi sono
equivalenti (caso banale).
2. Se Y1, ¢ > 2K, allora ¢y 1 = Y14 ¢ — 2K e quindi

dYa=Ke > c=)_c

ieS ieSu{n+1}} i¢S

Infatti Cs + Ct — 2K = Cr — Cs & Cs = K.
3. Se Y7, ¢ < 2K, allora ¢p1 = 2K — Y"1, ¢; e quindi

dYa=Ked = >  c

ieS ieS ieNU{n+1}\S

Infatti Cs = Cr + (2K — Cr) — Cs < Cs = K.



Esempio 7: HAMILTONIAN CYCLE

PROBLEMA: HAMILTONIAN CYCLE.
INPUT: un grafo G(V, E).
DOMANDA: esiste un ciclo Hamiltoniano in G?

Riduzione da 3 — SAT (Papadimitriou, Steiglitz, 1982):
3 — SAT <poyy HAMILTONIAN CYCLE.

Generica istanza di 3 — SAT: {Zy, 2, ...,Zn} con
|Z| =3 Vi=1,...,m.

Costruiamo un grafo G che ammette un ciclo Hamiltoniano se e solo
se Z ¢ soddisfacibile.

Il grafo & composto da sottografi (gadgets) di due tipi, A e B.



Esempio 7: riduzione polinomiale

Gadget A Il gadget A puo essere
attraversato solo in due modi:
u u
u u
v v/ ® e
v v/
Il gadget A impone un XOR tra
/ !
[u.uTe (v, V. y g
() ()
u u
e ®
!
° ° v v




Esempio 7: riduzione polinomiale

Gadget B: attraversabile se e solo se uno dei tre edges € escluso.
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Esempio 7: riduzione polinomiale




