
Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Implementation of Thorup's Linear Time

Algorithm for Undirected Single-Source

Shortest Paths with Positive Integer Weights

Nick Prühs

Department of Computer Science, CAU Kiel

September 30, 2009

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The Single-Source Shortest Paths Problem

I in:

I undirected, connected graph G = (V ,E) with |V | = n

vertices and |E | = m edges
I positive edge weight function w : V × V → N with
∀(u, v) /∈ E : w(u, v) =∞

I distinguished source vertex s ∈ V

I out: d(v) = dist(v , s) for all other vertices v ∈ V \ {s}

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The Single-Source Shortest Paths Problem

I in:
I undirected, connected graph G = (V ,E) with |V | = n

vertices and |E | = m edges

I positive edge weight function w : V × V → N with
∀(u, v) /∈ E : w(u, v) =∞

I distinguished source vertex s ∈ V

I out: d(v) = dist(v , s) for all other vertices v ∈ V \ {s}

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The Single-Source Shortest Paths Problem

I in:
I undirected, connected graph G = (V ,E) with |V | = n

vertices and |E | = m edges
I positive edge weight function w : V × V → N with
∀(u, v) /∈ E : w(u, v) =∞

I distinguished source vertex s ∈ V

I out: d(v) = dist(v , s) for all other vertices v ∈ V \ {s}

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The Single-Source Shortest Paths Problem

I in:
I undirected, connected graph G = (V ,E) with |V | = n

vertices and |E | = m edges
I positive edge weight function w : V × V → N with
∀(u, v) /∈ E : w(u, v) =∞

I distinguished source vertex s ∈ V

I out: d(v) = dist(v , s) for all other vertices v ∈ V \ {s}

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The Single-Source Shortest Paths Problem

I in:
I undirected, connected graph G = (V ,E) with |V | = n

vertices and |E | = m edges
I positive edge weight function w : V × V → N with
∀(u, v) /∈ E : w(u, v) =∞

I distinguished source vertex s ∈ V

I out: d(v) = dist(v , s) for all other vertices v ∈ V \ {s}

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
Dijkstra's algorithm

I proposed by Edsger W. Dijkstra [Dij59]

I additional de�nitions:
I set of visited vertices S ⊆ V
I super distance D(v) ≥ d(v) for every vertex v ∈ V ,

with

D(v) =

{
d(v), v ∈ S

minu∈S{d(u) + w(u, v)}, v /∈ S

I initialization:
I S = {s}
I D(s) = d(s) = 0
I ∀v 6= s : D(v) = w(s, v)

I algorithm:
1. while S 6= V : visit the vertex v /∈ S minimizing D(v)

1.1 move v to S , because D(v) = d(v)
1.2 for all (u, v) ∈ E , decrease D(u) to D(v) + w(u, v), if

the latter is less

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
Dijkstra's algorithm

I proposed by Edsger W. Dijkstra [Dij59]

I additional de�nitions:
I set of visited vertices S ⊆ V
I super distance D(v) ≥ d(v) for every vertex v ∈ V ,

with

D(v) =

{
d(v), v ∈ S

minu∈S{d(u) + w(u, v)}, v /∈ S

I initialization:
I S = {s}
I D(s) = d(s) = 0
I ∀v 6= s : D(v) = w(s, v)

I algorithm:
1. while S 6= V : visit the vertex v /∈ S minimizing D(v)

1.1 move v to S , because D(v) = d(v)
1.2 for all (u, v) ∈ E , decrease D(u) to D(v) + w(u, v), if

the latter is less

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
Dijkstra's algorithm

I proposed by Edsger W. Dijkstra [Dij59]

I additional de�nitions:
I set of visited vertices S ⊆ V
I super distance D(v) ≥ d(v) for every vertex v ∈ V ,

with

D(v) =

{
d(v), v ∈ S

minu∈S{d(u) + w(u, v)}, v /∈ S

I initialization:
I S = {s}
I D(s) = d(s) = 0
I ∀v 6= s : D(v) = w(s, v)

I algorithm:
1. while S 6= V : visit the vertex v /∈ S minimizing D(v)

1.1 move v to S , because D(v) = d(v)
1.2 for all (u, v) ∈ E , decrease D(u) to D(v) + w(u, v), if

the latter is less

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
Dijkstra's algorithm

I proposed by Edsger W. Dijkstra [Dij59]

I additional de�nitions:
I set of visited vertices S ⊆ V
I super distance D(v) ≥ d(v) for every vertex v ∈ V ,

with

D(v) =

{
d(v), v ∈ S

minu∈S{d(u) + w(u, v)}, v /∈ S

I initialization:
I S = {s}
I D(s) = d(s) = 0
I ∀v 6= s : D(v) = w(s, v)

I algorithm:
1. while S 6= V : visit the vertex v /∈ S minimizing D(v)

1.1 move v to S , because D(v) = d(v)
1.2 for all (u, v) ∈ E , decrease D(u) to D(v) + w(u, v), if

the latter is less

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
Dijkstra's algorithm

I proposed by Edsger W. Dijkstra [Dij59]

I additional de�nitions:
I set of visited vertices S ⊆ V
I super distance D(v) ≥ d(v) for every vertex v ∈ V ,

with

D(v) =

{
d(v), v ∈ S

minu∈S{d(u) + w(u, v)}, v /∈ S

I initialization:
I S = {s}
I D(s) = d(s) = 0
I ∀v 6= s : D(v) = w(s, v)

I algorithm:
1. while S 6= V : visit the vertex v /∈ S minimizing D(v)

1.1 move v to S , because D(v) = d(v)
1.2 for all (u, v) ∈ E , decrease D(u) to D(v) + w(u, v), if

the latter is less

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The problem: The bottleneck of Dijkstra's algorithm

I running time results from two operations:

I deleteMin: �nd a vertex v /∈ S minimizing D(v)
(exactly n − 1 times)

I decreaseKey: decrease D(u) (at most m times)

I naive implementation:
I deleteMin in O(n)
I decreaseKey in O(1)
I total running time is O(n2 + m)

I implementation with Fibonacci heaps [FT84]:
I deleteMin has amortized running time O(log n)
I decreaseKey has running time O(1)
I total running time is O(n log n + m)

I linear time Dijkstra requires linear time sorting

I sorting using comparisons only requires Ω(n log n)
comparisons

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The problem: The bottleneck of Dijkstra's algorithm

I running time results from two operations:
I deleteMin: �nd a vertex v /∈ S minimizing D(v)

(exactly n − 1 times)

I decreaseKey: decrease D(u) (at most m times)

I naive implementation:
I deleteMin in O(n)
I decreaseKey in O(1)
I total running time is O(n2 + m)

I implementation with Fibonacci heaps [FT84]:
I deleteMin has amortized running time O(log n)
I decreaseKey has running time O(1)
I total running time is O(n log n + m)

I linear time Dijkstra requires linear time sorting

I sorting using comparisons only requires Ω(n log n)
comparisons

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The problem: The bottleneck of Dijkstra's algorithm

I running time results from two operations:
I deleteMin: �nd a vertex v /∈ S minimizing D(v)

(exactly n − 1 times)
I decreaseKey: decrease D(u) (at most m times)

I naive implementation:
I deleteMin in O(n)
I decreaseKey in O(1)
I total running time is O(n2 + m)

I implementation with Fibonacci heaps [FT84]:
I deleteMin has amortized running time O(log n)
I decreaseKey has running time O(1)
I total running time is O(n log n + m)

I linear time Dijkstra requires linear time sorting

I sorting using comparisons only requires Ω(n log n)
comparisons

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The problem: The bottleneck of Dijkstra's algorithm

I running time results from two operations:
I deleteMin: �nd a vertex v /∈ S minimizing D(v)

(exactly n − 1 times)
I decreaseKey: decrease D(u) (at most m times)

I naive implementation:
I deleteMin in O(n)
I decreaseKey in O(1)
I total running time is O(n2 + m)

I implementation with Fibonacci heaps [FT84]:
I deleteMin has amortized running time O(log n)
I decreaseKey has running time O(1)
I total running time is O(n log n + m)

I linear time Dijkstra requires linear time sorting

I sorting using comparisons only requires Ω(n log n)
comparisons

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The problem: The bottleneck of Dijkstra's algorithm

I running time results from two operations:
I deleteMin: �nd a vertex v /∈ S minimizing D(v)

(exactly n − 1 times)
I decreaseKey: decrease D(u) (at most m times)

I naive implementation:
I deleteMin in O(n)
I decreaseKey in O(1)
I total running time is O(n2 + m)

I implementation with Fibonacci heaps [FT84]:
I deleteMin has amortized running time O(log n)
I decreaseKey has running time O(1)
I total running time is O(n log n + m)

I linear time Dijkstra requires linear time sorting

I sorting using comparisons only requires Ω(n log n)
comparisons

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The problem: The bottleneck of Dijkstra's algorithm

I running time results from two operations:
I deleteMin: �nd a vertex v /∈ S minimizing D(v)

(exactly n − 1 times)
I decreaseKey: decrease D(u) (at most m times)

I naive implementation:
I deleteMin in O(n)
I decreaseKey in O(1)
I total running time is O(n2 + m)

I implementation with Fibonacci heaps [FT84]:
I deleteMin has amortized running time O(log n)
I decreaseKey has running time O(1)
I total running time is O(n log n + m)

I linear time Dijkstra requires linear time sorting

I sorting using comparisons only requires Ω(n log n)
comparisons

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The problem: The bottleneck of Dijkstra's algorithm

I running time results from two operations:
I deleteMin: �nd a vertex v /∈ S minimizing D(v)

(exactly n − 1 times)
I decreaseKey: decrease D(u) (at most m times)

I naive implementation:
I deleteMin in O(n)
I decreaseKey in O(1)
I total running time is O(n2 + m)

I implementation with Fibonacci heaps [FT84]:
I deleteMin has amortized running time O(log n)
I decreaseKey has running time O(1)
I total running time is O(n log n + m)

I linear time Dijkstra requires linear time sorting

I sorting using comparisons only requires Ω(n log n)
comparisons

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The solution: Avoiding the sorting bottleneck

I Thorup [Tho99] does not visit the vertices in order of
increasing distance from s

I identi�es vertex pairs that can be visited in any order,
using a hierarchical bucketing structure

I requires several other data structures to be computed
before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The solution: Avoiding the sorting bottleneck

I Thorup [Tho99] does not visit the vertices in order of
increasing distance from s

I identi�es vertex pairs that can be visited in any order,
using a hierarchical bucketing structure

I requires several other data structures to be computed
before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The solution: Avoiding the sorting bottleneck

I Thorup [Tho99] does not visit the vertices in order of
increasing distance from s

I identi�es vertex pairs that can be visited in any order,
using a hierarchical bucketing structure

I requires several other data structures to be computed
before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction
The solution: Avoiding the sorting bottleneck

I Thorup [Tho99] does not visit the vertices in order of
increasing distance from s

I identi�es vertex pairs that can be visited in any order,
using a hierarchical bucketing structure

I requires several other data structures to be computed
before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Overview

I Thorup's algorithm inherits. . .

I . . . the de�nition of G , V , E , n, m, w , d , s, S and D
I . . . the initialization of S and D
I . . . visiting a vertex v ∈ V , which might decrease D(u)

for some adjacent vertices u ∈ V and moves v to S

I but Thorup allows visiting a vertex v /∈ S not
minimizing D(v)

I in order to identify the next vertex to be visited, the
vertices are placed in buckets

I every bucket is associated with a component, a node of
the component tree explained later

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Overview

I Thorup's algorithm inherits. . .
I . . . the de�nition of G , V , E , n, m, w , d , s, S and D

I . . . the initialization of S and D
I . . . visiting a vertex v ∈ V , which might decrease D(u)

for some adjacent vertices u ∈ V and moves v to S

I but Thorup allows visiting a vertex v /∈ S not
minimizing D(v)

I in order to identify the next vertex to be visited, the
vertices are placed in buckets

I every bucket is associated with a component, a node of
the component tree explained later

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Overview

I Thorup's algorithm inherits. . .
I . . . the de�nition of G , V , E , n, m, w , d , s, S and D
I . . . the initialization of S and D

I . . . visiting a vertex v ∈ V , which might decrease D(u)
for some adjacent vertices u ∈ V and moves v to S

I but Thorup allows visiting a vertex v /∈ S not
minimizing D(v)

I in order to identify the next vertex to be visited, the
vertices are placed in buckets

I every bucket is associated with a component, a node of
the component tree explained later

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Overview

I Thorup's algorithm inherits. . .
I . . . the de�nition of G , V , E , n, m, w , d , s, S and D
I . . . the initialization of S and D
I . . . visiting a vertex v ∈ V , which might decrease D(u)

for some adjacent vertices u ∈ V and moves v to S

I but Thorup allows visiting a vertex v /∈ S not
minimizing D(v)

I in order to identify the next vertex to be visited, the
vertices are placed in buckets

I every bucket is associated with a component, a node of
the component tree explained later

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Overview

I Thorup's algorithm inherits. . .
I . . . the de�nition of G , V , E , n, m, w , d , s, S and D
I . . . the initialization of S and D
I . . . visiting a vertex v ∈ V , which might decrease D(u)

for some adjacent vertices u ∈ V and moves v to S

I but Thorup allows visiting a vertex v /∈ S not
minimizing D(v)

I in order to identify the next vertex to be visited, the
vertices are placed in buckets

I every bucket is associated with a component, a node of
the component tree explained later

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Overview

I Thorup's algorithm inherits. . .
I . . . the de�nition of G , V , E , n, m, w , d , s, S and D
I . . . the initialization of S and D
I . . . visiting a vertex v ∈ V , which might decrease D(u)

for some adjacent vertices u ∈ V and moves v to S

I but Thorup allows visiting a vertex v /∈ S not
minimizing D(v)

I in order to identify the next vertex to be visited, the
vertices are placed in buckets

I every bucket is associated with a component, a node of
the component tree explained later

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Overview

I Thorup's algorithm inherits. . .
I . . . the de�nition of G , V , E , n, m, w , d , s, S and D
I . . . the initialization of S and D
I . . . visiting a vertex v ∈ V , which might decrease D(u)

for some adjacent vertices u ∈ V and moves v to S

I but Thorup allows visiting a vertex v /∈ S not
minimizing D(v)

I in order to identify the next vertex to be visited, the
vertices are placed in buckets

I every bucket is associated with a component, a node of
the component tree explained later

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine

The whole algorithm can be summarized in top-level
pseudo-code as follows:

1. Construct an msb-minimum spanning tree M in O(m).

2. Construct the component tree T in O(m).

3. Construct the unvisited data structure U in O(n).

4. Set S = {s}.
5. Set D(s) = 0.

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v).

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine

The whole algorithm can be summarized in top-level
pseudo-code as follows:

1. Construct an msb-minimum spanning tree M in O(m).

2. Construct the component tree T in O(m).

3. Construct the unvisited data structure U in O(n).

4. Set S = {s}.
5. Set D(s) = 0.

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v).

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine

The whole algorithm can be summarized in top-level
pseudo-code as follows:

1. Construct an msb-minimum spanning tree M in O(m).

2. Construct the component tree T in O(m).

3. Construct the unvisited data structure U in O(n).

4. Set S = {s}.
5. Set D(s) = 0.

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v).

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine

The whole algorithm can be summarized in top-level
pseudo-code as follows:

1. Construct an msb-minimum spanning tree M in O(m).

2. Construct the component tree T in O(m).

3. Construct the unvisited data structure U in O(n).

4. Set S = {s}.
5. Set D(s) = 0.

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v).

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine

The whole algorithm can be summarized in top-level
pseudo-code as follows:

1. Construct an msb-minimum spanning tree M in O(m).

2. Construct the component tree T in O(m).

3. Construct the unvisited data structure U in O(n).

4. Set S = {s}.
5. Set D(s) = 0.

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v).

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine

The whole algorithm can be summarized in top-level
pseudo-code as follows:

1. Construct an msb-minimum spanning tree M in O(m).

2. Construct the component tree T in O(m).

3. Construct the unvisited data structure U in O(n).

4. Set S = {s}.
5. Set D(s) = 0.

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v).

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Constructing a minimum spanning tree in linear time?

I construction of a minimum spanning tree is possible in
linear time [FW90]

I this requires a priority queue called atomic heap, which
requires n > 212

20

I �nd a di�erent way for today's computers

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Constructing a minimum spanning tree in linear time?

I construction of a minimum spanning tree is possible in
linear time [FW90]

I this requires a priority queue called atomic heap, which
requires n > 212

20

I �nd a di�erent way for today's computers

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Constructing a minimum spanning tree in linear time?

I construction of a minimum spanning tree is possible in
linear time [FW90]

I this requires a priority queue called atomic heap, which
requires n > 212

20

I �nd a di�erent way for today's computers

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The msb-minimum spanning tree M

I let msb(x) = blog2 xc denote the position of the most
signi�cant bit of x ∈ N

I an msb-minimum spanning tree of a graph G is a
spanning tree that is minimal in G where each weight x
is replaced by msb(x)

I use such an msb-minimum spanning tree for
constructing the component tree

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The msb-minimum spanning tree M

I let msb(x) = blog2 xc denote the position of the most
signi�cant bit of x ∈ N

I an msb-minimum spanning tree of a graph G is a
spanning tree that is minimal in G where each weight x
is replaced by msb(x)

I use such an msb-minimum spanning tree for
constructing the component tree

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The msb-minimum spanning tree M

I let msb(x) = blog2 xc denote the position of the most
signi�cant bit of x ∈ N

I an msb-minimum spanning tree of a graph G is a
spanning tree that is minimal in G where each weight x
is replaced by msb(x)

I use such an msb-minimum spanning tree for
constructing the component tree

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
An example of an input graph G (n = 11,m = 16)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The input graph G after having replaced each weight x by msb(x)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
An msb-minimum spanning tree of G

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct an msb-minimum spanning tree

1. sort all edges according to their msb-weights in linear
time using simple bucketing

2. compute a minimum spanning tree with Kruskal's
algorithm [Kru56], using the pre-sorted edges

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct an msb-minimum spanning tree

1. sort all edges according to their msb-weights in linear
time using simple bucketing

2. compute a minimum spanning tree with Kruskal's
algorithm [Kru56], using the pre-sorted edges

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct an msb-minimum spanning tree

I the clustering is done with Tarjan's union-�nd algorithm
[Tar75]

I the use of union with size, and �nd with path

compression leads to a time bound of O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct an msb-minimum spanning tree

I the clustering is done with Tarjan's union-�nd algorithm
[Tar75]

I the use of union with size, and �nd with path

compression leads to a time bound of O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component hierarchy

I let Gi be the subgraph of G containing all edges e ∈ E

with w(e) < 2i

I Level i of Thorup's component hierarchy consists of the
components of Gi

I use the msb-minimum spanning tree here

I let [v]i denote the component on level i containing the
vertex v ∈ V

I the children of a component [v]i are all components
[w]i−1 with [w]i = [v]i , in other words with w ∈ [v]i

I [v]i 6= [w]i ⇒ dist(v ,w) ≥ 2i

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component hierarchy

I let Gi be the subgraph of G containing all edges e ∈ E

with w(e) < 2i

I Level i of Thorup's component hierarchy consists of the
components of Gi

I use the msb-minimum spanning tree here

I let [v]i denote the component on level i containing the
vertex v ∈ V

I the children of a component [v]i are all components
[w]i−1 with [w]i = [v]i , in other words with w ∈ [v]i

I [v]i 6= [w]i ⇒ dist(v ,w) ≥ 2i

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component hierarchy

I let Gi be the subgraph of G containing all edges e ∈ E

with w(e) < 2i

I Level i of Thorup's component hierarchy consists of the
components of Gi

I use the msb-minimum spanning tree here

I let [v]i denote the component on level i containing the
vertex v ∈ V

I the children of a component [v]i are all components
[w]i−1 with [w]i = [v]i , in other words with w ∈ [v]i

I [v]i 6= [w]i ⇒ dist(v ,w) ≥ 2i

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component hierarchy

I let Gi be the subgraph of G containing all edges e ∈ E

with w(e) < 2i

I Level i of Thorup's component hierarchy consists of the
components of Gi

I use the msb-minimum spanning tree here

I let [v]i denote the component on level i containing the
vertex v ∈ V

I the children of a component [v]i are all components
[w]i−1 with [w]i = [v]i , in other words with w ∈ [v]i

I [v]i 6= [w]i ⇒ dist(v ,w) ≥ 2i

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component hierarchy

I let Gi be the subgraph of G containing all edges e ∈ E

with w(e) < 2i

I Level i of Thorup's component hierarchy consists of the
components of Gi

I use the msb-minimum spanning tree here

I let [v]i denote the component on level i containing the
vertex v ∈ V

I the children of a component [v]i are all components
[w]i−1 with [w]i = [v]i , in other words with w ∈ [v]i

I [v]i 6= [w]i ⇒ dist(v ,w) ≥ 2i

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component hierarchy

I let Gi be the subgraph of G containing all edges e ∈ E

with w(e) < 2i

I Level i of Thorup's component hierarchy consists of the
components of Gi

I use the msb-minimum spanning tree here

I let [v]i denote the component on level i containing the
vertex v ∈ V

I the children of a component [v]i are all components
[w]i−1 with [w]i = [v]i , in other words with w ∈ [v]i

I [v]i 6= [w]i ⇒ dist(v ,w) ≥ 2i

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The subgraph G4

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component tree T

I the component tree T skips all nodes [v]i = [v]i−1:

I Every leaf of T is a singleton component [v]0 = {v},
v ∈ V .

I Every internal node of T is a component [v]i , v ∈ V ,
with i > 0 and [v]i−1 ([v]i .

I The root of T is the node [v]r = G with r minimized.

I the parent of a node [v]i is its nearest ancestor in the
component hierarchy with at least two children

I T has no nodes with exactly one child ⇒ the total
number of nodes is bounded by 2n ∈ O(n)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component tree T

I the component tree T skips all nodes [v]i = [v]i−1:

I Every leaf of T is a singleton component [v]0 = {v},
v ∈ V .

I Every internal node of T is a component [v]i , v ∈ V ,
with i > 0 and [v]i−1 ([v]i .

I The root of T is the node [v]r = G with r minimized.

I the parent of a node [v]i is its nearest ancestor in the
component hierarchy with at least two children

I T has no nodes with exactly one child ⇒ the total
number of nodes is bounded by 2n ∈ O(n)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component tree T

I the component tree T skips all nodes [v]i = [v]i−1:

I Every leaf of T is a singleton component [v]0 = {v},
v ∈ V .

I Every internal node of T is a component [v]i , v ∈ V ,
with i > 0 and [v]i−1 ([v]i .

I The root of T is the node [v]r = G with r minimized.

I the parent of a node [v]i is its nearest ancestor in the
component hierarchy with at least two children

I T has no nodes with exactly one child ⇒ the total
number of nodes is bounded by 2n ∈ O(n)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component tree T

I the component tree T skips all nodes [v]i = [v]i−1:

I Every leaf of T is a singleton component [v]0 = {v},
v ∈ V .

I Every internal node of T is a component [v]i , v ∈ V ,
with i > 0 and [v]i−1 ([v]i .

I The root of T is the node [v]r = G with r minimized.

I the parent of a node [v]i is its nearest ancestor in the
component hierarchy with at least two children

I T has no nodes with exactly one child ⇒ the total
number of nodes is bounded by 2n ∈ O(n)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component tree T

I the component tree T skips all nodes [v]i = [v]i−1:

I Every leaf of T is a singleton component [v]0 = {v},
v ∈ V .

I Every internal node of T is a component [v]i , v ∈ V ,
with i > 0 and [v]i−1 ([v]i .

I The root of T is the node [v]r = G with r minimized.

I the parent of a node [v]i is its nearest ancestor in the
component hierarchy with at least two children

I T has no nodes with exactly one child ⇒ the total
number of nodes is bounded by 2n ∈ O(n)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component tree T

I the component tree T skips all nodes [v]i = [v]i−1:

I Every leaf of T is a singleton component [v]0 = {v},
v ∈ V .

I Every internal node of T is a component [v]i , v ∈ V ,
with i > 0 and [v]i−1 ([v]i .

I The root of T is the node [v]r = G with r minimized.

I the parent of a node [v]i is its nearest ancestor in the
component hierarchy with at least two children

I T has no nodes with exactly one child ⇒ the total
number of nodes is bounded by 2n ∈ O(n)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The component tree T of G

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The components of G4

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The subgraph G4

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct the component tree T

1. sort the edges of M according to the most signi�cant
bits of their weights

2. process the resulting sequence of edges e1, . . . , en−1 in
the following way: For i = 1 to n − 1:

2.1 Let (v ,w) = ei .
2.2 Call union(v ,w).
2.3 If msb(w(ei)) < msb(w(ei+1)): Insert all new

components of the union-�nd structure into T .

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct the component tree T

1. sort the edges of M according to the most signi�cant
bits of their weights

2. process the resulting sequence of edges e1, . . . , en−1 in
the following way: For i = 1 to n − 1:

2.1 Let (v ,w) = ei .
2.2 Call union(v ,w).
2.3 If msb(w(ei)) < msb(w(ei+1)): Insert all new

components of the union-�nd structure into T .

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct the component tree T

1. sort the edges of M according to the most signi�cant
bits of their weights

2. process the resulting sequence of edges e1, . . . , en−1 in
the following way: For i = 1 to n − 1:

2.1 Let (v ,w) = ei .
2.2 Call union(v ,w).
2.3 If msb(w(ei)) < msb(w(ei+1)): Insert all new

components of the union-�nd structure into T .

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct the component tree T

I using Tarjan's union-�nd algorithm [Tar75] again, the
running time is O(α(m, n)m)

I construction T in linear time is also possible:
I requires the tabulation-based union-�nd algorithm by

Gabow and Tarjan which runs in O(m + n) time [GT85]
I much more complicated than the one by Tarjan
I we use the simpler one here

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct the component tree T

I using Tarjan's union-�nd algorithm [Tar75] again, the
running time is O(α(m, n)m)

I construction T in linear time is also possible:

I requires the tabulation-based union-�nd algorithm by
Gabow and Tarjan which runs in O(m + n) time [GT85]

I much more complicated than the one by Tarjan
I we use the simpler one here

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct the component tree T

I using Tarjan's union-�nd algorithm [Tar75] again, the
running time is O(α(m, n)m)

I construction T in linear time is also possible:
I requires the tabulation-based union-�nd algorithm by

Gabow and Tarjan which runs in O(m + n) time [GT85]

I much more complicated than the one by Tarjan
I we use the simpler one here

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
How to construct the component tree T

I using Tarjan's union-�nd algorithm [Tar75] again, the
running time is O(α(m, n)m)

I construction T in linear time is also possible:
I requires the tabulation-based union-�nd algorithm by

Gabow and Tarjan which runs in O(m + n) time [GT85]
I much more complicated than the one by Tarjan
I we use the simpler one here

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The bucketing structure B

I visit the nodes of the component tree T in the right
order

I whenever a component [v]i is visited, so are all its
ancestors in T

I bucket the children [w]h of a component [v]i into
B([v]i ,minD([w]−h)� i − 1)

I maintain two additional properties for every component:
I ix([v]i) ≤ the smallest index of a nonempty bucket of

[v]i
I ∆([v]i) = number buckets of [v]i

I the total number of buckets is bounded by 8n

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The bucketing structure B

I visit the nodes of the component tree T in the right
order

I whenever a component [v]i is visited, so are all its
ancestors in T

I bucket the children [w]h of a component [v]i into
B([v]i ,minD([w]−h)� i − 1)

I maintain two additional properties for every component:
I ix([v]i) ≤ the smallest index of a nonempty bucket of

[v]i
I ∆([v]i) = number buckets of [v]i

I the total number of buckets is bounded by 8n

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The bucketing structure B

I visit the nodes of the component tree T in the right
order

I whenever a component [v]i is visited, so are all its
ancestors in T

I bucket the children [w]h of a component [v]i into
B([v]i ,minD([w]−h)� i − 1)

I maintain two additional properties for every component:
I ix([v]i) ≤ the smallest index of a nonempty bucket of

[v]i
I ∆([v]i) = number buckets of [v]i

I the total number of buckets is bounded by 8n

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The bucketing structure B

I visit the nodes of the component tree T in the right
order

I whenever a component [v]i is visited, so are all its
ancestors in T

I bucket the children [w]h of a component [v]i into
B([v]i ,minD([w]−h)� i − 1)

I maintain two additional properties for every component:
I ix([v]i) ≤ the smallest index of a nonempty bucket of

[v]i
I ∆([v]i) = number buckets of [v]i

I the total number of buckets is bounded by 8n

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The bucketing structure B

I visit the nodes of the component tree T in the right
order

I whenever a component [v]i is visited, so are all its
ancestors in T

I bucket the children [w]h of a component [v]i into
B([v]i ,minD([w]−h)� i − 1)

I maintain two additional properties for every component:
I ix([v]i) ≤ the smallest index of a nonempty bucket of

[v]i
I ∆([v]i) = number buckets of [v]i

I the total number of buckets is bounded by 8n

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U

I The unvisited data structure U . . .

I . . . represents the unvisited subforest of the component
tree T

I . . . is required for maintaining the changing values
minD([v]−i) for the changing set of roots [v]i in the
unvisited part of T in linear total time

I [v]i is a root of a tree in U if and only if [v]i is an
unvisited child of a visited component in T

I [v]i = [v]−i for each of these roots, because they are
unvisited

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U

I The unvisited data structure U . . .
I . . . represents the unvisited subforest of the component

tree T

I . . . is required for maintaining the changing values
minD([v]−i) for the changing set of roots [v]i in the
unvisited part of T in linear total time

I [v]i is a root of a tree in U if and only if [v]i is an
unvisited child of a visited component in T

I [v]i = [v]−i for each of these roots, because they are
unvisited

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U

I The unvisited data structure U . . .
I . . . represents the unvisited subforest of the component

tree T
I . . . is required for maintaining the changing values

minD([v]−i) for the changing set of roots [v]i in the
unvisited part of T in linear total time

I [v]i is a root of a tree in U if and only if [v]i is an
unvisited child of a visited component in T

I [v]i = [v]−i for each of these roots, because they are
unvisited

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U

I The unvisited data structure U . . .
I . . . represents the unvisited subforest of the component

tree T
I . . . is required for maintaining the changing values

minD([v]−i) for the changing set of roots [v]i in the
unvisited part of T in linear total time

I [v]i is a root of a tree in U if and only if [v]i is an
unvisited child of a visited component in T

I [v]i = [v]−i for each of these roots, because they are
unvisited

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U

I The unvisited data structure U . . .
I . . . represents the unvisited subforest of the component

tree T
I . . . is required for maintaining the changing values

minD([v]−i) for the changing set of roots [v]i in the
unvisited part of T in linear total time

I [v]i is a root of a tree in U if and only if [v]i is an
unvisited child of a visited component in T

I [v]i = [v]−i for each of these roots, because they are
unvisited

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The problem: Operations of the unvisited data structure

I two operations in amortized constant time:

1. Update minD([v]i) whenever D(v) is decreased for
some vertex v ∈ V with unvisited root [v]i .

2. Turn all children [w]h of [v]i in T into roots in U and
compute minD([w]−h) for all of them whenever an
unvisited root [v]i is visited.

I transform this problem into another one that can be
solved by the split-�ndmin structure by Gabow [Gab85]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The problem: Operations of the unvisited data structure

I two operations in amortized constant time:

1. Update minD([v]i) whenever D(v) is decreased for
some vertex v ∈ V with unvisited root [v]i .

2. Turn all children [w]h of [v]i in T into roots in U and
compute minD([w]−h) for all of them whenever an
unvisited root [v]i is visited.

I transform this problem into another one that can be
solved by the split-�ndmin structure by Gabow [Gab85]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The initial unvisited data structure U of G

[1, 2, 3, 10, 8, 9, 4, 5, 7, 11, 6]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U after having called visit([1]11)

[1, 2, 3, 10, 8, 9, 4, 5, 7, 11] [6]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U after having called visit([1]9)

[1, 2, 3, 10, 8, 9, 4, 5, 7] [11] [6]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The unvisited data structure U after having called visit([1]7)

[1, 2, 3, 10, 8, 9] [4, 5, 7] [11] [6]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Total running time of the operations of the unvisited data structure

I for k ∈ N, k > 2, each split in k can be implemented by
k − 1 splits in two

I at most n − 1 splits in two, because |V | = n

I at most m decreases, one for each edge in G

I Gabow's split-�ndmin data structure supports exactly
these two operations

I the total runinng time for n− 1 splits and m decreases is
O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Total running time of the operations of the unvisited data structure

I for k ∈ N, k > 2, each split in k can be implemented by
k − 1 splits in two

I at most n − 1 splits in two, because |V | = n

I at most m decreases, one for each edge in G

I Gabow's split-�ndmin data structure supports exactly
these two operations

I the total runinng time for n− 1 splits and m decreases is
O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Total running time of the operations of the unvisited data structure

I for k ∈ N, k > 2, each split in k can be implemented by
k − 1 splits in two

I at most n − 1 splits in two, because |V | = n

I at most m decreases, one for each edge in G

I Gabow's split-�ndmin data structure supports exactly
these two operations

I the total runinng time for n− 1 splits and m decreases is
O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Total running time of the operations of the unvisited data structure

I for k ∈ N, k > 2, each split in k can be implemented by
k − 1 splits in two

I at most n − 1 splits in two, because |V | = n

I at most m decreases, one for each edge in G

I Gabow's split-�ndmin data structure supports exactly
these two operations

I the total runinng time for n− 1 splits and m decreases is
O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Total running time of the operations of the unvisited data structure

I for k ∈ N, k > 2, each split in k can be implemented by
k − 1 splits in two

I at most n − 1 splits in two, because |V | = n

I at most m decreases, one for each edge in G

I Gabow's split-�ndmin data structure supports exactly
these two operations

I the total runinng time for n− 1 splits and m decreases is
O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Operations of the unvisited data structure in linear total time?

I Thorup presented an O(m + n) solution [Tho99]), which
is based on the atomic heaps by Fredman and Willard

I as mentioned above, these priority queues require
n > 212

20

I fall back to the solution by Gabow and to a total
running time of O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Operations of the unvisited data structure in linear total time?

I Thorup presented an O(m + n) solution [Tho99]), which
is based on the atomic heaps by Fredman and Willard

I as mentioned above, these priority queues require
n > 212

20

I fall back to the solution by Gabow and to a total
running time of O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Operations of the unvisited data structure in linear total time?

I Thorup presented an O(m + n) solution [Tho99]), which
is based on the atomic heaps by Fredman and Willard

I as mentioned above, these priority queues require
n > 212

20

I fall back to the solution by Gabow and to a total
running time of O(α(m, n)m)

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine revisited

1. Construct an msb-minimum spanning tree M in O(m).
(done)

2. Construct the component tree T in O(m). (done)

3. Construct the unvisited data structure U in O(n).
(done)

4. Set S = {s}. (done)
5. Set D(s) = 0. (done)

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v). (done)

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine revisited

1. Construct an msb-minimum spanning tree M in O(m).
(done)

2. Construct the component tree T in O(m). (done)

3. Construct the unvisited data structure U in O(n).
(done)

4. Set S = {s}. (done)
5. Set D(s) = 0. (done)

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v). (done)

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine revisited

1. Construct an msb-minimum spanning tree M in O(m).
(done)

2. Construct the component tree T in O(m). (done)

3. Construct the unvisited data structure U in O(n).
(done)

4. Set S = {s}. (done)
5. Set D(s) = 0. (done)

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v). (done)

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine revisited

1. Construct an msb-minimum spanning tree M in O(m).
(done)

2. Construct the component tree T in O(m). (done)

3. Construct the unvisited data structure U in O(n).
(done)

4. Set S = {s}. (done)
5. Set D(s) = 0. (done)

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v). (done)

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
The main routine revisited

1. Construct an msb-minimum spanning tree M in O(m).
(done)

2. Construct the component tree T in O(m). (done)

3. Construct the unvisited data structure U in O(n).
(done)

4. Set S = {s}. (done)
5. Set D(s) = 0. (done)

6. For all v ∈ V with v 6= s: Set D(v) = w(s, v). (done)

7. Visit the root of the component tree T .

8. Return D.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Visit([v]i): Step 1

If [v]i is the root of T ,

1. then: Set j = ω + 1.

2. else: Let [v]j be the parent of [v]i in T .

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Visit([v]i): Step 2

If i = 0:

1. Add v to S .

2. For all edges (u, v) ∈ E :
2.1 If D(v) + w(u, v) < D(w):

2.1.1 Let [u]h be the unvisited root of [u]0 in U .
2.1.2 Let [u]i be the visited parent of [u]h in T .
2.1.3 Set oldMin = minD([u]−

h
)� i − 1.

2.1.4 Decrease D(u) to D(v) + w(u, v).
2.1.5 If minD([u]−

h
)� i − 1 < oldMin: Move [u]h to bucket

B([u]i ,minD([u]h)� i − 1).

3. Remove [v]i from its bucket of [v]j .

4. Return.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Visit([v]i): Step 3

If [v]i is visited for the �rst time:

1. Construct the ∆([v]i) buckets of [v]i .

2. Delete [v]i from U , turning its children into roots in U .

3. For all children [w]h of [v]i :

3.1 Bucket [w]h in B([v]i ,minD([w]−h)� i − 1).

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Visit([v]i): Steps 4-6

I Set oldIndex = ix([v]i)� j − i .

I While [v]−i 6= ∅ and oldIndex = ix([v]i)� j − i :
1. While B([v]i , ix([v]i)) 6= ∅:

1.1 Let [w]h ∈ B([v]i , ix([v]i)).
1.2 Call visit([w]h).

2. Increment ix([v]i).

I If [v]−i = ∅,
1. then: If [v]i is not the root of T , remove it from its

bucket of [v]j .
2. else: Move [v]i to bucket B([v]j , ix([v]i)� j − i).

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Visit([v]i): Steps 4-6

I Set oldIndex = ix([v]i)� j − i .

I While [v]−i 6= ∅ and oldIndex = ix([v]i)� j − i :
1. While B([v]i , ix([v]i)) 6= ∅:

1.1 Let [w]h ∈ B([v]i , ix([v]i)).
1.2 Call visit([w]h).

2. Increment ix([v]i).

I If [v]−i = ∅,
1. then: If [v]i is not the root of T , remove it from its

bucket of [v]j .
2. else: Move [v]i to bucket B([v]j , ix([v]i)� j − i).

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Thorup's algorithm
Visit([v]i): Steps 4-6

I Set oldIndex = ix([v]i)� j − i .

I While [v]−i 6= ∅ and oldIndex = ix([v]i)� j − i :
1. While B([v]i , ix([v]i)) 6= ∅:

1.1 Let [w]h ∈ B([v]i , ix([v]i)).
1.2 Call visit([w]h).

2. Increment ix([v]i).

I If [v]−i = ∅,
1. then: If [v]i is not the root of T , remove it from its

bucket of [v]j .
2. else: Move [v]i to bucket B([v]j , ix([v]i)� j − i).

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Implementation details
The strategy pattern

I Java implementation:
I imperative programming language
I �ts the required RAM model
I object-oriented
I word length ω = 32, number of vertices n ≤ 232

I allows the extensive use of the strategy pattern

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Implementation details
Implemented data structures

I an undirected, weighted graph using adjacency lists

I an array priority queue

I a Fibonacci heap [FT84]

I a split-�ndmin structure [GT85]

I a union-�nd structure [Tar75]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Implementation details
Implemented algorithms

I Kruskal [Kru56]

I Dijkstra [Dij59]

I Thorup [Tho99]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
The performance tests

I average of �ve passes

I the test system:
I Intel Core 2 Duo E6300 at 1,86 GHz
I 2048 MB DDR2 667 PC2-5300 RAM
I Java 1.6.0_15

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
The performance tests

I average of �ve passes

I the test system:
I Intel Core 2 Duo E6300 at 1,86 GHz
I 2048 MB DDR2 667 PC2-5300 RAM
I Java 1.6.0_15

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of vertices

I start with n = 1000 and increase it in steps of 1000 until
n = 10000

I about m = 5n edges

I edge weights 1 ≤ w ≤ 100000

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of vertices: Results

Figure: Running times for 1000 ≤ n ≤ 10000,m = 5n.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of vertices

I start with n = 4000 and increase it in steps of 4000 until
n = 40000

I about m = 5n edges again

I edge weights 1 ≤ w ≤ 100000 again

I leave out the naive implementation of Dijkstra's
algorithm and focus on the faster one

I �nd out which n is required for Thorup to catch up with
Dijkstra

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of vertices

I start with n = 4000 and increase it in steps of 4000 until
n = 40000

I about m = 5n edges again

I edge weights 1 ≤ w ≤ 100000 again

I leave out the naive implementation of Dijkstra's
algorithm and focus on the faster one

I �nd out which n is required for Thorup to catch up with
Dijkstra

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of vertices

I start with n = 4000 and increase it in steps of 4000 until
n = 40000

I about m = 5n edges again

I edge weights 1 ≤ w ≤ 100000 again

I leave out the naive implementation of Dijkstra's
algorithm and focus on the faster one

I �nd out which n is required for Thorup to catch up with
Dijkstra

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of vertices: Results

Figure: Running times for 4000 ≤ n ≤ 40000,m = 5n.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of edges per vertex

I �x the number of vertices n = 20000

I start with m = 3n edges and increase it in steps of 3n
until m = 24n

I edge weights 1 ≤ w ≤ 100000 again

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the number of edges per vertex: Results

Figure: Running times for n = 20000, 3n ≤ m ≤ 24n.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the maximum edge weight

I �x the number of vertices n = 20000

I �x the number of edges m = 5n

I start by choosing all edge weights 1 ≤ w ≤ 5 and
increase the maximum edge weight in steps of 5 until
1 ≤ w ≤ 100

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the maximum edge weight: Results

Figure: Running times for n = 20000,m = 5n, and maximum edge
weights between 5 and 100.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Varying the maximum edge weight: Results

maximum edge weight 256 1024 16384 262144

Dijkstra (Fibonacci heap) 212 209 212 219

Thorup (MST) 148 153 145 168
Thorup (other DS) 153 171 156 140

Thorup (visit) 461 423 430 403

Table: Running times for n = 20000,m = 5n and maximum edge
weights 28, 210, 214 and 218.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I �nd out whether Thorup's algorithm can catch up with
the one by Dijkstra making repetive queries

I at the �rst query, all required data structures are
computed once

I this is the initial lead Dijkstra's algorithm has over the
one by Thorup

I clean up between two queries:

1. Reset the set S of visited vertices.
2. Clear all buckets.
3. Reset the unvisited data structure U , making it contain

only the root of T .

I still takes signi�cantly less time than before the �rst
query

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I �nd out whether Thorup's algorithm can catch up with
the one by Dijkstra making repetive queries

I at the �rst query, all required data structures are
computed once

I this is the initial lead Dijkstra's algorithm has over the
one by Thorup

I clean up between two queries:

1. Reset the set S of visited vertices.
2. Clear all buckets.
3. Reset the unvisited data structure U , making it contain

only the root of T .

I still takes signi�cantly less time than before the �rst
query

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I �nd out whether Thorup's algorithm can catch up with
the one by Dijkstra making repetive queries

I at the �rst query, all required data structures are
computed once

I this is the initial lead Dijkstra's algorithm has over the
one by Thorup

I clean up between two queries:

1. Reset the set S of visited vertices.
2. Clear all buckets.
3. Reset the unvisited data structure U , making it contain

only the root of T .

I still takes signi�cantly less time than before the �rst
query

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I �nd out whether Thorup's algorithm can catch up with
the one by Dijkstra making repetive queries

I at the �rst query, all required data structures are
computed once

I this is the initial lead Dijkstra's algorithm has over the
one by Thorup

I clean up between two queries:

1. Reset the set S of visited vertices.
2. Clear all buckets.
3. Reset the unvisited data structure U , making it contain

only the root of T .

I still takes signi�cantly less time than before the �rst
query

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I test instance: the road network of New York City
I number of vertices n = 264, 346
I number of edges m = 733, 846 (about m = 3n)

I source: 9th DIMACS Implementation Challenge -

Shortest Paths [Dem06]

I �nd the shortest paths from the vertices with indices 0
to 9 to all other ones

I accumulate the resulting running times

I the initialization of Thorup's algorithm takes about 2100
ms and is added to the �rst accumulated time

I the time required for cleaning up all data structures is
always about 200 ms and is added to the accumulated
time of the query the clean-up has been done before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I test instance: the road network of New York City
I number of vertices n = 264, 346
I number of edges m = 733, 846 (about m = 3n)

I source: 9th DIMACS Implementation Challenge -

Shortest Paths [Dem06]

I �nd the shortest paths from the vertices with indices 0
to 9 to all other ones

I accumulate the resulting running times

I the initialization of Thorup's algorithm takes about 2100
ms and is added to the �rst accumulated time

I the time required for cleaning up all data structures is
always about 200 ms and is added to the accumulated
time of the query the clean-up has been done before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I test instance: the road network of New York City
I number of vertices n = 264, 346
I number of edges m = 733, 846 (about m = 3n)

I source: 9th DIMACS Implementation Challenge -

Shortest Paths [Dem06]

I �nd the shortest paths from the vertices with indices 0
to 9 to all other ones

I accumulate the resulting running times

I the initialization of Thorup's algorithm takes about 2100
ms and is added to the �rst accumulated time

I the time required for cleaning up all data structures is
always about 200 ms and is added to the accumulated
time of the query the clean-up has been done before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries

I test instance: the road network of New York City
I number of vertices n = 264, 346
I number of edges m = 733, 846 (about m = 3n)

I source: 9th DIMACS Implementation Challenge -

Shortest Paths [Dem06]

I �nd the shortest paths from the vertices with indices 0
to 9 to all other ones

I accumulate the resulting running times

I the initialization of Thorup's algorithm takes about 2100
ms and is added to the �rst accumulated time

I the time required for cleaning up all data structures is
always about 200 ms and is added to the accumulated
time of the query the clean-up has been done before

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Performance
Repetitive queries: Results

Figure: Accumulated running times for ten queries on the road
network of New York City.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Introduction

Thorup's algorithm
Overview
msb-Minimum spanning tree M
Component tree T
Bucketing structure B
Unvisited data structure U
Visiting components and vertices

Implementation details

Performance

Conclusion

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion

I Thorup's algorithm does not require comparison-based
sorting and is today's theoretically fastest SSSP
algorithm, . . .

I . . . but our implementation of the algorithm is still
signi�cantly slower than our implementation of
Dijkstra's algorithm using a Fibonacci heap

I possbile reasons are:
I an ine�cient implementation
I a word length which is still too small for realizing the

full potential of Thorup's algorithm

I these observations essentially equal the conclusion made
by Yasuhito Asano and Hiroshi Imai [AI00]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion

I Thorup's algorithm does not require comparison-based
sorting and is today's theoretically fastest SSSP
algorithm, . . .

I . . . but our implementation of the algorithm is still
signi�cantly slower than our implementation of
Dijkstra's algorithm using a Fibonacci heap

I possbile reasons are:
I an ine�cient implementation
I a word length which is still too small for realizing the

full potential of Thorup's algorithm

I these observations essentially equal the conclusion made
by Yasuhito Asano and Hiroshi Imai [AI00]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion

I Thorup's algorithm does not require comparison-based
sorting and is today's theoretically fastest SSSP
algorithm, . . .

I . . . but our implementation of the algorithm is still
signi�cantly slower than our implementation of
Dijkstra's algorithm using a Fibonacci heap

I possbile reasons are:
I an ine�cient implementation
I a word length which is still too small for realizing the

full potential of Thorup's algorithm

I these observations essentially equal the conclusion made
by Yasuhito Asano and Hiroshi Imai [AI00]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion

I Thorup's algorithm does not require comparison-based
sorting and is today's theoretically fastest SSSP
algorithm, . . .

I . . . but our implementation of the algorithm is still
signi�cantly slower than our implementation of
Dijkstra's algorithm using a Fibonacci heap

I possbile reasons are:
I an ine�cient implementation
I a word length which is still too small for realizing the

full potential of Thorup's algorithm

I these observations essentially equal the conclusion made
by Yasuhito Asano and Hiroshi Imai [AI00]

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion
Future work

I implement the strictly linear time parts of Thorup's
algorithm:

I the linear time algorithm for constructing minimum
spanning trees [FW90]

I the linear time union-�nd [GT85] structure
I the linear time split-�ndmin structure [Tho99]

I see how well Thorup's algorithm does compared to fast
all shortest paths algorithms

I see if his component tree can be useful for other
applications

I run the algorithm on signi�cantly larger graphs and
check whether it is as attractive for repetitive queries as
expected, as soon as we are able to

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion
Future work

I implement the strictly linear time parts of Thorup's
algorithm:

I the linear time algorithm for constructing minimum
spanning trees [FW90]

I the linear time union-�nd [GT85] structure
I the linear time split-�ndmin structure [Tho99]

I see how well Thorup's algorithm does compared to fast
all shortest paths algorithms

I see if his component tree can be useful for other
applications

I run the algorithm on signi�cantly larger graphs and
check whether it is as attractive for repetitive queries as
expected, as soon as we are able to

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion
Future work

I implement the strictly linear time parts of Thorup's
algorithm:

I the linear time algorithm for constructing minimum
spanning trees [FW90]

I the linear time union-�nd [GT85] structure
I the linear time split-�ndmin structure [Tho99]

I see how well Thorup's algorithm does compared to fast
all shortest paths algorithms

I see if his component tree can be useful for other
applications

I run the algorithm on signi�cantly larger graphs and
check whether it is as attractive for repetitive queries as
expected, as soon as we are able to

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion
Future work

I implement the strictly linear time parts of Thorup's
algorithm:

I the linear time algorithm for constructing minimum
spanning trees [FW90]

I the linear time union-�nd [GT85] structure
I the linear time split-�ndmin structure [Tho99]

I see how well Thorup's algorithm does compared to fast
all shortest paths algorithms

I see if his component tree can be useful for other
applications

I run the algorithm on signi�cantly larger graphs and
check whether it is as attractive for repetitive queries as
expected, as soon as we are able to

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Conclusion

Thank you for your attention!

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Yasuhito Asano and Hiroshi Imai.
Practical e�ciency of the linear-time algorithm for the
single source shortest path problem.
Journal of the Operations Research, 43:431�447, 2000.

Camil Demetrescu.
9th dimacs implementation challenge - shortest paths.
http://www.dis.uniroma1.it/~challenge9/

download.shtml, 2006.

Edsger W. Dijkstra.
A note on two problems in connection with graphs.
Numer. Math., 1:269�271, 1959.

Michael L. Fredman and Robert Endre Tarjan.
Fibonacci heaps and their uses in improved network
optimization algorithms.
In FOCS, pages 338�346. IEEE, 1984.

Michael L. Fredman and Dan E. Willard.

http://www.dis.uniroma1.it/~challenge9/download.shtml
http://www.dis.uniroma1.it/~challenge9/download.shtml

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Trans-dichotomous algorithms for minimum spanning
trees and shortest paths.
In FOCS, volume II, pages 719�725. IEEE, 1990.

Harold N. Gabow.
A scaling algorithm for weighted matching on general
graphs.
In FOCS, pages 90�100. IEEE, 1985.

Harold N. Gabow and Robert Endre Tarjan.
A linear-time algorithm for a special case of disjoint set
union.
J. Comput. Syst. Sci., 30(2):209�221, 1985.

Joseph B. Kruskal.
On the shortest spanning subtree of a graph and the
traveling salesman problem.
Proc. Am. Math. Soc, 7:48�50, 1956.

Robert Endre Tarjan.
E�ciency of a good but not linear set union algorithm.
J. ACM, 22(2):215�225, 1975.

Implementation
of Thorup's
Linear Time
Algorithm for
Undirected

Single-Source
Shortest Paths
with Positive

Integer Weights

Nick Prühs

Introduction

Thorup's
algorithm

Overview

msb-Minimum
spanning tree M

Component tree
T

Bucketing
structure B

Unvisited data
structure U

Visiting
components and
vertices

Implementation
details

Performance

Conclusion

Mikkel Thorup.
Undirected single-source shortest paths with positive
integer weights in linear time.
J. ACM, 46(3):362�394, 1999.

	Introduction
	Thorup's algorithm
	Overview
	msb-Minimum spanning tree M
	Component tree T
	Bucketing structure B
	Unvisited data structure U
	Visiting components and vertices

	Implementation details
	Performance
	Conclusion

