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Abstract

This paper addresses the solution of the capacitated minimum cost flow problem on a network containing n
nodes and m arcs. Satisfying necessary and sufficient optimality conditions can be done on the residual
network although it can be quite time consuming as testified by the minimum mean cycle-canceling al-
gorithm (MMCC). We introduce a contracted network which exploits these conditions on a much smaller
network. Since the construction of this contracted network is very flexible, we study its properties depending
on the construction choice. A generic contraction algorithm is then produced around the contracted network.
Interestingly enough, it turns out it encapsulates both the MMCC and primal network simplex algorithms
as extreme cases. By guiding the solution using a particular expansion scheme, we are able to recuperate
theoretical results from MMCC. As such, we obtain a strongly polynomial Contraction-Expansion algorithm
which runs in O(m3n2) time. There is thus no improvement of the runtime complexity, yet the expansion
scheme sticks to very practical observations of MMCC’s behavior, namely that of phases and jumps on the
optimality parameter. The solution time is ultimately significantly reduced, even more so as the size of the
instance increases.
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1. Introduction

The primal network simplex algorithm performs surprisingly well considering that only a small fraction of
iterations induce non-degenerate pivots (see Ahuja et al. 1993, Figure 18.7). In fact, the network simplex and
the cost scaling methods are typically preferred over competing alternatives for the solution of capacitated
minimum cost flow problems (CMCF). Kovács (2015) suggests the use of the former for smaller networks
and the latter for larger instances.

The minimum mean cycle-canceling algorithm (MMCC) is a prominent such alternative. Introduced
by Goldberg and Tarjan (1989), this algorithm copes with degeneracy at the expense of a more involved
pricing problem able to identify improving directions only, that is, with strictly positive step sizes. Despite
its strongly polynomial time complexity, the theoretical behavior of MMCC is in practice no match for other
methods. Radzik and Goldberg (1994) even improve the complexity some five years later and introduce the
concept of phases. Two decades further down the road brings another improvement due to Gauthier et al.
(2015) which combines phases with Cancel-and-Tighten (CT) presented along side MMCC in the seminal
paper as a self-standing algorithm.

This paper presents a Contraction-Expansion algorithm (CE) inspired by MMCC and its complexity
proof. Since the visual aid granted by the network flow formulation gives a lot of perspective to the theoretical
analysis, we opt to present algorithmic choices in a constructive fashion. We adopt the definitions and
nomenclature of Ahuja et al. (1993).

The paper is organized as follows. Section 2 defines the network problem and exposes the building block
of this paper, namely the so-called contracted network. The contracted network is a flexible construction
which gives rise to a generic contraction algorithm whose properties are discussed in Section 3. A behavioral
study of the so-called optimality parameter follows in Section 4. From these observations, an expansion
scheme guiding the solution process is drafted in Section 5, where the ensuing complexity analysis expands
upon theoretical results from the minimum mean cycle-canceling algorithm. Our final thoughts can be found
in Section 6.

We should also mention that the goal of this research is not to beat leading algorithms on network
problems. Our intent is a better understanding of algorithms with strictly positive step size at every iteration.
We believe that a more involved pricing problem is worth investigating in methods where rather complex
mathematical programs are already solved to guide the solution process, evoking in particular, the oracle of
a column generation algorithm.

2. Network problem

Assume a capacitated directed network G := (N,A), where N denotes the set of n nodes and A the
set of m arcs. The arc parametrization is captured by the cost vector c := [cij ](i,j)∈A and non-negative
bounds [`ij , uij ], (i, j) ∈ A. A supply or demand, respectively, defined by a positive or negative value bi,
i ∈ N , is associated with each node such that

∑
i∈N bi = 0. Supported by G and the vector of bounded flow

variables x := [xij ](i,j)∈A, a formulation of CMCF is given by:

z∗ := min
∑

(i,j)∈A
cijxij

s.t.
∑

j:(i,j)∈A
xij −

∑

j:(j,i)∈A
xji = bi, [πi], ∀i ∈ N,

`ij ≤ xij ≤ uij , ∀(i, j) ∈ A,

(1)

where π := [πi]i∈N is the vector of dual variables, also known as node potentials. We further assume that G
does not contain any multiarc, i.e., two or more arcs sharing both the same head and tail nodes.
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When the right-hand side b := [bi]i∈N is the vector of all zeros, we obtain a circulation problem. The
latter is also the support of the minimum mean cycle-canceling algorithm. Indeed, its core component, namely
the so-called residual network is a circulation problem for which upper bounds are eventually neglected while
searching for an improved solution.

We recall the path and cycle definitions used by Ahuja et al. (1993). A path from node i1 to node ir
(abbreviated i1  ir) in a directed graph G = (N,A) is a sequence without repetition of nodes and
arcs i1 − a1 − i2 − a2 − . . . − ir−1 − ar−1 − ir, satisfying the property that either ak = (ik, ik+1) ∈ A
(forward arc) or ak = (ik+1, ik) ∈ A (backward arc) for all k, 1 ≤ k ≤ r− 1. The sequence is typically given
using nodes only. A directed path is an oriented version of a path consisting of forward arcs only. A cycle
is a path together with either the forward arc (ir, i1) ∈ A or the backward arc (i1, ir) ∈ A. A directed cycle
is a directed path together with the arc (ir, i1) ∈ A (which indeed imposes the orientation of the directed
cycle). The cost of a path or a cycle is the sum of the cost on the forward arcs minus that on the backward
arcs. Note that there is no backward arc in a directed path nor a directed cycle.

With respect to any dual variable vector π := (πi)i∈N , the reduced cost of xij , (i, j) ∈ A, is defined
as c̄ij := cij − πi + πj . The reduced cost of a path or a cycle is then computed analogously to its cost.
Therefore, although Ahuja et al. (1993) state the following fundamental property for a directed cycle, the
same telescopic summation argument proves to be enough regardless of its directed nature.

Proposition 1. The cost and reduced cost of a cycle, directed or not, are equal.

In the following we define the traditional residual network using which we can determine whether the
current solution x0 := [x0ij ](i,j)∈A can be improved or not. An optimality certificate is then provided which
indeed amounts to the statement of cycle-canceling algorithms. We finally move on to a contraction manip-
ulation which induces a so-called contracted network.

2.1. Residual network

The residual network allows a marginal construction of the flow that may traverse the network aside the
current flow x0 (increasing flow on certain arcs, possibly decreasing it on others). The combination of x0

along with an optimal residual flow computed on the residual network is optimal in the original network.
As depicted in Figure 1, each arc (i, j) ∈ A can be replaced by two residual arcs representing possible flow
increments or decrements that depend on the remaining capacities:

• a forward arc (i, j) with cost dij := cij and residual flow 0 ≤ yij ≤ r0ij := uij − x0ij ;
• a backward arc (j, i) with cost dji := −cij and residual flow 0 ≤ yji ≤ r0ji := x0ij − `ij .

xij

yij

yji

dji = −cij
dij = cij

uij`ij x0ij

Figure 1: A change of variables

Denoted G(x0) := (N,A(x0)), the residual network with respect to x0 reflects the change of variables yij−
yji := xij − x0ij , (i, j) ∈ A. It is based on the original nodes in N and the set of residual arcs A(x0). Indeed,
among the possible arc support A′ := {(i, j)∪ (j, i) | (i, j) ∈ A} only those arcs with strictly positive residual
capacities are of interest, i.e., A(x0) := {(i, j) ∈ A′ | r0ij > 0}.
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An equivalent formulation of (1) using the new y-variables reads as

z∗ = z0 + min
∑

(i,j)∈A(x0)

dijyij

s.t.
∑

j:(i,j)∈A(x0)

yij −
∑

j:(j,i)∈A(x0)

yji = 0, [πi], ∀i ∈ N,

0 ≤ yij ≤ r0ij , ∀(i, j) ∈ A(x0),

(2)

where z0 := cᵀx0 is the objective function value of the solution x0. Observe that using both forward and
backward arcs between the same pair of nodes can be simplified to sending the net flow in a single direction
only. This is why we assume yij yji = 0, (i, j) ∈ A.

Figure 2 exhibits the construction of the residual network G(x0). Figure 2a contains arc flow variables x0ij ,
(i, j) ∈ A, at different values. Each of these can be attributed a status depending on its actual value: lower
when x0ij = `ij , upper when x0ij = uij , or free when `ij < x0ij < uij . When a variable is free, the flow can be
varied in either direction, implying the presence of two anti-parallel residual arcs. However, when a variable
is lower (resp. upper), this induces only one arc oriented in the forward (resp. backward) direction. An arc
at its lower or upper bound is also said to be restricted. Let the disjoint sets L(x0), U(x0), and F (x0) be a
partition that echoes the status of the original arcs at x0. In order to simplify the presentation, we denote
this partition by {Lk, Uk, F k}, where k ≥ 0 refers to the solution xk in iteration k.

5

6 4

1

7

2
8

9
10

3

(a) Current solution x0

5

6 4

1

7

2
8

9
10

3

(b) Residual network G(x0)

Legend

i j
Free

Residual

i j
Lower

Residual

i j
Upper

Residual

Figure 2: Residual network construction where undirected edges represent two anti-parallel arcs

2.2. Optimality conditions

It is known that a flow solution x∗ is optimal if and only if the residual network G(x∗) contains no
negative cost directed cycle, shortened to negative cycle, see Ahuja et al. (1993, Theorem 9.1). By iteratively
sending as much flow as possible along negative cycles, i.e., canceling negative cycles, and updating the
residual network accordingly, one obtains a generic cycle-canceling algorithm which terminates when there
remains no negative cycle (Klein 1967).
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We recall here three equivalent necessary and sufficient optimality conditions which can be interpreted in
different perspectives with respect to network flows (see Ahuja et al. 1993, Theorems 9.1, 9.3, and 9.4). The
first two refer to the residual network whereas the third is based on the original network. In regards to the
dual condition perspective, with respect to any dual variable vector π, the reduced cost of xij , (i, j) ∈ A, is
defined as c̄ij := cij − πi + πj . Let the reduced cost d̄ij := dij − πi + πj of yij , (i, j) ∈ A(x0), be computed
in the same way.

Primal: G(x0) contains no negative cycle.

Dual: ∃π such that d̄ij ≥ 0,∀(i, j) ∈ A(x0).

Complementary slackness: ∃π such that, for every arc (i, j) ∈ A,

x0ij = `ij if c̄ij > 0; x0ij = uij if c̄ij < 0; c̄ij = 0 if `ij < x0ij < uij . (3)

Although the notion of cycle cancellation can be seen as an intuitive step size method, its foremost
intention is the elimination of said cycle from the current residual network. Indeed, passing a strictly positive
flow on any directed cycle W in G(x0) obviously permits a transition between solutions, yet maintaining
feasibility is ensured by limiting the flow to at most the smallest residual capacity of the arcs forming the
cycle, say ρ := min(i,j)∈W r0ij . A directed cycle is canceled when the step size is equal to ρ such that at

least one of the residual capacities r0ij , (i, j) ∈W, is saturated. Note that any negative cycle qualifies for an
improvement with respect to the objective function value since ρ > 0 by definition. As such, various oracles
capable of coming up with negative cycles are conceivable, not all of these leading to strongly polynomial
algorithms (see Ahuja et al. 1993, Section 9.6).

Since negative cycles are canceled sequentially, the oracle essentially defines a cycle-canceling algorithm.
The minimum mean cycle-canceling is one such algorithm famous for its strongly polynomial runtime com-
plexity, see Gauthier et al. (2015) for a recent survey. MMCC uses an oracle which dismisses residual
capacities from the residual network and only identifies negative cycles of minimum mean cost. Technical
aspects of this algorithm are presented in Section 4.2 where we build upon these results to show the runtime
complexity of our Contraction-Expansion algorithm. The contracted network permits the exploration of
alternative oracle constructions hoping to identify negative cycles faster. Whether these cycles are directed
or not on the residual network remains to be seen.

2.3. Contracted network

A cycle free solution x0 does not contain any cycle of free arcs (Ahuja et al. 1993). In primal simplex
terminology, such and only such solutions are basic. If one assumes a basic solution x0, the set of free arcs F 0

then defines a forest, that is, a collection of node-disjoint trees.

We arbitrarily identify each tree with one of its nodes which we call its root. For every node i ∈ N , let
R(i) be its associated root (or tree identifier) such that any two nodes i 6= j in N belonging to the same
tree must have the same root node R(i) = R(j). Moreover, if the node i is a root, then R(i) = i. For the
example in Figure 3a, root nodes 1, 2, and 3 have been chosen such that R(1) = R(4) = R(5) = R(6) = 1.
Also, as a visual aid, we introduce the notion of a tree-layer to group the trees consisting of free arcs.
Let G(F 0,x0) denote the residual network on x0 where the tree-layer defined with respect to the set of free
arcs F 0 is superposed. Note that G(F 0,x0) ≡ G(x0). In fact, the arcs within the clouds in Figure 3a are
bidirectional such that one must imagine the tree-layer with respect to the original arcs in A. Based on the
tree-layer, we perform a contraction of every tree to its root node which effectively hides all free arcs and
lets the remaining restricted arcs in L0 ∪U0 be visible. The tail and head for each of these visible arcs (i, j)
is respectively redefined to R(i) and R(j). This contraction is likely to produce multiarcs. For instance, the
arcs (2, 6), (7, 4), and (8, 5) have the same head and tail in the contracted network. Granted the actual cost
computation has yet to be addressed, trivial cost dominance rules can be applied on such multiarcs. The
end result appears in Figure 3b where the presence of the two dominated arcs between root nodes 1 and 2
concerns only efficiency matters.
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(a) Tree-layered residual network G(F 0,x0)

1

2

3

(b) Contracted network H(F 0,x0)

Legend

i j
Residual

Visible

i j
Residual

Visible and dominated

Figure 3: Contracted network based on the set of free arcs, arcs within a cloud are contracted and become hidden while the
others remain visible.

Recall that a tree T is a connected graph that contains no cycle. In linear algebra terms, the coefficient
columns in (1) associated with the arcs of T are linearly independent. By extension, we call a subset of arcs
linearly independent if no cycle can be formed. Let us formalize the construction of the contracted network
using a general tree-layer definition. While a great deal of attention is given to the set of free arcs F 0, the
truth is that the tree-layer can be defined with respect to an arbitrary although linearly independent set of
arcs, say P 0 ⊂ A, where the superscript is omitted unless iterate comparisons are required. The set P is then
used to partition the arcs of A(x0) in two categories. As such, one can think of the sets HP (x0) and VP (x0)
as those arcs that are hidden and visible, respectively, in the contracted network. These sets are formed by

HP (x0) :=
⋃

(i,j)∈P





(i, j), (j, i), if (i, j) ∈ F 0

(i, j), if (i, j) ∈ L0

(j, i), if (i, j) ∈ U0

(4)

VP (x0) := A(x0) \HP (x0). (5)

Definition 1. With respect to the set P , the tree-layer identifies root nodes in the set

NP (x0) := {i ∈ N | R(i) = i}, (6)

as well as the arc partition HP (x0) and VP (x0) of the residual network G(x0).

The contracted network H(P,x0) is then obtained from the sets of root nodes and visible arcs:

H(P,x0) := (NP (x0), VP (x0)). (7)

where every visible arc (i, j) in the set VP (x0) is remapped to (R(i),R(j)) thus maintaining a bijection
between arcs of the contracted network and the residual arcs.

We present two alternative contraction examples which collectively cover all possibilities. The first
example uses a subset of free arcs P ⊂ F 0 while the second combines free arcs with some restricted arcs
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such that P ⊃ F 0. In the most general case, one can mix both possibilities by using some elements of F 0

and some of A \ F 0.

Figure 4 covers the first example where the subset of free arcs used is P = F 0 \{(5, 6)}. In Figure 4a, the
free arc (5, 6) has been duplicated in both directions and consequently appears in the visible set VP (x0) with
both arcs now being at a lower bound of zero in the residual network. We refer to this kind of manipulation
on free arcs as coerced degeneracy. This yields a larger contracted network since there is now a forest with
four trees to handle. Figure 4b portrays the consequent contracted network.

5

6 4

1

7

2
8

9
10

3

(a) Tree-layered residual network G(P,x0)

1

2

3

4

(b) Contracted network H(P,x0)

Figure 4: Contracted network with coerced degeneracy on the free arc (5, 6)

As additional free arcs are duplicated in both directions, one eventually reaches a point where the
set P ⊆ F 0 is empty, such that no free arcs are hidden at all, hence yielding a contracted network whose
arc set is the same as that of the residual network, i.e., V∅(x0) = A(x0). The reader is now invited to
consider the other extreme case where the tree-layer consists of a single spanning tree. Such is the content
of Figure 5 where the set P = F 0 ∪ {(7, 4), (3, 9)} is still linearly independent and consists of the union of
the free arcs along with two additional restricted arcs. Without loss of generality, assume these two arcs are
basic degenerate in the primal simplex sense such that P = B0 ≡ B(x0) corresponds to a set of basic arcs
at x0. The tree-layer G(B0,x0) seen in Figure 5a then splits the arcs in two subsets: The nine basic arcs
of the spanning tree and the seven nonbasic arcs. The contracted network H(B0,x0) appears in Figure 5b,
where the spanning tree is contracted to the sole root node hiding all basic arcs in the process and leaving
visible the nonbasic ones. Each nonbasic arc becomes a loop, indeed, a directed cycle on H(B0,x0).

The arc cost computations of the contracted network are coming in the midst of the following section
where features and properties of the contracted network are derived according to the choice of the set P ,
most notably the nature of the optimality conditions the oracle derived from the contracted network is able
to fulfill. Since the discussion revolves around the content of the set P , it is worthwhile to underscore that
only two cases are possible for an arc contained in the latter: It is either free or it is not.

3. Contracted network properties

Although the selection of the set P is fairly arbitrary, Section 3.1 addresses how easy it is to meet the
linear independence requirement regardless of the current solution x0 being basic or not. Section 3.2 then
states that any contracted cycle, a directed cycle identified on the contracted network, is uniquely extended
on the residual network G(x0). The analysis of the contracted network’s arc cost is performed in Section 3.3
which is followed with the so-called pricing problem and the algorithm in Section 3.4. We then derive in
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(a) Tree-layered residual network G(B0,x0)

1

(b) Contracted network H(B0,x0)

Figure 5: Contracted network with a set of basic arcs (primal network simplex algorithm)

Section 3.5 the optimality certificate whose nature depends on the selected set P . As the set P influences
the content of the contracted network, different known algorithms are referenced in Section 3.6 by examining
the possible outcomes of the pricing problem. Finally, Section 3.7 shows that once the set P is selected, the
remaining arbitrary decisions that must be made have no impact on the algorithm.

3.1. Nonbasic solution

The set F 0 trivially fulfills the linear independence assumption when the current solution x0 is basic.
We show that the basic status is not restrictive for the selection of the set P . Figure 6a presents a nonbasic
solution where a cycle of free arcs is contained in a given feasible solution. Figures 6b and 6c handle the
issue using two alternative mechanisms. With the first mechanism, the cycle of free arcs is canceled, in either
direction, yielding at least one restricted arc within the cycle. Since the cancellation ultimately modifies the
current solution, one may altogether prefer the improving direction, say saturating the arc (5, 6) to its upper
bound. With the second mechanism, the arc (4, 1) is coerced degenerate in G. This duplicating manipulation
does not change the current solution yet provides a fast way to eliminate the cycles of free arcs thus allowing
one to define the set P using only independent arcs of F 0.

5

6 4

1

(a) Cycle of free arcs

5

6
4

1

	

(b) Cycle canceled

5

6 4

1

(c) Arc (4, 1) coerced degenerate

Figure 6: Working with a nonbasic feasible solution on network G

Letting f := |F 0| ≤ m, Proposition 2 asserts that, regardless of whether x0 is basic or not, it is easy to
maintain a tree-layer induced by a linear independent set P .
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Proposition 2. A linear independent set P ⊂ A(x0) can be derived from F 0 either by removing any cycle
of free arcs using at most f cycle cancellations or by applying coerced degeneracy to at most f arcs.

Proof. It is trivial to verify that rendering at most f arcs coerced degenerate means that there remains a
suitable linearly independent subset of free variables capable of forming a tree-layer. In fact, one may think
of these coerced degenerate variables as super-basic such that canceling a cycle of free arcs amounts to the
recovery of an optimal [or not] basis which can be done in a straightforward manner according to Marsten
et al. (1989).

3.2. Uniqueness of the extended cycle

Observe that in the tree-layered residual network, any visible arc (i, j) ∈ VP (x) connects two root nodes
using first a path fromR(i) to i followed by arc (i, j) and second a path from j toR(j). Figure 7 portrays such
an alternated path-arc-path sequence, from now on called a rooted path. When performing the contraction, it
is convenient to let P(i), i ∈ N, denote the path from node i to root node R(i). The rooted path associated
with the visible arc (i, j) ∈ VP (x) can therefore be decomposed as {−P(i), (i, j),P(j)}, where −P(i) is the
reversed path P(i) and the orientation of a free arc is the one given by (i, j).

R(i)

i

j

R(j)

−P(i) P(j)

Figure 7: Rooted path R(i)  R(j) associated with visible arc (i, j)

Several remarks about the rooted path are noteworthy. The two root nodes can possibly be the same,
see the arc compatibility Definition 2. The two distinct paths are formed using only arcs in HP (x0), that is,
hidden arcs in tree structures. Either or both of these paths could be of length zero such that the defining
arc (i, j) ∈ VP (x0) could support the rooted path by itself. Finally, by definition of a tree, any visible
arc (i, j) ∈ VP (x0) induces a unique rooted path.

Proposition 3. Any contracted cycle WH obtained on the network H(P,x0) yields a unique extended cy-
cle WH:G on the residual network G(x0).

Proof. Since only arcs that are part of the bijection are used to produce contracted cycles, the uniqueness of
rooted paths guarantees that the extended cycle uniquely exists in the tree-layered residual network. Once
again, the orientation of the free arcs in the extended cycle is given by that of the contracted cycle.

Implementation. The remainder of this section is dedicated to describing a contracted cycle obtained on
the contracted network H(P,x0) in more details. Let

WH := {(R(i1),R(j1)) , (R(i2),R(j2)), . . . , (R(i|WH |),R(j|WH |))}

be one such directed cycle on the contracted network. Observe that it produces a sequence of entry and exit
nodes in the tree-layer which ultimately cycle through the same root nodes, i.e., Rs := R(js) = R(is+1),
s ∈ {1, . . . , |WH |}, where i|WH |+1 abusively equals to i1. The extended cycle, seen on the residual network
G(x0), can then be expressed as a concatenation of rooted paths. This may not immediately lead to an
elementary cycle.

One may take a look at Figure 8 should the following explanation require visual support. Think of the
path contained in a given tree, say between the arcs (is, js) and (is+1, js+1), s ∈ {1, . . . , |WH |}. Notice that
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both paths P(js) and −P(is+1) have at least one node in common, namely the root node Rs. A cycle is
formed during the concatenation if and only if there exists some other common node us 6= Rs. Consider for
instance that P(js) follows the path js  us and then us  Rs while −P(is+1) travels on Rs  us followed
by us  is+1. Since all nodes connecting us to Rs and vice versa are common to both paths, an elementary
path is found by detecting the node us ∈ P(js) closest to js thus eliminating any back and forth play across
opposing arcs. At last, the extended cycle WH:G extracted from the contracted cycle WH is given by

WH:G :=

|WH |⋃

s=1

{(is, js),P(js) \ P(us),−P(is+1) \ −P(us)}, (8)

where some of the composing paths P(js) ∪ −P(is+1), ∀s ∈ {1, . . . , |WH |}, may be truncated to obtain an
elementary cycle.

Rs

js

is+1

us

Figure 8: Elementary tree path detection between js and is+1

3.3. Arc cost transfer policy

So far, it has been established that any contracted cycle WH exists uniquely as WH:G on the residual
network. In order to extend optimality conditions to the contracted network, we require a somewhat opposite
feature: If the residual network contains a negative cycle then so must the contracted network.

Since we assume that P contains only free arcs, optimality conditions imply that the reduced cost on all
these arcs must be zero by the complementary slackness conditions (3). This is in line with the way dual
variables are determined in the primal network simplex algorithm, that is, Ahuja et al. (1993, Chapter 11.4)
arbitrarily set to zero the dual variable of the root node allowing a unique establishment for the remaining
dual variables. It is a consequence of this procedure that πi, i ∈ N , gives the cost of the path from i to the
root node (with the cost from the root to itself of zero). This in turn produces a reduced cost of zero for
every arc in the spanning tree. We reproduce the same scheme using the more general arbitrary constant
initialization of the root node in Procedure 1.

Procedure 1 (Compute dual variable values). The dual variable of a root node πi, i ∈ NP (x0), is fixed to
an arbitrary value. The remaining dual variable values πi, i ∈ N \NP (x0), are then the cost of the path P(i)
plus πR(i).

By construction, the reduced cost of every arc in the forest induced by P is zero, i.e., d̄ij = 0, (i, j) ∈
HP (x0), indeed for all those arcs that are hidden in the contracted network.

Proposition 4. Given π satisfying Procedure 1, the reduced cost of the contracted cycle WH is equal to the
cost of its extended counterpart WH:G.

Proof. Hiding the zero-cost arcs of WH:G makes the reduced cost of the contracted cycle WH equal to the
reduced cost of its extended version. By Proposition 1, as the reduced cost and the cost of a cycle (directed
or not) are the same, the result follows.
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Remark. Since the cost and reduced cost of a cycle are equal, the way dual variables are established in order
to satisfy optimality conditions effectively transfers cost information of hidden arcs in HP (x0) to those that
remain visible in the pricing problem VP (x0). Indeed, as the reduced cost of the former set is zero, the
reduced cost of the latter set must essentially capture the original cost information. Furthermore, in case of
multiarcs in the contracted network, it is possible to keep only a single arc with the smallest reduced cost.
Such an arc is non-dominated with respect to its reduced cost.

3.4. Contraction algorithm

We are now ready to present a contraction algorithm. We aim to detect a negative cycle using the
contracted network H(P,x0) = (NP (x0), VP (x0)). Like in the pricing oracle of the minimum mean cycle-
canceling algorithm, residual capacities are omitted and we bound the flow values by a normalizing constraint
(Dantzig and Thapa 2003, Section 10.2). Proposition 5 states the kind of cycles that are identified using the
following pricing problem:

µH := min
∑

(i,j)∈VP (x0)

d̄ijyij

s.t.
∑

(i,j)∈VP (x0)|R(i)=`

yij −
∑

(i,j)∈VP (x0)|R(j)=`

yij = 0, [π`], ∀` ∈ NP (x0),

∑

(i,j)∈VP (x0)

yij = 1, [µ],

yij ≥ 0, ∀(i, j) ∈ VP (x0),

(9)

where dual variables appear on the right between brackets. Flow conservation constraints are defined for
each root node where the summation indices simply specify all arcs from VP (x0) that are related to the
specified root nodes.

Proposition 5. An extreme point solution to the pricing problem (9) corresponds to a minimum mean cost
directed cycle on H(P,x0), averaged over the number of arcs it contains.

Proof. Define the strictly positive arc support set W := {(i, j) ∈ VP (x0) | y∗ij > 0} of an optimal solution.
By flow conservation, the arcs in W form either a cycle or a collection of cycles. Solutions of the latter
category cannot be expressed as extreme points of (9). In the former case, the normalizing constraint
forces the flow on each arc of the single cycle to be equal to 1/|W |. Finally, cost coefficients of the pricing
problem (9) are d̄ᵀ = [dij − πi + πj ](i,j)∈VP (x0). Factoring out 1/|W | and using Proposition 1, we arrive at

µH = 1
|W |

∑
(i,j)∈W d̄ij = 1

|W |
∑

(i,j)∈W dij .

By Proposition 4, if the residual network contains a negative cycle, we identify one by solving the pricing
problem (9). By construction, the current solution xk, k ≥ 0, is optimal when µk

H ≥ 0, that is, when the
contracted network does not contain any negative cycle. Otherwise, given the identified contracted cycle W k

H ,
one computes the non-negative step size

ρk := min
(i,j)∈Wk

H:G

rkij ≥ 0, (10)

which is zero only if an arc of the extended cycle W k
H:G has a residual capacity of zero. We then obtain the

solution xk+1 where the flow update, if any, is only performed on the arcs of W k
H:G, that is,

xk+1
ij :=





xkij + ρk, ∀(i, j) ∈ A | (i, j) ∈W k
H:G

xkij − ρk, ∀(i, j) ∈ A | (j, i) ∈W k
H:G

xkij , otherwise

zk+1 := zk + ρk |W k
H | µk

H .

(11)
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Observe that when ρk = 0, the set P k+1 must be different from P k for otherwise the algorithm would not
terminate. Degeneracy and cycling phenomena from the primal simplex algorithm come to mind. Indeed,
unless rules for zero step size cycles are included, the same minimum mean cycle is identified in the next
iteration. A pseudo-code is elaborated in Figure 9 where this process is repeated until optimality is reached.

Initialization: Iteration k := 0;
Feasible solution x0;
Define the set P k ⊂ A;

1 Derive the contracted network H(P k,xk);

2 Solve the pricing problem (9) for µk
H ,W

k
H ;

3 If µk
H ≥ 0, terminate with an optimality certificate for xk;

4 Extract the extended cycle W k
H:G;

5 Compute the step size ρk as in (10);

6 Update to solution xk+1 using the system (11);

7 Update the set P k+1 ⊂ A;
8 Iterate k := k + 1;

Figure 9: Generic contraction algorithm for network flow problems

The nature of the optimality certificate in the generic contraction algorithm goes hand in hand with the
non-degeneracy guarantee provided (or not) by the selected set P and the induced contracted network. Let
us analyze this property.

3.5. Nature of the optimality conditions

Given that any contracted cycle is uniquely extended, the underlying expectation is that it is possible
to travel on the hidden arcs, i.e., the extended cycle is directed on G(x0). Depending on the actual status
of the arcs in set P , this expectation could be challenged. Verifying that any set P which consists of only
free arcs always provides a contracted cycle WH on which at least one flow unit can always be sent on the
extended cycle WH:G is trivial: All arcs unaccounted for can be used in either direction. As supporting
evidence, the first three extended cycle extractions illustrated in Figure 10 are directed in G(x0). They come
from contracted cycles obtained on a contracted network using only free arcs (Figure 3b or 4b). The fourth
extended cycle extraction comes from Figure 5b and yields an undirected cycle inducing a zero step size.

Figure 10a is obtained from a contracted cycle defined by the arc loop on root node 1 in the contracted
network of Figure 3b. Figure 10b comes from the same contracted network but the contracted cycle uses
more arcs: {(1, 3), (3, 9), (8, 5)}. Figure 10c identifies part of the previous cycle although it is based on
the contracted network of Figure 4b where more visible arcs are available. Finally, Figure 10d is based on
Figure 5b used with the primal network simplex algorithm. The arc (7, 4) is basic degenerate and one of the
nonbasic arcs corresponds to the visible arc (2, 6), a loop on root node 1. The corresponding extended cycle
is defined by {(2,6), (6, 5), (5, 4), (4, 7), (7, 2)}, or in accordance with the threefold decomposition of WH:G

given in (8) as

{(2,6), {{(6, 1)} \ {(6, 1)}}, {{(1, 6), (6, 5), (5, 4), (4, 7), (7, 2)} \ {(1, 6)}}}.

Unfortunately, the arc (4, 7) is not a residual arc and reduces the possible flow on the identified extended
cycle to zero. In the primal simplex algorithm, pivoting on arc variable x26 induces a degenerate pivot.

When P ⊆ F 0 and µ0
H < 0, the contracted network H(P,x0) is guaranteed to identify a directed extended

cycle, that is, when the hidden arcs are free, any contracted negative cycle has a strictly positive step size
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(a) Extended cycle from the contracted cycle
{(4, 1)} on Figure 3

5

6

1

8

9

3

(b) Extended cycle from the contracted cycle {(1, 3), (3, 9),
(8, 5)} on Figure 3

4

1

7

8

9

3

(c) Extended cycle from the contracted cycle {(1, 3), (3, 9),
(7, 4), (4, 1)} on Figure 4

5

6 4

7

2

(d) Extended cycle from the contracted cycle
{(2, 6)} on Figure 5

Figure 10: Extended cycle extractions

on G(x0). This refers to the primal optimality conditions of Section 2.2. On the other hand, when P * F 0,
there is no such guarantee since the extended cycle could contain an arc with a residual capacity of zero such
that the associated step size is non-negative. In that case, µ0

H ≥ 0 is only a sufficient optimality condition.
This proves the following proposition.

Proposition 6. Given the set P ⊂ A of linearly independent arcs, if

• P ⊆ F 0, the oracle (9) provides necessary and sufficient optimality conditions for (1), i.e., x0 is
optimal if and only if µ0

H ≥ 0.

• P * F 0, the oracle (9) provides sufficient optimality conditions for (1), i.e., x0 is optimal if µ0
H ≥ 0.

Regardless of the choice of the set P , arcs (i, j) ∈ A can be categorized in two classes: Those arcs that
link nodes of the same tree, i.e., the head and tail of the residual arc have the same root node R(i) = R(j),
and those that link different trees, i.e., R(i) 6= R(j).

Definition 2. An arc (i, j) ∈ A is compatible with P if and only if the head and tail refer to the same root
node in the contracted network, i.e., R(i) = R(j). Otherwise, it is incompatible.

Compatible arcs are easy to identify as loops on the contracted network thus forming directed cycles on
their own. Examples can be seen in Figure 3a as arcs (4, 1) and (9, 10) or in Figure 3b as the two loops on
root nodes 1 and 2. This also implies that the extended cycle associated with a compatible arc (i, j) ∈ VP (x0)
is not influenced by the content of other trees. The reduced cost of a loop is therefore the reduced cost of the
cycle. For incompatible arcs, rooted paths have to be combined to form cycles in H(P,x0). In this respect,
we like to think of the reduced cost d̄ij , (i, j) ∈ VP (x0), as a rooted cost.
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3.6. Extremal point solution space

It is straightforward to verify that the extreme cases, P = ∅ and P = B0, respectively, correspond to the
minimum mean cycle-canceling algorithm and the primal network simplex algorithm. In the former case,
the contracted network H(∅,x0) has exactly the same structure as the residual network G(x0), thus yielding
a pricing problem equivalent to MMCC’s. In the latter case, consider the contracted network of Figure 5
where the arcs of P are basic arcs (indeed forming the primal network simplex spanning tree) and all visible
arcs are nonbasic. Also recall that the arc cost transfer policy seen in Procedure 1 is a generalized version
of the one used in the primal network simplex algorithm where only one root node is used. As each visible
arc is compatible (appearing as a loop in H(B0,x0)), applying cost dominance trivially results in a single
contender for the pricing problem to identify which incidentally reconciles us with the entering variable of
Dantzig’s pivot rule.

Let CP denote the set of all directed cycles obtainable from extreme points of the pricing problem (9).
The cardinality of this set can be measured in two parts, that is, the compatible and incompatible portions.
The first portion is insignificant and reduces to a single element regardless of the set P while the second
grows exponentially as the set P reduces in cardinality.

Proposition 7. The cardinality of the set of extreme point solutions |CP | of the pricing problem (9) on the

contracted network H(P,x0) is O(2(n−|P |+1)2).

Proof. For the sake of simplicity, the argument is carried with a dominance rule applied on the visible arcs.
Furthermore, we use a worst case type analysis on the density of these sets. As an extreme point of (9) can
only identify a single compatible arc, dominance can be applied across all compatible arcs regardless of their
root node association.

The more interesting portion thus concerns incompatible combinations which of course require at least two
incompatible arcs. Using combinatorial enumeration, let us count the cycles in rough numbers by randomly
selecting arcs within the available possibilities VP (x0) thus forming directed cycles of different sizes ranging

from 2 to n − |P | + 1, the number of nodes in the contracted network, i.e., |CP | =
∑n−|P |+1

k=2

(|VP (x0)|
k

)
.

Then again, once dominance is applied, the set of visible arcs vastly overestimates the actual number of arcs
remaining in the contracted network which for a complete graph amounts to (n − |P | + 1)2. Since basic

calculus reduces
n∑

k=1

(
n2

k

)
to the dominant term 2n

2

, we obtain |CP | ∈ O
(

2(n−|P |+1)2
)

.

Granted it is possible to order the cardinalities, |C∅| � |CF | � |CB |, the same cannot be done for the
actual sets. Indeed, hidden arcs and dominance rules means that directed cycles present in a smaller set are
not necessarily present in a larger one. Consider for instance Figures 10b and 10c where the cycle uses the
non-dominated arc (8, 5) for the former and (7, 4) for the latter.

While this computation tremendously dramatizes the size of the extreme point solution set of the pricing
problem (9), it gives the general intuition that some balance can be achieved between the workload offset
transferred to the oracle and the simplicity of obtaining undirected cycles that may induce a step size of zero.
Let us put this in perspective of the contracted networks seen in Figures 3b, 4b, and 5b. The formulation
of the pricing problem (9) is always the same, yet the contracted network reminiscing of the primal network
simplex algorithm (5b) has |CB | = 1 whereas many more cycles are present in the contracted network using
all free variables (3b). While the density of the resulting contracted network converges towards the density of
the original network such that the exponential bound becomes increasingly approximative as |P | get smaller,
it is nevertheless expected that the difficulty of solving the pricing problem (9) follows the burden of the
extreme point solution set.

Furthermore, for the exponential cardinality growth to be in line with Proposition 6, one must realize
that additional cycles available through a smaller set P must come from the combination of cycles available
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in a larger set P . Consequently, since cycles available using the set P = F are sufficient to ascertain
optimality, some of the cycle combinations available in the pricing problem using set P ⊂ F must lead to
nonbasic solutions. In this matter, the purpose of Section 3.1 which handles nonbasic solutions is twofold.
Sure enough, it manages the initial starting solution but more importantly solutions encountered during the
solution process. That is, in particular there is no guarantee that MMCC (with P = ∅) travels through
extreme points and the same is true for other cases where actual free arcs are rendered visible in VP , that
is, when P ⊂ F .

3.7. Root selection

Since the selection of root nodes is arbitrary, the reader might wonder what impact, if any, a different
set of root nodes would have on the oracle and thus the algorithm’s course. As shown in the proof of
Proposition 8, it turns out very little. Indeed, the oracle’s content is modified on a per component basis yet
as a whole it is completely unaffected.

Proposition 8. The root selection has no influence on the pricing problem (9). The compatible set, the
extreme point solution set CP , the mean cost evaluation µH and the nature of the optimality certificate in
Proposition 6 are unaltered.

Proof. On the one hand, it is no surprise that, for all nodes i ∈ N , the paths P(i) and their costs πi are
modified when an alternative set of root nodes is used. This means that while each visible arc (i, j) of VP (x0)
continues to exist on H(P,x0), it is now associated with a different reduced or rooted cost d̄ij = dij−πi +πj .
The first observation is that the set of extreme point solutions CP corresponding to directed cycles obtained
by linear combination of visible arcs is unaltered. Furthermore, by Proposition 4 the original cost on each
cycle is maintained regardless of the root selection. As such, the mean cost of every extended cycle is also
maintained which obviously means as much for the nature of the optimality certificate. Finally, observe that
not only is the compatibility status of any arc (i, j) persistent, the reduced or rooted cost of a compatible
arc is also immune to change.

This is a testament to the fact that a degenerate solution grants degrees of freedom for dual variables,
in fact one for each degenerate constraint in accordance with Procedure 1. Intuitively speaking, the pricing
problem (9) can be interpreted to optimize over these degrees of freedom. Indeed, solving the former not
only provides an optimal cycle W 0

H of minimum mean reduced cost µ0
H on the contracted network but also

a new set of dual variable values for the root nodes. The following is an adaptation of Goldberg and Tarjan
(1989, Theorem 3.3) or, more directly in terms of notation, of Gauthier et al. (2015, Proposition 3) which
also bases its argument on linear programming theorems.

Proposition 9. When solving the pricing problem (9) at iteration k ≥ 0, there exists some dual variable
values πk

` , ` ∈ NP (xk), such that d̄ij − πk
R(i) + πk

R(j) ≥ µk
H , (i, j) ∈ VP (xk). By complementary slackness,

the latter in fact hold at equality for all strictly positive variables, i.e., (i, j) ∈W k
H .

In other words, the initial dual variable values on root nodes are irrelevant as much as the roots selection.
Either way, the pricing problem (9) optimizes dual variables aiming to satisfy optimality conditions.

4. Behavioral study

Supported by numerical results from a minimum cost flow problem instance containing 1 025 nodes
and 92 550 arcs (referred to as Instance 1), in Section 4.1 we analyze the behavior of a specific variant of
the contraction algorithm opposite MMCC’s established behavior. This study not only serves to grasp some
mechanical aspects of these algorithms, but more importantly draws attention on key points of the theoretical
minimum mean cycle-canceling complexity. Section 4.2 connects the dots with Cancel-and-Tighten and digs
into more advanced aspects.
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4.1. A lower bound on the minimum mean cost

Our analysis opposes the mean cost of negative cycles obtained on the contracted network to those that
would be obtained in the framework of MMCC. At a given iteration k ≥ 0, let µk

G be the minimum mean
cost of the directed cycle W k

G on the residual network as obtained by MMCC. We then denote by µk
H the

minimum mean cost of the directed cycle W k
H fetched on the contracted network and

µk
H:G = µk

H

|W k
H |

|W k
H:G|

(12)

the mean cost of the extended cycle where hidden arcs are accounted for. The following proposition is verified
by construction.

Proposition 10. Let xk, k ≥ 0, be a non-optimal solution. Given the set P ⊆ F k, the following ordering
of the minimum mean costs always holds:

µk
H ≤ µk

G ≤ µk
H:G. (13)

Proof. The cycle W k
H:G is visible as is on the residual network G(xk) which means µk

G ≤ µk
H:G trivially holds

by the nature of minimizing the mean cost in G(xk). Furthermore, although contracted, any cycle W k
G that

also appears in H(P,xk) is evaluated with a different mean cycle cost which eventually uses less arcs such
that µk

H ≤ µk
G.

Since we aim to establish complexity results in light of MMCC’s analysis, it is quite natural to think
of W k

G as the reference minimum mean cost cycle. The inequalities literally state that the optimal value of the
minimum mean cost µk

G may be underestimated by µk
H and overestimated by µk

H:G. The notion of estimation
might be better understood by observing the evolution of the various µ during the solution process. For
illustrative purposes, we systematically use the contracted network H(F k,xk) at every iteration, where all
and only the free arcs are hidden. The value of µk

H and its counterpart µk
H:G are naturally obtained on top of

which we also poll for the value µk
G as if to look for the minimum mean cycle. Figure 11 shows the evolution

of these measures for Instance 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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−2,000
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−1,000

−500

0

Iteration k

µ

µH:G (top)
µG (mid)
µH (bottom)

Figure 11: Comparison of µkH , µ
k
G and µkH:G

While all three plots show a general increasing tendency, what is striking is how different the inequality
µk
H ≤ µk

G is from µk
G ≤ µk

H:G. The first gap is fairly intuitive and goes back to basic mathematics: The
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density of the contracted network produces contracted cycles which use relatively few arcs compared to their
extended counterparts. As the cycle costs remain the same, the denominator strongly influences the mean
evaluation. The ordering (13) can then be interpreted as a deceptively small minimum mean cost µk

H whose
value is corrected when accounting for the hidden arcs. Observe that the ordering (13) is equal throughout
if there are no hidden arcs in the contracted cycle, i.e., |W k

H | = |W k
H:G|.

The second gap is much more tight and deserves more attention. In this matter, Figure 12 zooms on the
evolution of the extended mean cycle cost µk

H:G and minimum mean cycle cost µk
G. For the record, MMCC

both searches for and applies a minimum mean cycle at each iteration, yielding an algorithm which features
a non-decreasing property on µk

G, see Goldberg and Tarjan (1989, Lemma 3.5) or Gauthier et al. (2015,
Proposition 4). Take a close look around the 10 000th iteration. This is not a graphical aberration showing
that this property is indeed lost when negative cycles are not canceled in the order suggested by MMCC.
What we think is surprising for this particular instance is how little this phenomenon occurs, only 21 times
within 14 258 iterations to be exact.
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Figure 12: Zoom on comparison of µkG and µkH:G

Convergence. As the contraction algorithm identifies a negative cycle at every iteration, it is evident that
convergence of the objective function to optimality is guaranteed. By default, there are then at most O(mCU)
such negative cycles, a weakly polynomial result referring to the largest absolute cost (C := max(i,j)∈A |cij |)
and interval bound values (U := max(i,j)∈A uij − `ij).

Nevertheless, comparing the canceled cycle mean cost to that of the minimum mean cycle cost is an
enlightening exercise. Indeed, the erratic behavior also appears in a strongly polynomial algorithm, namely
Cancel-and-Tighten. Section 4.2 recalls some concepts from the minimum mean cycle-canceling algorithm
(Gauthier et al. 2015) for which strongly polynomial runtime is established through the analysis of the
so-called optimality parameter.

4.2. Optimality parameter analysis

Strongly polynomial runtime complexity certifies that an algorithm performs a polynomial number of
operations measured solely by the size of its input (see Cormen et al. 2009). For network flow problems, this
number should be a function of m and n only. In introducing the minimum mean cycle-canceling algorithm,
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Goldberg and Tarjan (1989) also provide such a complexity proof which holds in two parts. First, an oracle
capable of producing a minimum mean cost directed cycle in O(mn) time. Second, an optimal solution is
reached by canceling at most O(m2n log n) such negative cycles. The first part can be seen as the inner
loop and the second as the outer loop. Their product then yields a strongly polynomial global complexity.
Radzik and Goldberg (1994) refine the complexity analysis, reducing the number of cycle cancellations
to O(m2n). Although they also introduce the concept of phases to analyze the behavior of the algorithm,
Gauthier et al. (2015) strongly insist on the latter to further improve the complexity result by combining
the Cancel-and-Tighten strategy introduced in Goldberg and Tarjan (1989) with the original algorithm.

In MMCC, the value µk
G is coined as the optimality parameter because it converges without oscillations

to 0 from below in strongly polynomial time. It might however be more appropriate to reserve this name for
another value as illustrated by the upcoming analysis.

Type 2 (negative) cycles. Even though the non-decreasing property of µk
G across iterations in the

minimum mean cycle-canceling algorithm is interesting, it has been argued by Gauthier et al. (2015) that
the strictly increasing behavior observed across phases is more enlightening. The phase definition goes hand
in hand with the proof of Gauthier et al. (2015, Proposition 5) which distinguishes between Type 1 and
Type 2 cycles. It shows that a Type 2 cycle is attained within m cancellations or optimality is achieved,
where a Type 2 cycle is obtained when there exists at least one variable in the cycle with a non-negative
reduced cost computed with respect to a set of dual variables established at the beginning of a phase. Given
µh
G at the beginning of phase h ≥ 0, such a Type 2 cycle W ` then serves to imply a strict increase on µh

G as

µ`
G ≥ (1− 1/|W `|)µh

G ≥ (1− 1/n)µh
G (14)

thus marking the end of the phase, i.e., the sequence of iterations leading to this measurable jump factor.

Since each phase h ≥ 0 contains at most m cancellations, the number of cancellations can be interpreted
as at most O(mn log n) or O(mn) phases depending on the complexity point of view (Gauthier et al. 2015).
These points of view respectively refer to Theorem 2 which uses the minimal increasing factor (1− 1/n) and
Theorem 3 rather exploiting the stronger factor (1− 1/|W `|). While the concept of phases is useful for the
complexity analysis of MMCC, it is not transparent at all in the implementation. Indeed, in MMCC, the
phase is purely a question of theoretical existence; dual variables are never required to advance such that
the solution process cares not about these cycle Types. The enlightenment comes from the inclusion of
Cancel-and-Tighten in the analysis where phases are observed in actu. The latter fixes dual variables and
depletes the residual network of Type 1 cycles (those formed with negative reduced cost arcs only). Once
this Cancel-step is terminated, one must conclude that a Type 2 cycle comes next thus implying a jump
with respect to some lower bound µ̂h

CT on µh
G at the beginning of phase h.

Figure 13 opposes the mean value µk
CT at iteration k of the Type 1 cycles canceled in the Cancel-

and-Tighten implementation with the lower bound value µ̂k
CT ≤ µk

G proposed by Gauthier et al. (2015,
Proposition 14). While the erratic behavior of µk

CT can clearly be observed throughout the solution, a general
pattern of increase can be noted across the phases. The minimum (i.e., optimal) mean cycle value µk

G is
once again fetched as background information. The 4 900th iteration is worth a look: Again, a small decrease
for µk

G. In total, four such occurrences within 7 294 cancellations contained in 357 phases. Furthermore,
Cancel-and-Tighten maintains strongly polynomial runtime despite the usage of Type 1 cycles going against
the non-decreasing property of µk

G. The strictly increasing lower bounds µ̂h
CT between phases obtained with

the existence of a Type 2 cycle marking the end of phase h is indeed where the properties are established
(Gauthier et al. 2015, Theorem 6).

Arc fixing. Strongly polynomial time complexity is achieved by keeping track of the number of phases
through the concept of arc fixing as seen in the minimum mean cycle-canceling algorithm (Gauthier et al.
2015, Propositions 9 and 11). A relaxation of the arc fixing condition is used in Proposition 11, where the two
different arc fixing conditions are in line with the complexity point of views, that is, O(mn log n) or O(mn)
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Figure 13: Comparison of µkCT , µkG and µ̂kCT

phases. The proof is straightforward and recuperates the Cancel-and-Tighten proof adaptation where the
lower bound values µ̂h

CT are shown to mimic the behavior of the true value µh
G. Indeed, as mentioned in

Gauthier et al. (2015, p. 131), it is conceivable to rewrite the arc fixing conditions using a lower bound µ̂h

on µh
G instead.

Proposition 11. Assuming µ̂h is a lower bound for µh
G at the beginning of phase h ≥ 0.

• Arc fixing for arc (i, j) ∈ A occurs or has already occurred if |c̄hij | ≥ −2nµ̂h.

• Implicit arc fixing for arc (i, j) ∈ A occurs or has already occurred if |c̄∗ij | > −nµ̂h, where c̄∗ij is the
reduced cost of arc (i, j) computed with an optimal set of dual variables.

It is at this point important to distinguish between µk
G at iteration k and strongly polynomial runtime.

Indeed, whether one looks at µk
H or µk

CT or any other cycle-canceling method, the minimum mean cycle
value µk

G can always be fetched as secondary information (recall that µk
H ≤ µk

G ≤ µk
H:G and µ̂k

CT ≤ µk
G ≤

µk
CT ). If strongly polynomial properties are to be established on oscillating values from one iteration to the

next, it appears mandatory to rather divert the analysis to a lower bound µ̂h over the phases instead. In
other words, while the portion above µk

G (blue) may be unpredictable, it is the portion below µk
G (green)

that should be well-behaved. We are ready to propose an adaptation of the contraction algorithm. Whether
that adaptation is necessary to achieve a strongly polynomial time complexity is an open question although,
since the proof relies on a controllable behavior of µH , we conjecture that it is.

5. Contraction-Expansion algorithm

Section 5.1 introduces a flexible phase definition based on so-called Type 3 cycles that serve as end-phase
markers. This is followed in Section 5.2 by a discussion of an expansion scheme which controls the visible
and hidden arc sets, that is the content of the set P , for the proposed algorithm. Section 5.3 argues that
applying the contraction on the residual network and expanding the contracted network using that specific
expansion scheme as the algorithm progresses produces a strongly polynomial algorithm. In Section 5.4,
we show that the expansion scheme is not unique such that different strategies can be used to improve the
algorithm. Finally, computational results are presented in Section 5.5.
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5.1. End-phase markers

Our contribution is to revisit the phase definition in order to extract the true pertinent information which
allows convergence in strongly polynomial time. In this respect, the current phase definition is built upon
a weak jump condition which waits for the identification of a Type 2 cycle as the minimum mean cycle to
confirm a jump on µh

G at the end of phase h. Let us propose a more flexible definition.

Definition 3. A phase h ≥ 0 is a sequence of cycle cancellations terminated whenever a measurable jump
is observed in strongly polynomial metrics, that is, both the factor and the time required to obtain it are
expressed in strongly polynomial time. A phase solution xh is understood as the solution at the beginning of
phase h.

The factor proposed in the following cycle Type obviously satisfies the strongly polynomial requirement
whereas the time requirement is shown in Proposition 12.

Definition 4. Let xh, h ≥ 0, be a non-optimal phase solution. At an iteration t within the phase h, let us
call a cycle W t on G(xt) a Type 3 (negative) cycle if its underestimated mean cost µ̂t (with µ̂t ≤ µt

G ≤ µt)
produces the measurable jump

µ̂t ≥
(

1− 1

|W t|

)
µh
G. (15)

Proposition 12. In MMCC, a Type 3 cycle is identified within at most m cancellations.

Proof. Consider the phase h. The proof is trivial and connects with the existence of a Type 2 cycle, say W `,
which must have µ`

G = µ̂` ≥ (1− 1/|W `|)µh
G. Therefore, the iteration t either happens simultaneously to `

or earlier.

Observe that whether the jump factor is obtained using an actual Type 2 cycle or not is irrelevant: A
phase is completed in accordance with Definition 3. In other words, the only important aspect of the Type 2
cycle is the measurable jump it procures on µh

G, a tactic which can incidentally also be verified against a
lower bound according to Proposition 11, that is,

µ̂t ≥
(

1− 1

|W t|

)
µ̂h. (16)

This is true for µ̂h = µ̂h
CT in Cancel-and-Tighten (Gauthier et al. 2015, Theorem 3) and is also used with

µ̂h = µh
H in the proposed Contraction-Expansion algorithm.

5.2. Expansion scheme

The focus on phases should by now be realized by the reader. Figure 14 presents a pseudo-code for
the Contraction-Expansion algorithm whereas the following paragraphs explain how the proposed expansion
scheme constrains the latter into producing such phases.

Let x0 be a non-optimal solution at iteration k = 0. Note that x0 is also a non-optimal phase solution
ensuring a lower bound µ̂0 ≤ µ0

G. Let the set P 0 = F 0. By Proposition 6, the extended cycle W 0
H:G is

directed on the residual network G(x0) and the step size is strictly positive.

When W 0
H:G is canceled, the aftermath is hard to predict but one thing is for certain: Only the arcs

part of W 0
H:G are affected. Some arcs that were free in x0 remain free in x1 in the next iteration while

all the other arcs have changed status either from restricted lower to restricted upper and vice versa, from
free to restricted or from restricted to free for a total of six possibilities. Four of these end up with a new
status restricted whereas two end up with a free status. Intuitively speaking, since the contraction happens
around the free variables and the non-decreasing µk

G property is lost when the contraction is systematically
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Initialization: Iteration k := 0;
Phase h := 0, µ̂0 := −max(i,j)∈A |cij |, new phase := true;
Feasible solution x0;

1 if new phase then
2 new phase := false;
3 counter := 0;

4 Eliminate cycles of free arcs from xk;

5 Build partition F k, Lk, Uk;

6 Define the set P k := F k;

7 Derive the contracted network H(P k,xk);

8 Solve the pricing problem (9) for µk
H ,W

k
H ;

9 If µk
H ≥ 0, terminate with an optimality certificate for xk;

10 Extract the extended cycle W k
H:G;

11 Compute the strictly positive step size ρk from (10);

12 Update to solution xk+1 using the system (11);

13 if µk
H ≥ (1− 1/|Wk

H:G|) µ̂
h then

14 µ̂h+1 := µk
H ;

15 h := h+ 1;
16 new phase := true;

17 else
18 counter := counter + 1;
19 if counter < n then
20 Expand the contracted network with P k+1 := F k+1 ∩ F k;
21 else
22 P k+1 := ∅;

23 Iterate k := k + 1;

Figure 14: Contraction-Expansion algorithm

applied, let us concentrate on controlling these newly freed variables in x1, i.e., F 1 \F 0. By applying coerced
degeneracy on these specific variables, the hidden set then contains only those variables that were already
free in x0 and are still free in x1. This amounts to selecting the set P 1 = F 1 ∩ F 0 at iteration k = 1.

From there, the idea is simple, repeatedly apply cycle cancellation with the extended cycle W k
H:G at

iteration k and expand the contracted network using the intersection of variables free in both the previous
and new solution until the algorithm reaches a Type 3 cycle, that is, a negative cycle producing a jump
factor of at least (1− 1/|Wk

H:G|). The phase h = 0 is then terminated and a new phase begins. Since we may
at this point re-apply the full contraction, it is worthwhile to eliminate any cycle of free arcs from the phase
solution to maximize the contraction benefit.

5.3. Complexity analysis

The complexity analysis of the Contraction-Expansion algorithm revolves around bringing the solution
process of the latter to terms with MMCC’s behavior. As testified by Cancel-and-Tighten, these terms refer
to the strictly increasing phase markers. Figure 15 might help to get a feel for this endeavor. It displays the
value of µk

H using the minimal expansion scheme P k+1 = F k+1 ∩F k where each trail corresponds to a phase
during the solution of Instance 1.

The upcoming analysis focuses on the outer loop, that is, we examine the time required to reach the end
of a phase and the total number of such phases.
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Figure 15: Evolution of µkH with the Contraction-Expansion algorithm

Proposition 13. The Contraction-Expansion algorithm completes a phase in O(m2n) time.

Proof. The proof is threefold with respect to the expansion scheme portion of the algorithm. We prove that
1) the non-decreasing property of µk

H during the phase is maintained, 2) at most O(n) contracted cycle
cancellations are required to reach a contracted network equivalent to the residual network, and 3) finding
the minimum mean reduced cost cycle on the contracted network requires O(mn) time.

Gauthier et al. (2015, Proposition 4) state that a cycle cancellation on the residual network G(xk)
cannot introduce a minimum mean cycle in G(xk+1) yielding µk+1

G < µk
G in the following iteration. Here

is an adaptation for the expansion scheme. Consider the contracted network H(P k,xk) and an optimal
contracted cycle W k

H of mean reduced cost µk
H along with an optimal set of dual variables πk

` , ` ∈ NP (xk),
on the root nodes (Proposition 9). From there, fix the root nodes’ dual variables to these new values and
update the remaining dual variables accordingly (Procedure 1). The residual network G(xk) hence satisfies
d̄ij − πk

R(i) + πk
R(j) ≥ µk

H , (i, j) ∈ A(xk), and in particular d̄ij = 0, (i, j) ∈ HP (xk). Upon canceling the

expanded cycle W k
H:G and obtaining xk+1, every new residual arc in G(xk+1) either has a reduced cost of 0

or −µk
H , i.e., d̄ij − πk

R(i) + πk
R(j) ≥ µk

H , (i, j) ∈ A(xk+1). Observe that every arc in F k ∩ F k+1 already has
a reduced cost of 0 such that the arc cost transfer policy already holds. The contraction is readily available
with every remaining visible arc evaluated at a reduced cost greater than or equal to µk

H . The mean cost of
the next contracted cycle is then at least µk

H .

Recall that the pricing problem in MMCC can be derived from the pricing problem (9) by making visible
all residual arcs, that is, by setting P = ∅. Then, observe that the set P is updated by intersecting the
sets of free variables of the previous solution with the current one such that its size either stays the same or
decreases at each cancellation. Assuming the initial phase solution x0 is a basic solution, at most |F 0| ∈ O(n)
cancellations yielding a decrease are then obviously required to reach P = ∅. Furthermore, when a cycle
is canceled without modifying the set of free arc variables, it means that one or several restricted variables
change from one bound to another. Unfortunately, this kind of phenomenon gives meaning to the worst
case complexity bound observed in pathological instances. An iteration counter limiting the number of
cancellations prior to reaching the residual network to at most n is put in place to make the move directly
should it be necessary. Trivially, at most n cycle cancellations allow the expansion scheme to reach a
contracted network equivalent to the residual network. From there, a Type 3 cycle is ensured within an
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additional m cycle cancellations (Proposition 12). To sum up, at most n+m ∈ O(m) cycle cancellations are
required to meet the required jump.

Finally, solving the pricing problem (9), which can still be accomplished in O(mn) time using dynamic
programming (Karp 1978), dominates all the other operations performed at every iteration. Indeed, the
data structure is maintained in O(m) time while the extended cycle extraction, step size computation and
solution update is done in O(n) time. A phase is ultimately completed in at most O(m) iterations each one
requiring at most O(mn) for a total phase runtime of O(m2n).

Theorem 1. The Contraction-Expansion algorithm runs in O(m3n2) strongly polynomial time.

Proof. We show that at most O(mn) phases can occur in accordance with Gauthier et al. (2015, Theorem 3).
Since µk

H ≤ µk
G is indeed a lower bound for the true minimum mean cycle cost value by Proposition 10,

this is also true for any phase solution. As soon as µk
H ≥ µ̂h (1− 1/|Wk

H:G|), the phase h ends and the lower
bound is increased to µ̂h+1 := µk

H . By Proposition 11, arc fixing occurs on the lower bound value µ̂h as
well such that the phase time complexities are valid. By Proposition 13, since each phase runs in O(m2n),
the compound time is obtained. An initial valid lower bound for µ0

G can be trivially obtained with µ̂0 :=
−max(i,j)∈A |cij |.

The proposed phase definition along with the Type 3 cycle not only satisfy theoretical properties of the
strongly polynomial time complexity of MMCC, they also express very practical observations. The hope is
that not only the Type 3 cycle occurs much earlier than after m cancellations, it also happens while the
phase still exploits the contracted network.

5.4. Alternative end-phase markers and expansion schemes

So long as strongly polynomial phase time is maintained, alternative expansion schemes may be used.
Figures 16–17 show the evolution of µk

H for two simple variations. The first variation (cycle expansion)
updates the set P with a more aggressive reduction, i.e., a faster expansion. The update writes as

P k+1 =
(
F k+1 ∩ F k

)
\ {(i, j) ∈ A | (i, j) ∈W k

H:G or (j, i) ∈W k
H:G} (17)

such that all arcs of the expanded cycle W k
H:G that are still free (thus common to F k and F k+1) are also

removed from P k+1. The second variation (cycle expansion & loops) uses the same update and also uses
a post cycle-cancellation heuristic which cancels loops derived from all compatible variables with negative
rooted costs as well.

For anyone familiar with successful divide-and-conquer methods, the solution speed typically benefits
from the decomposition at a higher rate than the cost of the latter. While postponing the end of a phase
with a less aggressive expansion scheme appears to agree with this statement, expanding the contracted
network faster also means that end-phase markers are reached faster at which point the full contraction is
re-applied. It seems that reaching said end-phase markers as fast as possible is of particular interest.

Speaking of end-phase markers, a measurable jump could be established using alternative Type 3 cycle
definitions. Consider for instance the modification of (16) as follows:

µ̂t ≥
(

1− 1

|W t|

)
µ̂h ≥

(
1− 1

maxk∈h |W k|

)
µ̂h ≥

(
1− 1

n

)
µ̂h. (18)

where k ∈ h is understood as an iteration k within the phase h. While the last criterion is reminiscing of
Theorem 2 which contents itself with the same jump every time thus obtaining the O(mn log n) phases, the
second criterion also tracks a cycle length and compromises on the desired jump. The latter is in fact the
criterion used in all plots of the Contraction-Expansion algorithm.
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Figure 16: Evolution of µkH with cycle expansion
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Figure 17: Evolution of µkH with cycle expansion and cancellation of negative loops

5.5. Computational experiments

This section is separated in two parts. The first details computational results with respect to three specific
instances and serves to show CE indeed behaves as expected when identifying smaller cycles on the contracted
network. The second complements intuitive assertions made in the first part with a computational profile on
benchmark instances from DIMACS (1990–1991). The latter contains several network problems of different
nature codenamed by family GOTO, GRIDGEN, GRIDGRAPH, NETGEN, ROAD, and VISION. Each family is further
divided into subcategories of different sizes each one containing five versions A-E which vary only in the data
set. Algorithms are implemented in C++. All results are obtained using an Intel i7-4770K@3.50GHz with
16GB of RAM, running Windows 10.

Table 1 resumes the content of plots displayed in Figures 15–17 along with their computational times as
well as averages of cycle sizes and induced step sizes. The performances of MMCC and CT are added for
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order comparison purposes whereas results regarding CE also incorporate an average contraction level given
by α where αk = |NP (xk)|/n, k ≥ 0.

Solution CPU (sec) k / cycles h |W | ρ α
Instance 1
MMCC 91.52 4 296 90 27.11 1.30 –
CE - minimal expansion 87.59 7 256 151 5.46 1.30 0.32
CE - cycle expansion 63.98 4 686 144 5.19 1.70 0.47
CE - cycle expansion/loops 51.84 3 449/9 499 142 7.40/3.32 1.61/2.23 0.58
CT 0.82 7 294 357 21.62 1.37 –
gridgen sr 13a
MMCC 15 629.40 20 893 289 72.85 7.45 –
CE - minimal expansion 6 709.96 25 291 301 5.93 9.70 0.56
CE - cycle expansion 2 435.97 9 202 236 4.70 19.18 0.62
CE - cycle expansion/loops 1 906.97 6 034/23 429 224 7.13/2.58 18.53/36.01 0.70
CT 36.17 27 473 1 482 49.80 7.28 –
road paths 05 WI a
MMCC 9 552.52 1 119 300 82.27 1.00 –
CE - cycle expansion 10 355.30 1 122 348 82.20 1.00 1.00
CT 2 389.51 3 248 18 647 34.85 1.00 –

Table 1: Computational results for variations of CE vs. MMCC and CT

First of all, there is no denying that Cancel-and-Tighten is orders of magnitude faster than MMCC.
The proposed Contraction-Expansion algorithm sits somewhere in between although it is clear that the
contraction boosts the speed of fetching negative cycles by a significant amount even more so as the size of
the instance gets larger. The same feel is palpable across other benchmark instances such as the significantly
larger problem gridgen sr 13a from the GRIDGEN family which contains 8 191 nodes and 745 381 arcs. It
is important to understand that the benefit of the contraction comes from the degeneracy observed in
encountered solutions. For instance, the problem road paths 05 WI a (n = 519 157 and m = 1 266 876) from
the ROAD family is structured with uniform capacities at 1 such that there are never any free variables, hence
no contraction. We therefore just get penalized with the contraction computational overhead.

The remainder of this section looks at the version A of the GRIDGRAPH, NETGEN, and GRIDGEN families,
in the process, bringing further testimonies to the previous claims. The computational results obtained on
the first family are presented in more details as follows. For each of the three categories of problems (long,
square, wide), the number of arcs is roughly m ≈ 2n whereas the node size n ranges from 28 to 217, where
the power is given by the instance difficulty index i. Table 2 displays the average contraction level and CPU
time CPUCE for CE. As expected the latter increases with the instance size, yet the average contraction
level of about 60% appears stable across this family. The middle columns indicate the relative CPU time
calculated with respect to MMCC’s as β := CPUCE/CPUMMCC . For instance, CE requires 2 619 seconds
to solve grid square 16 meaning that MMCC took 2 619/0.21 ≈ 12 471 seconds to terminate. The relative
computing times β are plotted in Figure 18 with respect to the instance difficulty index i. Once again, the
relative performance of CE increases with the instance size.

The NETGEN family is broken down into fives categories (8, deg, lo 8, lo sr, sr). The category deg is
stable in node size at n = 4 096 although it increases exponentially in terms of arcs m = n2i. All other
problems range from sizes 28 to 219 in terms of nodes n, and in terms of arcs either m = 8n for 8 and lo 8
or m = n2i/2 for lo sr and sr problems. The mean of the average contraction levels α is about 93% although
it is significantly closer to 100% for problems in the lo 8 and lo sr categories. Said lack of contraction is
apparent in Figure 19 where β is mostly present above 1 represented by the horizontal dotted line.

The GRIDGEN family is partitioned into three categories of problems (8, deg, sr). The category deg is
once again stable at n = 4 097 and increases exponentially in terms of arcs m = n2i. The two other categories
range in node sizes n from 28 to 218 whereas the number of arcs is given by m = 8n for the former category
and m = n2i/2 for the latter. The mean of the average contraction levels α is about 90% for these problems.
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long square wide
i CPUCE (sec) β α CPUCE (sec) β α CPUCE (sec) β α

8 0.01 0.65 0.64 0.01 0.60 0.64 0.01 0.60 0.64
9 0.02 0.44 0.59 0.04 0.43 0.56 0.05 0.50 0.59
10 0.08 0.31 0.56 0.16 0.36 0.58 0.21 0.41 0.61
11 0.18 0.26 0.61 0.64 0.30 0.56 0.93 0.44 0.64
12 0.59 0.19 0.56 2.95 0.29 0.58 4.43 0.38 0.64
13 1.51 0.12 0.50 11.96 0.26 0.57 19.72 0.39 0.64
14 5.45 0.16 0.45 59.18 0.26 0.58 89.83 0.41 0.63
15 8.51 0.08 0.51 325.44 0.22 0.60 476.19 0.38 0.63
16 23.15 0.04 0.45 2 619.07 0.21 0.60 2 911.39 0.31 0.63
17 402.98 0.13 0.45 17 890.40 0.27 0.61 15 944.70 0.34 0.63

Table 2: Computational results for CE on the GRIDGRAPH family, version A
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Figure 18: Relative CPU time for CE when solving the GRIDGRAPH family, version A

Figure 20 displays the experiment outcome on this family and still features increasing relative performance
as the instances grow in difficulty.

While we certainly did not cover the complete benchmark suite, this paper does not pretend to propose
a competitive algorithm just yet. As a case in point, even larger instances up to 222 nodes are available but
MMCC’s solution proved to be far too demanding. We also believe the omitted instance versions and/or
more results from other families would not significantly contribute to this framework. Finally, we recall that
PS is a top performer for the solution of minimum cost flow problems despite the fact that the vast majority
of pivots performed, read over 70%, are degenerate (Ahuja et al. 1993, Figure 18.7). With this in mind, the
goal of this paper is rather to understand better the mechanics of algorithms with strictly positive step size
improvements.

6. Conclusion

We start with a note addressed to users of the primal network simplex algorithm. Observe that the spirit
of the minimum mean cycle-canceling algorithm is tangibly similar to that of PS. The pricing step is home to
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Figure 19: Relative CPU time for CE when solving the NETGEN family, version A
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Figure 20: Relative CPU time for CE when solving the GRIDGEN family, version A

the optimality certificate whereby the latter is acquired unless an improving direction is identified. It turns
out this is not all that surprising since it has been shown that PS and MMCC belong to (even constitute
extreme cases of) a more generic contraction algorithm.

A variety of special cases inducing strictly positive step sizes is also identified. By combining these with
results from MMCC, a strongly polynomial Contraction-Expansion algorithm which behaves much better
than the former, especially as the instance’s size increases, comes to life. The reader is carried around this
birth process by opposing the behavior of MMCC and Cancel-and-Tighten in a computational study. Both
iteration and phase bases are illustrated, although a strong emphasis on the latter concept is systematically
done thus providing an alternative way of showing strongly polynomial runtime.
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Such a property can also be observed in this framework when using partial contraction. The latter
is obtained by modifying the choice of hidden arcs as the algorithm progresses. The selection is made
in such a way that it actually corresponds to an expansion of the contracted network. Furthermore, the
proposed Contraction-Expansion algorithm sticks to practical observations otherwise overlooked in MMCC.
As such, phase markers are verified algorithmically rather than just existing for theoretical purposes. It even
recuperates the idea that not all jumps are created equal thus underlining the important aspect of Type 2
cycles, namely the measurable jump. The Type 3 cycle is born. The strongly polynomial argument uses both
phases and Type 3 cycles on top of which the convergence of the original optimality parameter is neglected
in favor of a lower bound.

Furthermore, while it is true that the time complexity is not improved with respect to MMCC, we believe
it is more interesting to note that the same time complexity is achieved despite a more complicated algorithm.
Indeed, strongly polynomial algorithms might benefit from another look that aims to combine their time
complexity with practical observations that make them behave more efficiently.

There seems to be some arbitrage to be done between trying to meet optimality conditions in a more
aggressive manner and the work required to do so. By contenting itself with a sufficient condition, a significant
proportion of cancellations performed in PS are degenerate whereas MMCC uses a rule whose computational
footprint is too high. That being said, the contracted network is closer to the spirit of an oracle than is the
residual network. By this, we mean that it matters not to see all directed negative cost cycles so long as at
least one can be detected thus allowing to improve and repeat.
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