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Abstract

The Single Source Weber Problem with Limited Distances (B&) is a continu-
ous optimization problem in location theory. The SSWPLDoalhpms proposed so far
are based on the enumeration of all regiongéfdefined by a given set of intersect-
ing circumferences. Early algorithms requitén?) time for the enumeration, but they
were recently shown to be incorrect in case of degeneragesitttions, i.e. when three
or more circumferences pass through the same interseatioh {his problem was fixed
by a modified enumeration algorithm with complexi®(n*), based on the construction
of neighborhoods of degenerate intersection points. Bghper it is shown that the com-
plexity for correctly dealing with degenerate interseaticcan be reduced 10(n?logn),
so that existing enumeration algorithms can be fixed witloerieasing theilO(n?) time
complexity which is due to some preliminary computationselated to intersections de-
generacy. Furthermore, a new algorithm for enumeratingeglbns to solve the SSWPLD
is described: its worst-case time complexityién? log n). The new algorithm also guar-
antees that the regions are enumerated only once.

Keywords: Weber problem, depth-first-search.



1 The problem

The Single Source Weber Problem with Limited Distances (B&), also known as Facility
Location Problem with Limited Distances, is a continuousirajzation problem in location
theory. A set\V = {1,2,...,n} of circumferences if? is given. For each circumference
i € N a center in positiorD;, a radiusr; > 0 and a weighto; > 0 are given. The problem
consists of optimally locating a point in %2 minimizing the weighted sum of cost terms
depending on its distances from the centers of the circienésrs. The cost term for each
circumference € N is the minimum of the distance betwe&nhandO, and the radius;. The
objective function is as follows:
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whered() indicates the Euclidean distancei.

In 1991 Drezner et al. [2] proposed an algorithm to solve tB8V8LD as an unrestricted
single-source location problem for each region of the partiof #? induced by the circumfer-
ences. Aregion is defined by the subset of circumferencésdimg it. Hence the objective can
be restated as follows:
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The constraint/(O;, X) < r; Vi € @ can be dropped, because any solutigh X ) : 3i €
Q,d(0;, X) > r; is dominated by another solutig®y’, X') with @' = Q\{:}.

Indicating with R the set of regions dk? induced by the circumferences, the SSWPLD can
be reformulated as

= Qgg%(new {sz OZ,X + Zwﬂ’l} .
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If an algorithm is available to compute the optimal locatioh( Q) for each regior) € R, with
the corresponding optimal valué(Q), then the problem is

Z:gg%{z Zwm}

and it can be solved by enumerating the regionB,ias suggested by Drezner et al. [2].
The single-source optimal location problem, or 1-mediasbf@m, can be solved by the
classical infinite algorithm proposed by Weiszfeld [5] oeanf its variations (e.g. Ostresh [3]).
In this paper the focus is on the complexity of the region eanation algorithm, building
upon the papers by Drezner et al. [2] and Venkateshan [4].
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The algorithm proposed by Drezner et al. relies upon a tmeatating that: circumfer-
ences irkt? induce up t@n(n—1) distinct regions. Therefore the single-source optimaitimn
algorithm must be executed a quadratic number of times tatieaeptimum of the SSWPLD.
The enumeration algorithm of Drezner et al. is based on tlservhation that each intersection
point between two circumferences is adjacent to four regidfor each intersection poirft
between two distinct circumferences AN and;j € N, the setSp of circumferences different
from i andj that coverP is computed inD(n). Then, a sef?p of four regions is generated:
Rp = {Sp, SpU{i}, SpU{j}, SpU{3, j}}. This procedure, repeated for all intersection points,
i.e. O(n?) times, generates the whole set of regidhs: | J, Rp in O(n?) time.

Unfortunately, this algorithm does not work correctly wighathological” instances. One
possible reason is the presence of circumferences eniirelyded in one another or disjoint
from all the others. Aloise et al. [1] showed how to corre& #ihgorithm in order to cope with
instances with this structure. The complexity of their aithon is O(n?) like that of Drezner et
al..

More recently, Venkateshan [4] pointed out the need for en&urcorrection that is needed
because of instances in which more than two circumferereesthrough the same intersection
point. In Venkateshan’s algorithm, given an intersectioimp P between circumferences, a
subsetSy is defined as the subset of circumferensggctly covering P, while a subsef is
defined as the subset of circumferences passing threugh“small enough” neighborhood is
constructed aroun# and the intersections of the circumferenceginwith the frontier of the
neighborhood are computed. Then, following the frontighefneighborhood one can correctly
enumerate the set of all relevant subsetggfthat correspond to the regions with a vertexin
The construction and analysis of the neighborhood requies ), suggesting that the need to
take into account the possible occurrence of degeneraeséattions increases the complexity
of the region enumeration problem.

In this paper, in Section 2, it is shown that this is not theecagice the same result obtained
by Venkateshan’s method can be achieved with better corioigh complexity without actu-
ally constructing the neighborhoods, but just distingungtthe two sides of the circumferences
in T, 1.e. the interior and the exterior, and sorting the ditsiof their tangent lines accord-
ingly. In this way the enumeration of all relevant subsekes#) (n? log n). However, after this
improvement the bottleneck of the overall enumeration g is still the computation of all
subsetssp, that require$)(n?) in all algorithms devised so far.

In Section 3 a new region enumeration algorithm s illugidait does not require to compute
the subset$r and it allows to enumerate all regions@{n?log n).

It must be remarked that the true bottleneck in the solutiothe SSWPLD is the need
of running the single-source optimal location algorithm & many times as the number of
regions that are enumerated. A remarkable feature of theafgawithm is that it guarantees to
enumerate all regions only once.



2 Animprovement to existing algorithms

Pre-processing. A generic SSWPLD instance can be pre-processed for at igagiurposes:
(i) merging pairs of circumferencese A andj € N with O; = O; andr; = r; in a unique
circumference with the same center, the same radius andhtvejg- w;; (ii) eliminating cir-
cumferences with radius = 0 or weightw = 0, since they have no effect on the value of
any solution. Such a pre-processing takks logn) and it is not a computational complexity
bottleneck.

In the remainder the term “multiple intersection point” lfaéviated in m.i.p.) is used to
indicate a point irfk? where two or more circumferences intersect.

Given a m.i.p. P and the corresponding subsgt of circumferences that intersect i,
the enumeration method proposed in [4] is based on the emtisin of a small enough circular
neighborhood of?, such that there is no intersection other tlfabetween the circumferences
of Tp within the neighborhood.

A neighborhood with this property certainly exists becahssee are no two circumferences
in T’» with the same center and the same radius owing to pre-pliagess

Given a m.i.pP and given a small enough neighborhoodifwith the property above,
let us indicate its radius withp, and its frontier withF'». For the definition of small enough
neighborhood and singe- is guaranteed to be strictly positive, the following obsgian holds.

Observation 1 Given a m.i.p.P and a small enough neighborhood Bfwith frontier F'p, the
intersection points of the circumferenceslip with Fi» are all distinct.

Assume to scart’p> according to an arbitrary orientation (e.g. counter-cluoicke) starting
from an arbitrary direction (e.g. the positivesemiaxis). Then, there exists a unique cyclic
order in which the intersection points with the circumferesin7» are encountered along-.

By cyclic order we mean a sequence in which the successoedash element is the first one
and the predecessor of the first element is the last one. Teliw oyders are defined to be equal
when they contain the same elements and each element hasitbgsedecessor and successor
in both.

Let us indicate by, and/, the directions fromP to the intersection points betweéi and
each circumferencee T'p, as shown in Figure 1. Assuming to scép counter-clockwise, the
intersection point correspondingdpis encountered when “entering” circumfererice N and
the intersection point correspondinglids encountered when “leaving” it.

Obviously, the cyclic order of the intersection points isi@to the cyclic order of the cor-
responding directions and{. We indicate such a cyclic order by,. Note thatL does not
depend ompp, although the position of the intersection pointsigndoes, because, by defini-
tion, any small enough neighborhood does not contain iatéins between the circumferences
in T, apart frompP.

The cyclic order of the intersection points alohg is the piece of information needed to
correctly enumerate the regions aroundas shown by Venkateshan [4]. Here we observe that

4



Figure 1: An intersection poin® between two circumferences, its neighborhood, the interse
tions along its frontief, the directiong, [, e and!. In this examplel.p = {l;,€;,€;,1;}.

the same cyclic order can be computed in a slightly diffeveat, just by sorting the directions
of the tangent lines iP.

Let us callg; the direction fromP to the centelO; of each circumferencé € Tr. We
can easily obtain the directions of the lines tangent touamerence: in P corresponding
to “entering” ;) and “leaving” (;) the circumference wheR' is scanned counter-clockwise:
e; = g; — 5 andl; = g; + 5, where all angles are computed modgto

Since Fp is continuous and the circumferences are continuous, whetends to0 the
intersection points o> tend to P and therg; tends toe; and!; tends tol; for eachi € Tp.
Therefore, there exists a cyclic ordep of the directions: and! that coincides withlp, i.e.
these two properties hold: (I)» can be obtained from p by replacingg; with e; andl; with [,
for eachi € Tp; (ii) Lp is one of the possible cyclic orders in which directiersnd/ can be
sorted counter-clockwise.

Ties do not exist in the cyclic order of directioasand!, by Observation 1, but they can
occur in cyclic orders of directions and/, because distinct circumferencesTip can have
coincident tangent lines. This can occur only wher= g; = 7 or wheng, = g;. When ties
occur, the unique cyclic order of the tangent lines thatesponds td» must be determined.
This is obtained by two simple tie-break criteria.

Tie-break criterion 1. For any: # j € Tp such thak; = [; ande; = [;, [; precedes; and
l; precedes;.



Tie-break criterion 2. For any: # j € Tp such that; = [; ande; = e; with r; > 7, [;
precedes; ande; precedes;.

Both criteria rely upon basic properties of tangent circeirences, illustrated in Figure 2.
Tie-break criterion 1 solves ties occurring when= g, = 7 and it is illustrated in Figure 2 on
the left; tie-break criterion 2 solves ties occurring when= g; and it is illustrated in Figure
2 on the right. The two criteria allow to sort the directianand! in a uniquely defined cyclic
order Lp equal to the unique cyclic ordérp of the directions andl. In turn, this allows to
computeL » without computingL» and to obtain fronY.p the same piece of information that
can be obtained from p.

Figure 2: Tie-break criterion 1 (left): when leaving a cintierencej and entering a circumfer-
encei with g; = g; 4, directionl; is encountered before. Tie-break criterion 2 (right): when
leaving circumferencesand;j with g; = g; andr; > r;, direction/; is encountered beforg;
when entering theng, is encountered beforg.

Venkateshan [4] described an algorithm to obtain the setsbihdt regions around a m.i.p.
P, once the cyclic ordel » of the intersection points on its neighborhood frontier hasn
obtained. Here an alternative algorithm is described tégeselithe same result frothp. This
enumeration algorithm is outlined in Algorithm 1. The prdaeeScan is called for each m.i.p.
P; itsinputis a sequendéy, defined hereafter, and the $&t of circumferences strictly cover-
ing P as defined in [4]; its effect is to call the single-source wyatlilocation algorithnkvaluate
for each region aroun@. For this purpose the cyclic orddrp of the directions fromP is
represented as a sequengeof 2¢c elements, withe = |Tp|. The sequence is obtained starting
from an arbitrary element df » and replacing; with +i andl; with — for eachi € Tp.

In Scan, the sequenc&’ is scanned twice. At any point during the execution a current
subset) of circumferences ip is kept. () is initialized at the empty set (line 2). Whén
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is scanned for the first time (lines 3-8), for each elementa@uioiference index i1, ..., n}is
inserted i) or deleted fron): when the entering point of circumferencis encountered (line
4), then: is inserted inQ (line 5); when the leaving point of circumferenté encountered,
thenifi € @ (line 7), then it is deleted (line 8). It is trivial to proveatat the end of the first
scan,( contains all indices € Tp for which —i precedesti in Vp and no index € Tp for
which +i precedes-i in Vp. Therefore() correctly represents the subset of circumferences in
T'p covering the points of» between the last element B and the first one. This provides a
correct initialization for the second scan. During the secscan (lines 9-14) the same inser-
tion/deletion rule is applied, with the guarantee that() whenever—i is encountered. In this
way all regions around are correctly identified and a single-source optimal lasagiroblem

is solved for each of them.

Algorithm 1 The enumeration algorithm to be executed for each mA.p.

1: procedure Scan(Vp, Sp)
2: Q<+ 0

3: fort=1,...,|Vp| do

4: if Vp[t] > 0then

5: Q +— QU {Vplt]}

6: else

7: if (=Vp[t] € Q) then
8: Q < Q\{-Vp[t]}
o: fort=1,...,|Vp|do

10: if Vp[t] > 0then

11 Q + QU{Vpt]}
12: else

13; Q < Q\{-Vrlt]}
14: Evaluate(Q U Sp)

Three examples are provided in Appendix 1, to show how therglgm works in full detail.

2.1 Computational complexity

To establish the asymptotic worst-case time complexityhefregion enumeration algorithm,
it is necessary to distinguish three main steps. In Step &,nonst compute the intersection
points for all pairs of distinct circumferences and one nagtéct when some of them coincide;
the output is a list of m.i.p.. In Step 2, for each m.i.p. one must compute the sét of
circumferences that strictly covét. In Step 3, all regions with a vertex iR are enumerated
for each m.i.p.P and a single-source optimal location algorithm is run fatedetected region.
Hereafter the worst-case time complexity of each of thesethteps is analyzed.



Step 1. The set of intersection points between circumferences earomputed ir0(n?). To
detect coincident intersections, intersection pointsleasorted so that coincident intersection
points turn out to be consecutive in the ordering. For instamne can sort the intersection
points in lexicographical order according to thevalue, using the value as a secondary cri-
terion in case of identical values. The intersection points afEn?) and ordering a list of
O(n?) elements require®(n?logn) time. After that, all subset&p for each m.i.p.P can be
identified inO(n?), by scanning the ordered list 6(n?) elements and iteratively merging con-
secutive elements of the list when their positions coinciach merge operation takéx1),
because it requires to check whether two circumferenceadr belong tdl'»> and to insert
them if they are not already ifp; insertion takes constant time if subsets are represented b
their binary characteristic vectors. Hence the asymptaticst-case time complexity of Step 1
is O(n?logn).

Step 2. For each m.i.pP, listing the subse$» of circumferences strictly covering it requires
O(n); therefore Step 2 has asymptotic worst-case time compléxit). This is indeed the
complexity of the region enumeration algorithms proposg®bkezner et al. [2] and Aloise et
al. [1].

Step 3. This is the step on which we focus our study, because it is tteebheck step in
Venkateshan’s algorithm [4]. We show that its complexity ¢z reduced fronO(n?) to
O(n*logn).

Consider a m.i.p.P and the corresponding subsgt of ¢ circumferences intersecting in
P. Computing all directiong; from P to O; Vi € Tp takesO(c). Computing all directions;
and/; takesO(c). Sorting the sequender with 2c angle values takeS(clogc). Scanningl p
to enumerate all regions aroutiwith Algorithm 1 takesO(c), since insertion and deletion
operations on lines 5, 8, 11 and 13%hn can be implemented &3(1) operations on a binary
array (whose initialization take®(c)) and the number of iterations of the loopsSnan is
bounded by2c.

ProcedureScan must be repeated for all m.i.p.. The number of m.i.p. grow®as?).
Therefore, the asymptotic worst-case complexity of Stdga8ed on sorted tangent lines, is not
worse tharO(n?log n), which is already an improvement with respect todhe*) complexity
of the algorithm based on the explicit construction of thghlkorhood.

However, it is also possible to further refine the complezitalysis of Step 3 to prove a
better bound. In a m.i.pP, wherec > 2 circumferences intersect, a number of intersections
coincide. This number is the triangular numBef_ h = ¢(c — 1)/2. Therefore, degeneration
actually decreaseshe computational complexity of the region enumeratiorbfem, since a
quadratic number of intersection points is treated in alsipgint at the expense of a less-than-
quadratic overhead. To express this formally, we need abésh the following Theorem.

Theorem 1 Consider the multi-grapbM = (V, &), defined by. intersecting circumferences,
whereV is the set of m.i.p. anél is the set of circumference arcs between them. Tjgggrows
asO(n?).



Two proofs are given.

Proof 1. Consider the multi-graptM = (f/,(‘f) obtained by a small perturbation of the
circumferences at the m.i.p. where more than two circumfsgs intersect, so that no degen-
erate intersections occur jit. Then, all vertices in\ have degred. The number of pairs of
distinct circumferences is(n — 1)/2 and for each pair at most two intersection points exist.
Hence, the number of vertices it is not larger tham(n — 1). Since inM all vertices have
degreet, the total degree itM is bounded byin(n — 1). Since each edge has two endpoints,
then|£| < 2n(n — 1). By construction, all edges o¥1 have a counterpart i, while the
converse does not hold: henés < |£|. Therefore, the number of edgesi is also bounded

above by2n(n — 1). O

Proof 2. For any given planar multi-graph = (V, £) inducing a set of region® in R?,
Euler formula holds{€| + 2 = |V| + |R|. By Drezner et al. theorefR| is O(n?). Since|V| is
alsoO(n?), thenis|&|is O(n?). O

Corollary 1 The total degree of the verticesihgrows asO(n?).

This immediately follows from Theorem 1, since the total @egis twice the number of
edges.

The asymptotic worst-case time complexity of Step 3 is gmﬂ)(z,ﬁil cx log ¢), where
K indicates the number of m.i.p. ang the number of circumferences intersecting in each
m.i.p. k =1,...,K. Sincec, < nVk=1,...,K,and hencéogc, <lognVk =1,..., K,
a valid worst-case bound 8(logn "1 ¢;). The sumd | ¢ is half the total degree of the
vertices of the multi-grapbi defined above. For Corollary 1, such a total degree grows as
O(n?). Therefore an aymptotic worst-case bound for Step@3(is® log n).

The main conclusion of this complexity analysis is that adegate intersections in the SSW-
PLD can be dealt with without worsening tt&n?3) worst-case time complexity of the enumer-
ation algorithms proposed so far, that did not take degegento account. The computational
complexity bottleneck in the enumeration is not due to deggtie intersections (affecting Steps
1 and 3), but rather to the need of checking whether each givesmference covers each m.i.p.
in Step 2. All algorithms proposed so far requipén?) time complexity for this crucial step.
The next section describes a new enumeration algorithnttieg not require this step and has
O(n?*log n) complexity.

3 A new algorithm

A set of intersecting circumferences induces one or moreaplanulti-graphs k2. Their
verticesare m.i.p., i.e. subsets of intersection points betweers pdicircumferences. When
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two or more intersection points coincide, they belong todame vertex. We cakdgesthe
circumference arcs between adjacent vertices. We furéimeark that the multi-graphs induced
by the circumferences are planar by definition, i.e. ther®isther intersection between edges
apart from vertices.

The new algorithm runs in four steps. In Step 1 all interggcpoints are enumerated and
they are sorted to find coincident intersections; they agevidrtices of a set of planar multi-
graphs. In Step 2 the vertices occurring along each circienée are sorted according to a
given orientation and this allows to identify all edges o thulti-graphs and to compute the
star of each vertex. In Step 3 the circumference arcs intidesach vertex are sorted, so that
the star of each vertex can be scanned according to a givemtation. In Step 4 each planar
multi-graph is visited with a depth-first-search algoritand all regions are enumerated.

3.1 Step 1: Enumeration of vertices

First of all, in order to compute the planar multi-graphs tre@red above, it is necessary to
find their vertices, i.e. all subsets of coincident intetegcpoints. For the sake of clarity, the
description of this step is broken into three sub-steps.

3.1.1 Step 1.1: Enumeration of intersection points

The first sub-step of the algorithm is the enumeration ofééiisection points between pairs of
distinct circumferences and it is describedritersections in Algorithm 2.

Algorithm Intersections has three main effects: first, a subskEt) of enclosing circum-
ferences is computed for each circumference N; second, a flagf (i) is set for each cir-
cumference € N, stating whether the circumference intersects at leaghanone or it is
isolated,; third, a list\ of all intersection points is produced, by considering alfp of distinct
circumferences.

All sets( are initially empty. When the test on line 8 succeeds, thenadithe two circum-
ferences andj is strictly enclosed in the other; then, the sul§$ef the smallest circumference
is updated to include the largest circumference and noset#ion point is computed.

All flags f are initially set to false. If the test on line 8 fails and thstton line 14 succeeds,
then circumferencesand;j have two (possibly coincident) intersection points; tifienme their
flags f(i) and f(j) are set to true. The two intersection points are identified@sj) and
P(j,1) for each pair of circumferencesandj with i < j. Assume all circumferences are
followed counter-clockwise. Then, as shown in FigureP3;, j) is where circumference
enters circumferencgand circumference leaves circumferencg while the converse occurs
in P(j,7). The coordinates of the two intersection points are contpirteconstant time by
a suitable functiorintersect() (line 15). Then, they are added to the lisof all intersection
points (line 18). Each element df is a record with four fieldsi, j, z, y], representing the
entering circumference, the leaving circumference anddoedinates of the intersection point.

If both tests fail, then circumferenceésind;j are disjoint and no update occurs(io f and
A.
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Algorithm 2 The algorithm that enumerates all intersection points drehalosing circumfer-
ences.
1. procedure Intersections IN: O,r. OUT: Q, f, A

2 fori=1,...,ndo

3: f(i) < false

4: Qi) « 0

5: A0

6: fori=1,...,.n—1do

7 forj=i+1,...,ndo

8: if (d(Ol, O]) < ‘TZ‘ — T'j‘) then

o: if r; > r; then

10: Q) <« Q) U {i}

11: else

12: Qi) <+ Q) U{j}

13: else

14: if (d(0;,0;) <r;+r;)then

15: [P(i,7), P(j,1)] < Intersect(, j)

16: f(i) « true

17: f(j) < true

18: A= NUA{[i, g, 2(P(, 7)), y(P(i, )], s 1, 2(P(5,4)), y (P (5, 9))]}
P(j,1)

P(i, j)
Figure 3: Intersection points between two circumferences.
The complexity ofintersections is O(n?) due to the two nested loops (lines 6-7) that contain
O(1) operations.

3.1.2 Step 1.2: Ordering the intersection points

Step 1-2 is quite simple to describe, but it turns out to be tdyeeck of the whole region
enumeration algorithm. It consists of ordering the Astf the intersection points according to
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any arbitrary criterion, so that coincident points occucamsecutive positions in the ordered
list. In this way, it is possible to enumerate the verticeshaf multi-graphs induced by the
intersecting circumferences.

For instance, the points in can be sorted by non-decreasing values @aind ties can be
broken by sorting them by non-decreasing values. of

Since|A| is O(n?), the complexity of sorting the intersection pointglién? logn).

3.1.3 Step 1.3: Enumeration of vertices

For notational convenience, we assume here that the satedik transformed into an array.
The sorted array is scanned to find the vertices; this is doneHRydVertices, illustrated in
Algorithm 3. Indiceg’ andt” are used to find the first and last position of the elementsch ea
subset of coincident points. The integendicates the number of vertices found.

Algorithm 3 The algorithm that enumerates the vertices of the multpigsa
1: procedure FindVertices. IN: A. OUT: z,y, T, v

2: v <40

3 '+ 1

4: while ¢ < |A| do

5: t"—t+1

6: while (" < |A|) A (A[t"].z = Alt'].z) A (A[t"].y = A[t'].y) do
7. 1"+ 1

8: vv+1

o: x(v) + Aft'].x
10: y(v) « Alt'].y
11: T(v)« 0
12: forh=1+¢,...,t" —1do
13: T(v) < T(v) U{A[h].i,A[R].5}
14: t < t"

For each vertex = 1,...,v, z(k) andy(k) are its coordinates whil& (k) is the set of all

circumferences passing through it. EachBgt) can be implemented as a balanced tree: in this
way duplicates can be detected so that each circumferepeaegonly once in it. This implies
that inserting an element ifi(k) (line 13 of FindVertices) hasO(log n) complexity.

Since|A| is O(n?), the complexity ofFindVertices is O(n?logn).

Therefore the overall worst-case time complexity of Step@(in?logn).

3.2 Step 2: Enumeration of edges

In Step 2, vertices are sorted according to the order in wihie} are encountered when moving
along each circumference counter-clockwise. For the shkkanty, the description of Step 2
is broken into three sub-steps.

12



3.2.1 Step 2.1: Enumeration of the vertices along each cirauference

For each circumferendez N\, asefV (i) of vertices is computed. This is done ByumerateVertices,
illustrated in Algorithm 4. The list of all vertices = 1, ..., v is scanned: for each circumfer-
encei € N that occurs ifl'(k), an element: is inserted in the subs@l (7).

Algorithm 4 The algorithm that enumerates all vertices along each miference.
1. procedure EnumerateVertices. IN: T', v. OUT: W
2. forieNdo
W (i) < 0
fork=1,...,vdo
for i € T(k) do
W (i) < W (i) U {k}

Every time a vertex is found to belong to a circumferencegittdbutes by an amount af
to the total degree of the multi-graphs. Since the total eegf the multi-graphs i©(n?), the
insertion on line 6 is don@(n?) times and therefore the time complexitybfumerateVertices
is alsoO(n?).

3.2.2 Step 2.2: Sorting the vertices along each circumferea

Each circumferencee N is examined separately. For each vertéw 1V (i) the direction from
O; to the point of coordinatege(k), y(k)) is considered and the corresponding ang(e k)
is computed. Functioarctan() is assumed to return a value i, 27) computed counter-
clockwise from the positive semiaxis (line 4). Then the subgdét(:) is sorted by increasing
values ofa. No tie can occur in the order, because by construction afices are distinct and
distinct points along a circumference are guaranteed toym®distinct values af. Step 2.2 is
executed bybortVertices illustrated in Algorithm 5.

Algorithm 5 The algorithm that sorts the vertices along each circumfare
1: procedure SortVertices. IN: W. OUT: W

2: fori=1,...,ndo

3: for k € W (i) do

4 a(i, k) < arctan(O;, (z(k), y(k)))
5 W (i) < Sort(W (1))

As already shown in Subsubsection 3.2.1, the numbéi, &f) pairs in the multi-graphs is
O(n?). Therefore the number of calls tactan() is O(n?). The time complexity bottleneck is
given by the sorting operation: sorting the vertices take$V (i)| log |V (z)|) for each circum-
ferencei € N. Since|W(i)| < 2(n — 1) Vi € N and) " | |W(i)| < 2n(n — 1), the time
complexity ofSortVertices is O(n?logn). As for Step 1.2, this is a computational complexity
bottleneck of the new enumeration algorithm.
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3.2.3 Step 2.3: Building vertex stars

The structure of the multi-graphs is finally produced by @xtimg the vertices with circumfer-
ence arcs. Once the list of vertices along each circumferbas been sorted in Step 2.2, this
information is used to build a suitable data-structtréor each vertex, representing the star of
the vertex, i.e. the ordered set of edges with an endpoirttahuertex. For a generic vertex
k each element in its stad (k) is a triplet(i,~, h), wherei is the index of a circumference
passing through the vertex,is a bit representing “counter-clockwise” withand “clockwise”
with 0, andh is the index of the vertex that is reached from vertewllowing circumference

in direction-y.

The pseudo-code duildStar is shown in Algorithm 6. The self (k) is initialized to the
empty set for each vertex(line 3). Then, each circumference is considered and eacloipa
consecutive vertices andk” is considered along it, scannifig(:) as a circular list so that also
the last element and the first one form a consecutive pa#& @)n Finally the edge betweén
andk” isinserted inH (k') as a counter-clockwise edge enterkfgand inH (k") as a clockwise
edge entering’. As a special case, it is possible th&lt(i) contain a single vertek. In this
case two edges are insertedfii{k) with opposite directions and with the second endpoint
equal tok.

Algorithm 6 The algorithm that builds the star of each vertex.
1: procedure BuildStar. IN: W. OUT: H
2: fork=1,...,vdo
H(k) <+ 0
for i € N do
for k' € W (i) do
k" < succ(k’)
H(K) « H(K)U{(@, 1,k")}
H(K") « H(K")U{(,0,k)}

© No gk w

The complexity for scanning all the” subsets i$)(n?), as already observed above. The
total number of elements in subséisis twice the total number of edges in the multi-graphs
since each edge is inserted in two stars. Hence, the timeleaitypof BuildStar is O(n?).

3.3 Step 3: Sorting vertex stars

The subset#/ computed in Step 2 indicate which edges of the multi-graphgw@ident to each
vertex. The aim of Step 3 is to sort the stars, so that consecdges belong to the frontier of
a same region, owing to the planarity of the multi-graphsis Btep is necessary to enumerate
the regions while visiting the multi-graphs.

For the sake of clarity, the description of Step 3 is brokea two sub-steps.
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3.3.1 Step 3.1: Computing edge directions

A direction3(k, i, v) is associated with each edge along a circumferéred/ and belonging

to H (k) for some vertex = 1, ..., v: itis the direction of the line tangent to the circumference
i in vertexk, orientedfromthe vertex in direction. The tangent certainly exists, because pre-
processing guarantees that all circumferences havelstiasitive radius. As before, angles
are computed counter-clockwise starting from the directb the positiver semiaxis. The
computation is done b§omputeDirections, shown in Algorithm 7. The effect of this procedure
is to add a fourth fieldb to the three-field recordg, v, i) in the subsetd (k) Vk = 1,...,v
(line 8).

Algorithm 7 The algorithm that computes a direction for each edge in gadix star.
1: procedure ComputeDirections. IN: H, O, (z,y). OUT:
2: fork=1,...,vdo

p < (arctan(O;, (z(k),y(k))) — 7/2) mod 27
Replace(i, v, h) with (i,v, h, 5)

3: for (i,~v,h) € H(k) do

4: if v=1then

5: B« (arctan(O;, (z(k),y(k))) + 7/2) mod 2x
6: else

7

8:

Since the total number of elements in the subgeisO (n?), the complexity of omputeDirections
is O(n?).

3.3.2 Step 3.2: Sorting the edges

For each vertex = 1, ..., v, its starH (k) is sorted counter-clockwise, according to the values
of the angles of each incident edge. However, ties may occur, becauseyitwaapen that two

or more circumferences have the same tangent lines in titersection points. In these cases
the following criteria are used to break ties.

Tie-break criterion 3. Given a tie between two edgés 0, 5) and(j, 1, 8), (4,0, 5) must
preceddj, 1, 5) in H(k).

Tie-break criterion 4. (a) Given a tie between two edg@s0, 3) and(j, 0, ) with r; < r;,
(2,0, B) must preced¢j, 0, 5) in H(k). (b) Given a tie between two edgés1, 5) and(j, 1, )
with r; < r;, (j, 1, ) must precedéi, 1, 3) in H (k).

The above criteria are quite similar to those illustrate8attion 2 and they have the same
meaning. Their justification is trivial and it is illustratéen Figure 4.

The resulting sorted list/ (k) for eachk = 1,...,v is managed as a circular array, so that
the successor of the last element is the first one.
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Figure 4: Sorting edges with the same tangent line in a vetigx Left: Tie-break criterion 3
is applied to break ties betweén0, 5) and(j, 1, 5). Right: Tie-break criterion 4 is applied to
break ties betweeft, 0, 3) and(j, 0, 5) and betweerti, 1, 5) and(j, 1, 3).

The effect of Step 3 is to sort the edgedHiik) in the same order as they would be encoun-
tered moving counter-clockwise along the frontier of a $mabugh neighborhood of vertéx
Consequently, consecutive edged4(k) belong to the contour of a same region.

There areD(n?) vertices and there argf (k)| edges in each vertex star. The complexity
for sorting all vertex stars i© (>, _, |H(k)|log|H (k)|). Since|H (k)| < 2nVk =1,...,v
and>",_, |H(k)| < 4n(n — 1), the time complexity of Step 3.2 8(n?log n). Together with
the sorting steps 1.2 and 2.2, this is the third computatiom@plexity bottleneck of the new
algorithm.

3.4 Step 4: Region enumeration

Besides multi-graphs, the set of given circumferences c@BLD instance may also con-
tain isolated circumferences, i.e. circumferences withmersections with others. It is also
possible that some multi-graphs or isolated circumfereraze completely enclosed in other
multi-graphs or isolated circumferences. In order to adlyadeal with all these cases, we need
some preliminary observations.

We define aconnected componetd be either a multi-graph or an isolated circumference.
Each circumference belongs to exactly one connected coempoliVe indicate by)(i) C N
the connected component of circumferericé exists and it is unique for eache A. With
this definition, an isolated circumference is just a spexask of a connected component made
of a single circumference.
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As shown in the introduction, in order to correctly solve 88WPLD it is necessary and
sufficient to enumerate all regions ®f induced by all connected components. The set of
points not enclosed in any connected component is of nogsttdoecause it cannot contain the
optimal solution. Actually, it is the set of the worst sobris of the SSWPLD, whereattains
its maximum value)_,_ . w;r;.

Non-overlapping connected components induce disjoistdaegions, that can be enumer-
ated independently. Their union is the whole set of regibasmust be enumerated.

Step 4 visits the whole set of input circumferences, one ectanl component at a time. If a
connected component is a multi-graph, then it is complatisiyed and all its internal regions
are enumerated. The pseudo-cod€ahponents is shown in Algorithm 8.

Algorithm 8 The algorithm that enumerates all connected components.
1: procedure Components
2: N « SortCircles(N)

3: w0
4 forkel,...,vdo
5: (k) <0
6:  while N # () do
7: i* < Rightmost(NV)
8: Q <+ Q%)
o: if f(i*) then
10: [* Multi-graph */
11: k<« W (i*),
12: n—n+1
13: w(k) <@
14: ScanStar(k, %, 1)
15: else
16: /* Isolated circumference */
17: Flip(i*)
18: Evaluate(Q)
19: N « N\{i*}

A set N, implemented as a binary array, is initialized to the setllagigen circumferences
N. Then, every time a connected component is examined, allritemferences are deleted
from N as soon as they are encountered during the visit (see liné C8naponents and line
6 of ScanStar). The algorithm terminates wheN is empty (line 6 ofComponents). This
guarantees that all connected components are examined Aigogithm SortCircles (line 2 of
Components) initially sorts the circumferences iN by non-increasing value of the abscissa of
their rightmost point. In case of ties, the circumferengessarted by decreasing values of their
radius. In case of further tie the selection is done at randatreach iteration of the loop on
lines 6-19 ofComponents a rightmost unvisited circumferences N is selected by the function
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Rightmost (line 7 of Components) and its connected component is examined.

In this paragraph we indicate [y, the subset made of a single circumference \, i.e.
C; = {i}. To indicate that a circumference encloses another one tyvoteveonnected compo-
nent, we use the symbal. By “enclosing” we mean “strictly covering”: for a circunriEnceC'
and a connnected componentC' 1 ¢ if and only if all points of¢ are withinC' and no point
of C' belongs top. Recall that)(i) C A, computed in Step 1, is the subset of circumferences
that strictly enclose each circumference N, i.e.Q(i) = {j e N : C; O C;} Vi € N. With
these definitions the set of all circumferences strictlyl@sing the connected componefit)
is determined by the following property.

Theorem 2 If circumference € N is the rightmost circumference in its connected component
o(7), then)(7) is the set of circumferences that strictly enclgge):

J € Q(Rightmost(¢)) & C; T ¢.

Proof. (i) Assume;j € Q(Rightmost(¢)). ThenC; T C; Vi € ¢. Leti* = Rightmost(¢).
So, in particulaiC; T Cj«. By contradiction, assume thate ¢. ThenC; 3 C;- implies that
J precedei* in N, i.e. i* cannot beRightmost(¢). Hence, it is proven by contradiction that
(j € Q(Rightmost(¢))) = j & ¢. If j & ¢ andC; T C;- with i* = Rightmost(¢), then
C; 1 ¢ because is connected and it cannot intersect circumference

(i) AssumeC; 1 ¢. ThenC; 1 C; Vi € ¢. In particularC; 3 Cj« for i* = Rightmost(¢).
Thereforej € Q(Rightmost(¢)). O

Theorem 2 justifies the initialization of the current regi@Qn(more on it later) on line 8
of Components: () is initialized as the set of circumferences enclosing theeti connected
components(i*), with * = Rightmost(/V). They belong to all regions enumerated while the
connected component:*) is visited.

Once a rightmost circumferenc¢ec N has been detected, two cases may occur, depending
on whether the circumference has intersections or not:ighiglicated by the flag'(:*) (line
9 of Components) computed in Step 1. If circumference has intersections, then its multi-
graph is visited (lines 11-14 @dfomponents); if circumference* has no intersections, then it is
directly processed (lines 17-19 Gémponents).

Multi-graphs.  In order to visit multi-graphs, an additional data-struetis needed. An in-
tegerp (k) is associated with each vertéx= 1, ..., v, to indicate the sequence in which the
vertices are visited. It is initialized @ (meaning “not visited”) in the loop on lines 4-5 of
Components. A countery: of visited vertices is kept. It starts from(line 3 of Components);
every time a vertex is visited for the first timez is increased byt and u.(k) is set tou (see
lines 12 and 13 o€omponents and lines 9 and 10 d&canStar).

When the test on line 9 @fomponents succeeds, a depth-first-search algorithm s initialized.
By construction, the first vertex in the sorted suld$&t) is the first vertex that is encountered
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moving along circumferencecounter-clockwise starting from its rightmost point. Thestex
is indicated byl (redi*); on line 11 ofComponents. The multi-graph is visited by recursive
calls to the procedur8canStar, shown in Algorithm 9. The initial call for each multi-graph
occurs on line 14 o€omponents. The depth-first-search algorithm that visits a multi-drap
described in Subsubsection 3.4.1.

Isolated circumferences. Wheng(:*) consists of an isolated circumference, the internal re-
gion is computed by adding elemeititto subset) (line 17 of Components), by flipping its
component*, as explained in the remainder. Then, the internal regi@misnerated, i.e. the
single-source optimal location algorithBraluate is called (line 18); finallyi* is deleted from

N (line 19).

3.4.1 Depth-first-search visit to multi-graphs

In the circular arrayH (k), representing the sorted star of each vektex 1, ..., v, each edge
incident tok has a successor (see line 45ainStar). Exploiting this ordering, it is possible to
visit all edges of the planar multi-graphs induced by a senhtgfrsecting circumferences. The
visit is done with a depth-first-search algorithm. Everydim vertex is reached for the first
time, its star is scanned counter-clockwise starting froenduccessor of the edge from which
the vertex has been reached. Each edge in the star of the isettaversed. If and only if the
other endpoint of the edge has not yet been visited, theruasige call is made to scan its star.
This guarantees that each star is scanned at most once aefbtaesach edge is traversed at
most twice.

The recursive procedurgcanStar uses three parameters: the first paramédtemdicates
the vertex whose star must be scanned; the second parameelicates the circumference
of the edge traversed to reach vertexhe third parametery, indicates the direction in which
circumference has been traversed to reach veriexl stands for “counter-clockwise” and
stands for “clockwise”. These three parameters are pagsedlibe, i.e. they are local to each
instance ofcanStar which means that a copy is created for each caficimStar.

WhenScanStar is called the first time irfComponents on line 14, the second parameter is
the circumference with the rightmost point of the multiqgnathe first parameter is the first
vertex along it (thestart vertex in the remainder) and the third parameter indicates “camuint
clockwise”.

When ScanStar(k, i,y) is executed, the circular arralf (k) is searched with procedure
FindEdge (line 2) to find the positiort that corresponds to the edge that has been traversed
to reach vertex: it is the edge leaving vertei along circumferencein direction opposite to
~. Such an edge certainly exists and is unique, because birectisn H (k) contains exactly
two recordq(i, 0, x) and (i, 1, x) for each circumferencepassing through vertex

Then, all the othefH (k)| — 1 edges in the star of vertéxare sequentially scanned in the
loop on lines 3-17. Each edge Hi(k) is represented by a triplg,+/, k), wherej is the index
of the circumference to which the edge belongsndicates the direction along which the edge
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Algorithm 9 The recursive procedure that scans the star of a vertex ottagnaph.
1: procedure ScanStar(k, 7,7)
2: t < FindEdge(k,i,1 — )
3 forp=1,...,|H(k)|—1do
4 t < tmod |H(k)|+ 1
5: (j, 7' h) = H(K)[1]
6: N «— N\{j}
7.
8
9

if u(h) = 0then
[* Forward edge */

: O+ pu+1
10: w(h) <7
11: ScanStar(h, j,v')
12: else
13: [* Backtrack edge */
14: Flip(j)
15. it (1(h) < (k) V ((u(h) = (k) A (7 = 1)) then
16: [* First traversal */
17: Evaluate(Q)

is traversed from vertek to the other endpoint anfdis the index of the other endpoint (line 5).

Three cases can occurfh) = 0 (line 7), then vertex has not yet been visited; in this case
ScanStar is recursively called to scan the star of vertedine 11). Otherwise, the algorithm
backtracks fronh to £ and the current regio@ is updated as explained in the remainder (line
14). If the test on line 15 succeeds, then the edge fkam#~ has been traversed for the first
time (as explained later); in this case a region is enume@tes 17). Otherwise, the edge had
already been traversed before and the second traversab ledfeat.

In all cases, when the algorithm backtracks to nbdéproceeds to the next edge in the star
of vertexk counter-clockwise (line 4).

Traversing the edges. The following observations characterize some useful ptegseof the
depth-first-search algorithm that traverses the edges aifié-graph.

Observation 2 Since vertex stars are completely scanned, and since ealthgraph is by
definition connected, all vertices in the multi-graphs aigited and all edges in the multi-
graphs are traversed.

Observation 3 The depth-first-search algorithm defines an orientatiorhefédges, that indi-
cates the direction in which each edge is traversed the first.t Since all edges are traversed,
all edges are oriented.

Consider a directed multi-graph defined by the orientatiats@dges and let us distinguish
betweerforward edgesandbacktrack edgesConsider a generic edge traversed by depth-first-
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search for the first time. Let us callits tail vertex and: its head vertex. If:(h) = 0, then the
edge is a forward edge; otherwise, it is a backtrack edge.

Observation 4 Since all vertices of the multi-graph are reached for thet firke once, then
each vertex has one forward edge entering it, with the ontggtcon of the start vertex which
has none.

Observation 5 Forward edges cannot form directed circuits, singé) > (k) for all forward
edges fronk to h.

Theorem 3 The set of forward edges forms a spanning arborescencedaitéhe starting
vertex.

Proof. The proof directly follows from Observation 4 and Obsemvatb. [

Updating the current region. Let us indicate withright(e) andleft(e) the regions on the
right side and the left side of a generic edgaccording to its orientation. “Right” and “left”
are well-defined owing to the planarity of multi-graphs ane tinique orientation of all edges.

The algorithm uses a global variable, namely a sufjseepresenting theurrent region
The subset is assumed to be represented by a binary vecttratsmserting or deleting an
element is done i®(1) by flipping the corresponding bit. This is done by the procedilip
(see line 17 offomponents and line 14 ofScanStar).

Observation 6 Two adjacent regions separated by an edge belonging toroiferencej cor-
respond to subsets that differ only by the compornent

Hence, flipping?|[;] corresponds to moving from the region on one side of an edgade
ing to circumferencg € N to the region on the other side.
The algorithm updates the current regiQraccording to the following rule.

Rule 1. Q[j] is flipped if and only if a backtrack occurs on an edge alonguinference
j € N (line 14 ofScanStar).

Detecting second traversals. No attempt is made to traverse forward edges for the second
time, because the stéf (k) of the head vertex of a forward edge is scanned only up to the
edge preceding (see line 3 obcanStar).

On the contrary, backtrack occurs twice on each backtragk,esince each backtrack edge
is traversed twice by the depth-first-search algorithm, k@, for the analysis of the algorithm
presented hereafter it is necessary to detect when a bekledge is traversed for the first time
and when not.

21



For this purpose, let us define a vertexopenonce it has been reached by a forward edge
andclosedwhen its star has been completely scanned. Let us indicateiognt vertex the
vertexk when an edge frorh to i is traversed. By definition of depth-first-search, the fwilogy
observation holds.

Observation 7 The current vertex is the vertex with maximum valug among all open ver-
tices.

Theorem 4 If a backtrack edge is traversed the first time and its origotais from vertex: to
vertexh, thenu(h) < u(k).

Proof. When an edge from to h is traversed the first timd; is the current vertex. Since the
edge belongs also t& (k) and it has not yet been traversed fréanto k, this implies that: is
also open. Therefore, by Observation:(k) > u(h). O

As a consequence of Theorem 4, when the two endpoints of arbaekledge are differ-
ent, the second traversal of the edge can be easily detegtedntparing the: values of its
endpoints: ifu(h) < w(k) then the backtrack edge fromto h is traversed the first time;
if u(h) > w(k) then the backtrack edge fromto h is traversed the second time. When
w(h) = u(k), the edge is a self-loop.

Observation 8 The unique vertek of a self-loop on a circumferenées N cannot be reached
from any forward edge within circumferente

This immediately follows from the observation that the tigbst point of the multi-graph can-
not be in the circumference. Therefore, whH&rik) is scanned counter-clockwise the edge
corresponding to traversing the self-loop counter-claskws always encountered before the
edge corresponding to traversing the self-loop clock-wiEhis is also illustrated by the ex-
ample shown in Figure 17 in Appendix 2. Hence, the test foectetg when a self-loop is
traversed the first time ig' = 1.

Justified by the Theorem 4 and Observation 8, the tests an Timed 15 obcanStar corre-
spond to the following rule.

Rule 2. The current regiorf) is enumerated if and only if it is on the left side of a backitrac
edge traversed the first time (line 17SfanStar).

Enumerating the regions. Exploiting the planarity property of the multi-graphs, tthepth-
first-search algorithm transforms the guarantee of trawgrall edges into the guarantee of
enumerating all regions within them. To prove the propsrtiethe algorithm we need some
preliminary definitions and observations.

Let us defindorward movesandbackward movesoccurring respectively when the depth-
first-search algorithm traverses an edge and when it batistiGong an edge. Let us associate
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a natural number with each move corresponding to the order in which movesodaung
the visit of the multi-graph. Let us indicate witlir) the edge along which mowue occurs.
Let us indicate withright(~) andleft(v) the regions on the right side and the left side with
respect to the move. Note thaght(v) = right(e(r)) andleft(v) = left(e(r)) if and only

if e(v) is traversed for the first time, according to its orientatiaile right(v) = left(e(v))
andleft(v) = right(e(v)) if and only if e(v) is traversed for the second time, opposite to its
orientation.

Let us indicate withR(v) the set of regions enumerated by the depth-first-searchitigo
up to mover and byQ(v) the current region when moveis done. For initialization purposes,
we introduceR(0) to indicate the region surrounding the current multi-gréioh which there
is no need to calEvaluate). We observe thak(v') C R(v") Y/ < V" sinceR is only subject
to insertions, not to deletions.

Theorem 5 For each forward move, Q(v) = right(v) € R(v — 1) (right property). For each
backward move, Q(v) = left(v) € R(v) (left property).

Proof. The proof is by induction. We assume that the two propertadd for all moves up to
mover — 1 and we prove that they must hold for mave

Basis of the induction: the right property holds fer= 1. By the initialization of @,
Q(1) = Q(i), whereQ(7) is the external region surrounding the current multi-graBi con-
struction, the external region is guaranteed to be the memidhe right side of the first traversed
edge, i.e(i) = right(e(1)). The edge traversed by mowe= 1 is certainly traversed for the
first time; henceight(1) = right(e(1)). By the initialization,R(0) = €(¢). Hence the right
property holds for the first forward move.

To prove the induction step we distinguish four cases, déipgron — 1 andv being for-
ward or backward moves.

Case |: mover — 1 is forward and move is forward. In this case(r — 1) ande(v) be-
long to the star of a same vertéxande(v — 1) is the forward edge entering Since edge
e(v — 1) is a forward edge, theh is reached for the first time when it is reached along edge
e(v — 1). Therefore edges incident foare not traversed by any mowé < v — 1. Then
e(v — 1) ande(v) are traversed according to their orientationight(v — 1) = right(e(v — 1))
andright(v) = right(e(v)). Edgee(v) is the edge next te(v — 1) in H (k) counter-clockwise.
Henceright(e(v)) = right(e(v — 1)) (see Figure 5). By the induction hypothegigy — 1) =
right(v — 1) € R(v —2). By Rule 1,Q(v) = Q(v — 1). By constructionR(v —2) C R(v —1).

The combination of the equations above implige/) = right(v) € R(v — 1). So, the right
property holds for the forward move

Case Il: mover — 1 is forward and move is backward. In this case= e(v — 1) = e(v)
is a backtrack edge.
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Figure 5: Case |: both moves— 1 andv are forward movesright(v — 1) = right(v) and

Qv —1) = Q).

If e is traversed for the first timejght(v — 1) = right(e) andleft(rv) = left(e). By the
induction hypothesisQ) (v — 1) = right(r — 1). By Rule 1, component is flipped: hence
Q(v — 1) = right(e) impliesQ(v) = left(e). The combination of the equations above implies
Q(v) = left(v) (see Figure 6). By Rule 2, i is traversed for the first tim&)(v) is inserted in
R(v). HenceQ(v) = left(v) € R(v).

If e is traversed for the second time, théght(v — 1) = left(e), left(v) = right(e). By
the induction hypothesis, the right property holds upte 1, i.e. Q(v — 1) = right(v — 1) €
R(v—2). By Rule 1, componertis flipped: hencé&)(v—1) = left(e) impliesQ(v) = right(e).
The combination of the equations above impligg/) = left(v). If e = e(v — 1) is visited
for the second time, there exists a forward mo¥e< v — 1 such thate = ¢(v'). By the
induction hypothesisy(v') = right(v') € R(v' — 1); moreoverright(v') = right(e), because
V' is a forward move traversingfor the first time. By Rule 2R(v) = R(v — 1). Therefore
Q(v) = left(v) = right(e) = right(v') € R(v' — 1) C R(v).

So, in both cases the left property holds for the backwardemnov

v [ Tv—1
Q) / Qv—1)

Figure 6: Case Il: move — 1 is forward and move’ is backward along the same edge
left(v — 1) = left(v), right(r — 1) = right(r) and{e} is the symmetric difference between

Qv — 1) andQ(v).

Case lll: mover — 1 is backward and move is forward. In this case(vr — 1) and
e(v) belong to the star of a same vertgéxand e(v) is next toe(v — 1) in H(k) counter-
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clockwise. Henceeft(r — 1) = right(v) (independently of the orientation of the edges). For
the induction hypothesi®(v — 1) = left(vr — 1) and by Rule 1Q(v) = Q(v — 1). Hence
Qv) = Qv — 1) = left(r — 1) = right(r) (see Figure 7). For the induction hypothesis
Qv —1) € R(v —1). HenceQ(v) = Q(v — 1) € R(v — 1). So, the right property holds for
the forward move-.

Figure 7: Case lll: move — 1 is backward and move is forward:left(v — 1) = right(v) and

Qv — 1) = Q(v).

Case IV: mover — 1 is backward and move is backward. In this casgr — 1) ande(v)
belong to the star of a same vertex(v) is the forward edge enteririgand itis nextte:(r—1)
in H(k) counter-clockwise. Hendeft(r — 1) = left(v) (independently of the orientation of
e(v — 1)). For the induction hypothesi9(v — 1) = left(r — 1) € R(v — 1). By Rule 1,
Q(v) = Q(v — 1) and hence&)(v) = left(v) (see Figure 8). By Rule (v) = R(v — 1) and
henceQ(v) € R(v). So, the left property holds for the backward mové]

Qv —1)=Qv)

Figure 8: Case IV: both moves— 1 andv are backwardleft(v — 1) = left(rv) andQ (v — 1) =

Q).

Observation 9 Since forward edges do not form circuits, every region masetat least one
backtrack edge along its contour.
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Theorem 6 All regions are enumerated.

Proof. If a region is on the left side of a backtrack edge, then it isneerated when the back-
track edge is traversed for the first time. If a region is onright hand side of a backtrack
edgee, then it must also be on the left side of another backtracle edtgaversed for the first
time beforee, because for Theorem 5, wheris traversed for the first time the regioight(e)
must have been already enumerated. Since all backtracls edgedraversed, all regions are
guaranteed to be enumeratéd.

Now we can prove that duplicate enumerations do not occur.

Lemma 1 The number of backtrack edges is equal to the number of ateegions of the
multi-graph.

Proof. Let us indicate byE/* the number of forward edges, Wy the number of back-
track edges, byR| the number of regions and hythe number of vertices of a directed planar
multi-graph. By Euler formulall + 2 = v + |R|, whereE = E/* + E. By Proposition 3,
Efv = v — 1. ThereforeE® = |R| — 1. SinceR includes the external region which is unique,
then|R| — 1 is the number of internal regions of the multi-graph.

Theorem 7 Each region is enumerated once.

Proof. The proof relies on the propositions above: (i) all intenrgggions are enumerated
at least once, by Theorem 6; (ii) every internal region isneexated if and only if it is found
on the left side of a backtrack edge traversed the first timdRide 2; (iii) there are as many
backtrack edges as the number of internal regions, by Lemm@arhbining (i), (i) and (iii) the
theorem followsL]

3.4.2 Computational complexity

To establish the worst-case time complexity of Step 4, letunsidetComponents first. Sorting
then elements of\V with SortCircles takesO(n logn).

Initializing 1 takes constant time for each vertex, (gn?).

The while loop (lines 6-19) is execute&d(n) times, since at least one circumference is
deleted from/V at each iteration. Therefore all constant-time operatiarthe loop have an
overallO(n) time complexity.

The total time complexity of the executions Rightmost (line 7) isO(n?), since a sorted
list of cardinalityO(n), produced bybortCircles must be scanne@(n) times.

Initializing @ takesO(n) for each component; therefore its overall contribution 9(n?).
The overall contribution of all constant time flip operasoneeded to updat@ (line 17 of
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Components and line 14 ofScanStar) is trivially bounded by twice the number of edges in the
multi-graphs, i.eO(n?).

The overall contribution of deletions (line 19 Gémponents and line 6 ofScanStar) is O(n)
becauséN| = n and each deletion takes constant time, wheis implemented as a binary
array.

Finally, let us examine the time complexity ®fanStar.

The time complexity of all executions éfndEdge is O(>",_, |H(k)]), i.e. O(n?), because
FindEdge is executed only once for each vertex, when the vertex ishezhor the first time.
Therefore the total number of steps requiredFimdEdge is bounded by the total degree of the
multi-graphs, which i$)(n?) (see Theorem 1).

The total number of iterations of the loop (lines 3-17) inedecutions o6canStar is also
bounded by the total degree of the multi-graphs,@&2?) and the loop includes only constant
time operations.

Therefore the overall worst-case time complexity of Step@(in?).

This allows to establish that the overall complexity of tie@mregion enumeration algorithm
is O(n*logn). The bottlenecks are the three sorting procedures in SgeBiep 2.2 and Step
3.2. This complexity analysis does not take into accounttitne taken byO(n?) calls to
Evaluate, that imply the execution of a single-source optimal lomatlgorithm. However, the
number of calls is exactly equal to the number of regions ternenerated, with no duplicates.

4 Conclusions

The possible occurrence of coincident intersection poiegsiires to correct the SSWPLD al-
gorithm proposed by Drezner et al. [2] and a similar algonitttevised by Aloise et al. [1], as
pointed out by Venkateshan [4]. However, the occurrencech $pathological” cases does not
increase but rather decreases the computational effodede® enumerate all the regions in-
duced byn circumferences ift?. Coincident intersection points can be detected and diyrec
taken into account without increasing thé¢n?) time complexity of the enumeration algorithms
[2,1].

Furthermore, the computational bottleneck of these dlgms can be eliminated, by enu-
merating the regions in a different way. The new algorithrhbased on the depth-first-search
visit of a set of (possibly nested) planar multi-graphs, géheertices and edges are identified by
suitable sorting procedures. This provideg:* log n) time complexity for enumerating all re-
gions. Even more important, duplicate enumerations areladavith no additional complexity,
allowing to execute the single-source optimal locatioroathgm a minimum number of times.

The algorithm presented here can be easily extended to eatemegions induced by closed

curves of many other types, such as ellipses, Cartesias audlin general any kind of closed
curves for which it is possible to efficiently sort points rdpthe contour (Step 2.2) and the
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tangent line is always defined along the contour (Step 3.2).

Some interesting questions remain open fur further devedps.

Finite precision arithmetics. Devising implementations in finite precision machines,-pre
serving correctness and complexity, is an issue commonmosilall geometrical algorithms,
since they typically require to compute and compare irreticaumbers (in equality and in-
equality tests). The critical point in the new algorithm,imagprevious ones, is the ability to
detect when intersection points coincide.

The problem with the algorithm by Drezner et al., correctgd/enkateshan, occurs when
intersection points are found to coincide. Numerical agpnations tend to make this un-
likely: intersections that would coincide in infinite prsicin computations may be found non-
coincident in finite precision arithmetics. In this case muical approximations may cause a
degenerate multi-graph to be analyzed as a non-degenemtplaying the same role of small
perturbations introduced on purpose, as suggested by ¥siian [4]. This would not pro-
duce wrong solutions, since no region of the degeneratei-gralph would be disregarded.
Moreover, it would not affect th€(n? log n) worst-case time complexity of the new algorithm,
which is the same for degenerate and non-degenerate mayitirg.

On the other side, it is also possible (although extremelikely) that very close but non-
coincident intersection points are treated as coincidefihite precision arithmetics. However,
all SSWPLD algorithms considered in this paper and its ezfees can be made robust to these
occurrences by checking the following transitive propeifytwo intersection pointsP (i, j)
and P(j, k) coincide, then als@(k, i) must coincide with them. If this does not occur, then a
“numerically critical” triple of circumference@, j, k) is detected and further suitable tests (with
increased numerical accuracy, for instance) can be donetesrdine whether they intersect
in the same point or not. Anyway, it should be noted that tHeesof d(X, O;) for each
circumference € N would not be affected by more than the rounding error itsadf, by a
negligible amount.

Implementations. Implementing the new algorithm to evaluate its computatiperformances
is also a possible topic for future research. This can ledlde@aevelopment of furher algorith-
mic ideas. For instance, instead of evaluating the regiortsa order they are enumerated, it
may be profitable to evaluate them following the reversemide starting from the innermost
to the outermost regions. This is because innermost regiensiore likely to contain the opti-
mal solution then outermost regions. It is possible to ptbae the order in which regions are
enumerated by the new algorithm in each multi-graph coordg to a path in the dual multi-
graph. This property can be exploited to record only theddite flipped from one region to the
next one, in a last-in-first-out stack, allowing for the a#itt evaluation of the regions in the
reverse order. Another idea is to early terminate the siaglece optimal location algorithm,
which iteratively updates a current point according to algmat information, when the current
point leaves the region to be evaluated. A third possibla id¢o directly skip some region, by
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computing a corresponding lower bound based on centeris aratiweights, without running
the single-source optimal location algorithm.
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Appendix A  Three examples

A.1 Example 1.

In Example 1 (taken from [4]), illustrated in Figure 9, fourcumferences share two m.i.p..

) .

Figure 9: Example 1 [4]: four circumferences sharing twa m..i

As pointed out in [4], the algorithms proposed in [2] and [1duid fail to enumerate all
regions around’. For every pair of circumferences intersectinginthe subsef», as defined
by [2] and [1], would include the other two circumferencdserefore the regions covered by
a single circumference’jy or C,) would be missed in the enumeration. On the contrary, con-
structing the neighborhood @&f shown in Figure 10 on the left and its eight intersection {gin
with C1, ..., C4, one can correctly enumerate all regions aroimd

Figure 10 on the right shows how the same remedy provided bstaecting the neighbor-
hood can be obtained by considering the tangent lines amdatentation. Assume to store
the angles corresponding to the directienand/; for eachi = 1,...,4 in a set of8 elements
and then to sort it, obtaining a cyclic order. In Example 1 viam the cyclic order. =
{l5,14, €1, €9, €3, e4,11,l}. Now, replacing each with —i and each; with +i, the vectol/p =
{-3,—4,+1,+2,43,+4, —1, -2} is obtained. Then, procedufean shown in Algorithm 1
is executed: after the first scan @f it yields @Q = {3,4}; during the second scan o} the
following set of regions is found{{4}, 0, {1}, {1,2},{1,2,3},{1,2,3,4},{2,3,4},{3,4}}.

Example 1 illustrates a case of a m.ijp, but it is “easy” in the sense that all tangent lines
have distinct angles i, so that there is no need to use tie-break criteria.
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Figure 10: Left: a neighborhood of a m.i.p., as defined inRght: the tangent lines. For each
tangent line two little arrows indicate the side where theteelies. The order in which the in-
tersection points numberéd. . . | 8 are encountered following the frontier of the neighborhood
on the left corresponds to the order in which the directians. . , e, andiy, . . ., [, on the right
appear when they are sorted according to their angles.

A.2 Example 2.

In Example 2 (taken from [4]), illustrated in Figure 11, faircumferences share a single m.i.p..

Figure 11: Example 2 [4]: four circumferences sharing alsing.i.p..
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Figure 12: Left: a neighborhood of the m.i.p.. Right: thegemt lines.

Figure 12 compares the actual construction of the neigldmattof the m.i.p. with the
more efficient sorting of the directions of the tangent lindssume to store the angles cor-
responding to the directions and/; for eachi = 1,...,4 in a set of8 elements and then to
sort it obtaining a cyclic order. The cyclic ordépr = {[l3, e1], [l2, 4], [l1, €3], [l4, €2] } IS Ob-
tained. Pairs indicated in square brackets have the same ghthe angle: tie-break criterion
1 must be used to sort them correctly. Replacing éaslith —:; and eacle; with +i the vector
Vp ={-3,+1,-2,+4,—1,+43, —4, +2} is obtained. After that, Algorithm 1 is executed: after
the first scan of/p it yields @Q = {2, 3}; during the second scan the following set of regions is

found {{2}, {1, 2}, {1}, {1,4}, {4}, {3,4}, {3}, {2, 3} }.

A.3 Example 3.

Example 3, illustrated in Figure 13, is even more tricky:rfomcumferences share a m.i.p. and
a same tangent line. However, two of them lie on one side ofitleeand two of them on the

other.

Figure 13: Example 3: four circumferences sharing a singigpnmand the same tangent line.
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Figure 14: Left: the neighborhood of the m.i.p.. Right: tireckions of the tangent lines.

Figure 14 shows the correspondence between the interseaiong the frontier of the
neighborhood of? and the sorted angle values. To correctly sort the angldssrekample it
is necessary to apply both tie-break criteria. Accordingeedodreak criterion 1/, and/, must
precede:; andey; for the same reasdp andl, must precede; ande,. According to tie-break
criterion 2,1, must precedé,, e, must precedes, [3 must precedé, ande; must precedes.
Therefore the vectovy = {—2, -1, +4, +3, —3, —4,+1, +2} is obtained. When Algorithm 1
is executed, after the first scangf we getQ = {1, 2}; during the second scan the following
(redundant) set of regions is founf1}, 0, {4}, {3,4},{4},0, {1}, {1,2}}.
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Appendix B The three examples rivisited

Hereafter we report the same three examples shown in then&ippé to show how they are
solved by the new algorithm. In Figures 15, 16 and 17 forwatges are indicated by big
arrows and backtrack edges by small arrows.

B.1 Example 1.

Figure 15: Example 1 [4]: four circumferences sharing twopn.

The steps of the algorithm produce the output reported ite$abto 6.

f Q
true
true
true
true

=~ W M}—t‘s.
ISSICSIRSSER S

Table 1: Output ofntersections, Algorithm 2.
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A SortedA

(1727anyA) (1,2,x,4,y,4)
(271>xBayB) (1,3,x,4,y,4)
(1,3,SCA,yA) (1,4,$A,y,4)
(37 1,3:B,y3) (2,3,$A,y,4)
(174,$UA,yA) (2747 xAvyA)
(47 l,xB,yB) (374>anyA)
(2737anyA) (271>vayB)
(3,2,25,y8) (3,1,7p5,ys)
(274,$UA,yA) (4717vayB)
(4,2,25,y8) (3,2,75,ysB)
(3747anyA) (472>vayB)
(47 3,1‘B,y3) (47 3>vayB)

Table 2: List of the intersection points before and aftetisgr

v ‘ T
Al{1,2,3,4}
B|{1,2,3,4}

Table 3: Output oFindVertices, Algorithm 3.

%% SortediV/
{A,B} {B,A}
{A,B} {B,A}
{A,B} {B,A}
{A,B} {B,A}

= W N | .

Table 4: Output oEnumerateVertices, Algorithm 4, andSortVertices, Algorithm 5.

,B),(2,0,B),(2,1,B),(3,0,B),(3,1,B), (4,0, B), (4,1, B) }
1,A),(2,0,A),(3,1,A),(3,0,A),(4,1,A), (4,0, A)}

Table 5: Output oBuildStar, Algorithm 6.
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),(2,1,B),(1,1,B), (4,0, B), (3,0, B), (2,0, B),(1,0,B), (4,1, B)}
1,1,A),(2,1,A4),(3,1,4),(4,1,4), (1,0, A), (2,0, A) }

Table 6: Sorted vertex stars.

Table 7 reports the values of the main variables and datatates during the execution of
Step 4. Columns 1 indicates the open vertices. Closed geréie not indicated explicitly for
space reasons; however, a vertex is closed when it disapfrean the set of open vertices.
Columns 2-5 indicate the edge that is traverskds the tail,: is the circumferencey is the
direction,h is the head. Wheh = k, the edge is a self-loop. Column 6 indicates whether the
edge is a forward edge (fw), a backward edge traversed fdiirstdime (btl) or a backward
edge traversed for the second time (bt2). The valugs afe reported for all vertices: when
wu(h) = 0 then the edge is a forward edge; in the other cases it is araakktdge. The last
but one column indicates the current regi@nthat is updated every time a backtrack edge is
traversed, by flipping the circumference that the traveesdge belongs to. The last column
indicates the region that is evaluated when the singleesoptimal location procedure is exe-
cuted. It coincides witlf), but the evaluation only occurs when backtrack edges arersad
for the first time.

Open k£ i ~ h fwbt 7 wp(A) wB) Q Evaluated
0 0 0

4 1 B 1 1
B B 11 A fw 2 2
AB A 4 1 B btl {4} {4}
AB A 3 1 B btl (3,4} (3,4}
AB A 2 1 B btl {2,3,4}  {2,3,4}
AB A1 1 B btl {1,2,3,4} {1,2,3,4}
AB A 4 0 B btl {1,2,3}  {1,2,3}
AB A 3 0 B btl {1,2} {1,2}
AB A 2 0 B btl {1} {1}
B B 2 1 A bt2 {1,2}
B B 3 1 A bt2 {1,2,3}
B B 4 1 A bt2 {1,2,3,4}
B B 1 0 A bt2 {2,3,4}
B B 2 0 A bt2 {3,4}
B B 3 0 A bt2 {4}

Table 7: The iterations dcanStar, Algorithm 9. The effect ofComponents, Algorithm 8, is
indicated above the horizontal line.
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B.2 Example 2.

Figure 16: Example 2 [4]: four circumferences sharing alsing.i.p..

The steps of the algorithm produce the output reported iteSaebto 13.

foQ
true
true
true
true

rwaH‘®.

SSISSIGSIRGSY

Table 8: Output ofntersections, Algorithm 2.
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A SortedA
(172>x07y0) (4,3,$A,y,4)
(2717anyE) (1747xB>yB)
(1,3, z¢,90)  (1,2,20,yc)
(3, Lzc,y0)  (1,3,20,yc)
(1747xBayB) (3,1,1’(;,3/0)
(4, Lzc,ye)  (4,1,2¢,yc)
(2,3,2zc,y0)  (2,3,2¢,yc)
(3727xD7yD) (2,4,1’(;,3/0)
(2,4,2¢,90)  (4,2,70,yc)
(4,2,2¢,9y0) (3,4, 7¢,yc)
(3747 xCayC) (372>xD>yD)
(47 37anyA) (2717xE>yE)

Table 9: List of the intersection points before and aftetisgr

T
{3,4}
{1,4}

{1,2,3,4}
{2,3}
{1,2}

O QW

Table 10: Output oFindVertices, Algorithm 3.

w SortedW

W DN .

{B,C,E}
{C,D,E}
{A,C, D}
{A,B,C}
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{E,B,C}
{E,C,D}
{D,C, A}
{C, B, A}

Table 11: Output oEnumerateVertices, Algorithm 4, andSortVertices, Algorithm 5.



Table 12: Output oBuildStar, Algorithm 6.

SortedHd

()

Table 13: Sorted vertex stars.

Table 14 reports the values of the main variables and daiatstes during the execution of
39

Step 4. The meaning is the same as for Example 1.



Open ki ~v h fwhbt @ wA) wB) wC) wD) wFE) @  Evaluated
0 0 0 0 0 0
2 1 FE 1 1
E E 1 1 B fw 2 2
B.E B 41 A fw 3 3
ABE A3 1 D fu 4 4
ABDE D 2 1 E btl 2} 2}
ABDE D 3 1 C fw 5 5 (2}
ABCDE C 1 1 E btl 1,2} {1,2)
AB,C,D,E C 2 0 E btl a1y
AB,C,D,E C 4 1 B btl 1,4y {1,4}
ABCDE C 1 0 B btl 4y {4
ABCDE C 3 1 A bl (3.4} {3,4}
ABCD,E C 4 0 A bl {3} {3}
AB,C,D,E C 2 1 D btl (2,3} {2.3}
,B.D,E D 2 0 C bt2 (3}
ABE A 41 C bt (3,4)
A B E A 3 0 C Dbt2 {4}
B.E B 11 C b2 1,4}
B.E B 40 C bt2 m
E E 2 0 C bt2 (1,2}
E E 10 C b2 2}

Table 14: The iterations dcanStar, Algorithm 9. The effect ofomponents, Algorithm 8, is
indicated above the horizontal line.
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B.3 Example 3.

Figure 17: Example 3: four circumferences sharing a singlgpmand the same tangent line.
In this very special case, the multi-graph includes onlywerex and no forward edge.

The steps of the algorithm produce the output reported ite$alb to 20.
f 9

true
true
true
true

»-lkcol\ara‘a.
[SSERSSER SSRGS

Table 15: Output ofntersections, Algorithm 2.

(sorted)A

Table 16: List of the intersection points.
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v‘ T
Al{1,2,3,4}

Table 17: Output oFindVertices, Algorithm 3.

(Sorted)iV
{A}
{A}
{A}
{A}

W N | .

Table 18: Output oEnumerateVertices, Algorithm 4, andSortVertices, Algorithm 5.

v | H
A } {(1,1,A),(1,0,A),(2,1,A),(2,0,A),(3,1,A),(3,0,4), (4,1, A), (4,0, A)}

Table 19: Output oBuildStar, Algorithm 6.

v | SortedH
A ‘ {(2707 A)’(1707A)7(4717A)7(3717A)7(3707A)7(47 07A)7(1717A)7(2717A)}

Table 20: Sorted vertex stars.

Table 21 below reports the values of the main variables atatstauctures during the exe-
cution of Step 4. The meaning is the same as for Examples 1.and 2

42



Open k£ i v h fwbt @ up(A) Q Evaluated
0 0

1 1 A 1 1
A A 4 1 A btd {4} {4}
A A 3 1 A btl {3,4}  {3,4}
A A 3 0 A bt2 {4}
A A 4 0 A bt2 {}
A A 1 1 A btl {1} {1}
A A 2 1 A bt {1,2} {1,2)
A A 2 0 A bt2 {1}

Table 21: The iterations dcanStar, Algorithm 9. The effect ofomponents, Algorithm 8, is
indicated above the horizontal line.
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