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Ottimizzazione discreta

Giovanni Righini

 



Le classi P e NP

Un problema di decisione ha un output binario: o “sı̀” o “no”.

Sia X l’insieme delle possibili istanze e sia Y l’insieme delle istanze
“sı̀”.

La classe di complessità P contiene i problemi la cui risposta si può

determinare con complessità (in spazio e in tempo, nel caso
peggiore) polinomiale, assumendo come esecutore dell’algoritmo una

macchina di Turing.

La classe di complessità NP contiene i problemi la cui risposta

• si può determinare con complessità polinomiale con una

macchina di Turing non-deterministica (con oracolo);

• si può verificare, quando è “sı̀”, con complessità polinomiale con
una macchina di Turing.



Riduzioni polinomialie e classe NPc

Un problema P1(X1,Y1) si riduce polinomialmente ad un problema

P2(X2,Y2),
P1 <poly P2

se e solo se
∃f : X1 7→ X2 : f (X1) ∈ Y2 ⇔ x1 ∈ Y1

e f è calcolabile in tempo polinomiale.

La classe di complessità NPc comprende i problemi NP-completi

P ∈ NPc ⇔

{

P ∈ NP
Q <poly P ∀Q ∈ NP



Dimostrazioni di NP-completezza

Certamente P ⊆ NP e NPc ⊆ NP .

Famoso problema aperto: P = NP = NPc o P ⊂ NP ?

Come conseguenza di P1 <poly P2,

• se P2 è polinomiale, allora P1 è polinomiale;

• se P1 è NP-completo, allora P2 è NP-completo.

Le dimostrazioni di NP-completezza si ottengono tramite riduzioni

polinomiali da problemi NP-completi.

Punto di partenza (Cook, 1971): SAT ∈ NPc.

Riferimento classico: Garey, Johnson, Computers and intractability,

1979.



Esempio 1: STABLE SET

Il problema STABLE SET è NP-completo (Karp, 1972):

SAT <poly STABLE SET .

PROBLEMA: STABLE SET .

INPUT: un grafo G e un numero naturale k .

DOMANDA: esiste in G uno stable set di cardinalità k?

PROBLEMA: SATISFIABILITY (SAT ).
INPUT:

• un insieme X di variabili booleane;

• una collezione Z di clausole Z1,Z2, . . . ,Zm in congiunzione (∧)

tra loro; ogni clausola Zi = {λ1
i , λ

2
i , . . . , λ

ni

i } ∀i = 1, . . . ,m è una

disgiunzione (∨) di letterali. Ogni letterale λ
j
i è λ

j
i = xu oppure

λ
j
i = xu per una xu ∈ X .

DOMANDA: esiste un assegnamento di valori x che soddisfa Z?



Esempio 1: riduzione polinomiale

Da una generica istanza di SAT con m clausole, costruiamo

un’istanza di STABLE SET che ha uno stable set di cardinalità m se
e solo se Z è soddisfacibile.

Per ogni clausola i = 1, . . . ,m definiamo una clique di G con ni vertici.

Inseriamo edges tra vertici incompatibili.

V = {vij : i ∈ [1, . . . ,m], j ∈ [1, . . . , ni ]}

E = {[vij , vi′j′ ] : ((i = i ′) ∧ (j 6= j ′)) ∨ (∃x ∈ X : (λj
i = x) ∧ (λj′

i′ = x))}

Ogni stable set può avere al massimo un vertice in ogni clique.
Quindi, se esiste una stable set di cardinalità m, Z è soddisfacibile.

Solo vertici incompatili sono connessi.

Se Z è soddisfacibile, esiste almeno un letterale vero in ogni clique.
Quindi, scegliendone uno in ogni clique, si ha uno stable set di

cardinalità m.



Esempio 2: CLIQUE

PROBLEMA: CLIQUE .

INPUT: un grafo G e un numero naturale k .
DOMANDA: esiste in G una clique di cardinalità k?

Una clique in G è uno stable set nel grafo complementare G.

V (G) = V (G)

E(G) = {[i, j] ∈ V (G)× V (G) : (i 6= j) ∧ [i, j] 6∈ E(G)}.

Quindi, se esiste uno stable set di cardinalità k in G, allora esiste una

clique di cardinalità k in G e viceversa.



Esempio 3: VERTEX COVER (Karp, 1972)

PROBLEMA: VERTEX COVER.

INPUT: un grafo G e un numero naturale k .
DOMANDA: esiste in G un vertex cover di cardinalità k?

Vertex cover: sottoinsieme di vertici che “coprono” tutti gli edges.

X è un vertex cover di G = (V ,E) se e solo se V\X è uno stable set
in G.



Esempio 4: 3 − DIMENSIONAL MATCHING

PROBLEMA: 3 − DIMENSIONAL MATCHING (3DM).

INPUT: tre insiemi U, V e W di cardinalità m e un set di terne
T ⊆ U × V × W .

DOMANDA: esiste un matching 3-dimensionale di cardinalità m?

Matching 3-dimensionale: insieme di terne M ⊆ T tale che per ogni
coppia di terne distinte (u, v ,w) e (u′, v ′,w ′) in M,

(u 6= u′) ∧ (v 6= v ′) ∧ (w 6= w ′).

La riduzione polinomiale è da SAT (Karp, 1972):

SAT <polyu 3DM

Da una generica istanza di SAT descritta da X = {x1, . . . , xn} e

Z = {Z1, . . . ,Zm}, costruiamo un’istanza di 3DM, descritta da
(U,V ,W ,T ) tale che Z è soddisfacibile se e solo se ∃M con |M| = m.



Esempio 4: riduzione polinomiale

U ={x
j
i , x

j
i ∀i = 1, . . . , n ∀j = 1, . . . ,m}

V ={a
j
i ∀i = 1, . . . , n ∀j = 1, . . . ,m}∪

{v j ∀j = 1, . . . ,m}∪

{c
j
k ∀k = 1, . . . , n − 1 ∀j = 1, . . . ,m}

W ={b
j
i ∀i = 1, . . . , n ∀j = 1, . . . ,m}∪

{w j ∀j = 1, . . . ,m}∪

{d
j
k ∀k = 1, . . . , n − 1 ∀j = 1, . . . ,m}

T1 ={(x j
i , a

j
i , b

j
i ), (x

j
i , a

j+1
i , b

j
i ) ∀i = 1, . . . , n ∀j = 1, . . . ,m}

T2 ={(x j
i , v

j ,w j) ∀i = 1, . . . , n ∀j = 1, . . . ,m, ∀xi ∈ Zj}∪

{(x j
i , v

j ,w j) ∀i = 1, . . . , n ∀j = 1, . . . ,m, ∀x i ∈ Zj}

T3 ={(x j
i , c

j
k , d

j
k ), (x

j
i , c

j
k , d

j
k ) ∀i = 1, . . . , n ∀j = 1, . . . ,m ∀k = 1, . . . , n − 1}

T =T1 ∪ T2 ∪ T3



Esempio 5: SUBSET SUM

PROBLEMA: SUBSET SUM.

INPUT: N = {c1, c2, . . . , cn} ∈ Z
n e K ∈ Z.

DOMANDA: esiste S ⊆ N :
∑

i∈S ci = K ?

3DM <poly SUBSET SUM.

Generica istanza di 3DM: (U,V ,W ,T ) con |U| = |V | = |W | = m.
Per ogni tripla t ∈ T , mettiamo in sequenza i tre vettori caratteristici di

U ∩ T , V ∩ T e W ∩ T , formando un vettore di 3m cifre binarie (3 di

esse sono pari a 1, le altre 3m − 3 sono pari a 0).
Interpretiamolo come un numero scritto in una certa base b:

ct =

3m
∑

i=1

bi−1ti .

Scegliamo K =
∑3m

i=1 bi−1: vettore con 3m componenti pari a 1.
Scegliamo base b = |T |+ 1: la somma di terne non provoca riporti.



Esempio 6: PARTITION

PROBLEMA: PARTITION.

INPUT: N = {c1, c2, . . . , cn} ∈ Z
n.

DOMANDA: esiste S ⊆ N :
∑

i∈S ci =
∑

i 6∈S ci?

SUBSET SUM <poly PARTITION.

Generica istanza di SUBSET SUM: {c1, c2, . . . , cn} e K .

Aggiungiamo un altro numero cn+1 = |
∑n

i=1 ci − 2K |.



Esempio 6: PARTITION

Consideriamo i tre casi possibili:

1. Se
∑n

i=1 ci = 2K , allora cn+1 = 0 e i due problemi sono
equivalenti (caso banale).

2. Se
∑n

i=1 ci > 2K , allora cn+1 =
∑n

i=1 ci − 2K e quindi

∑

i∈S

ci = K ⇔
∑

i∈S∪{n+1}}

ci =
∑

i 6∈S

ci .

Infatti CS + CT − 2K = CT − CS ⇔ CS = K .

3. Se
∑n

i=1 ci < 2K , allora cn+1 = 2K −
∑n

i=1 ci e quindi

∑

i∈S

ci = K ⇔
∑

i∈S

ci =
∑

i∈N∪{n+1}\S

ci .

Infatti CS = CT + (2K − CT )− CS ⇔ CS = K .



Esempio 7: HAMILTONIAN CYCLE

PROBLEMA: HAMILTONIAN CYCLE .

INPUT: un grafo G(V ,E).
DOMANDA: esiste un ciclo Hamiltoniano in G?

Riduzione da 3 − SAT (Papadimitriou, Steiglitz, 1982):

3 − SAT <poly HAMILTONIAN CYCLE .

Generica istanza di 3 − SAT : {Z1,Z2, . . . ,Zm} con

|Zi | = 3 ∀i = 1, . . . ,m.

Costruiamo un grafo G che ammette un ciclo Hamiltoniano se e solo
se Z è soddisfacibile.

Il grafo è composto da sottografi (gadgets) di due tipi, A e B.



Esempio 7: riduzione polinomiale

Gadget A

v v ′

u u′

Il gadget A impone un XOR tra
[u, u′] e [v , v ′].

v v ′

u u′

A

Il gadget A può essere

attraversato solo in due modi:

v v ′

u u′

v v ′

u u′



Esempio 7: riduzione polinomiale

Gadget B: attraversabile se e solo se uno dei tre edges è escluso.

u′

u
e1

e2

e3

u′

u
e1

e2

e3

B

u′

u
e1

e2

e3

u′

u
e1

e2

e3

u′

u
e1

e2

e3

u′

u
e1

e2

e3

u′

u
e1

e2

e3



Esempio 7: riduzione polinomiale

x1

x2

x3

B

x1 x1

x2 x2

x3 x3

A

A

A


