
A new algorithm for the Single Source Weber Problem
with Limited Distances

Giovanni Righini
Dept. of Computer Science, University of Milan, Italy

giovanni.righini@unimi.it

June 5, 2021

Abstract

The Single Source Weber Problem with Limited Distances (SSWPLD) is a continu-
ous optimization problem in location theory. The SSWPLD algorithms proposed so far
are based on the enumeration of all regions ofℜ2 defined by a given set ofn intersect-
ing circumferences. Early algorithms requireO(n3) time for the enumeration, but they
were recently shown to be incorrect in case of degenerate intersections, i.e. when three
or more circumferences pass through the same intersection point. This problem was fixed
by a modified enumeration algorithm with complexityO(n4), based on the construction
of neighborhoods of degenerate intersection points. In this paper it is shown that the com-
plexity for correctly dealing with degenerate intersections can be reduced toO(n2 log n),
so that existing enumeration algorithms can be fixed withoutincreasing theirO(n3) time
complexity which is due to some preliminary computations unrelated to intersections de-
generacy. Furthermore, a new algorithm for enumerating allregions to solve the SSWPLD
is described: its worst-case time complexity isO(n2 log n). The new algorithm also guar-
antees that the regions are enumerated only once.

Keywords: Weber problem, depth-first-search.

1

1 The problem

The Single Source Weber Problem with Limited Distances (SSWPLD), also known as Facility
Location Problem with Limited Distances, is a continuous optimization problem in location
theory. A setN = {1, 2, . . . , n} of circumferences inℜ2 is given. For each circumference
i ∈ N a center in positionOi, a radiusri ≥ 0 and a weightwi ≥ 0 are given. The problem
consists of optimally locating a pointX in ℜ2 minimizing the weighted sum of cost terms
depending on its distances from the centers of the circumferences. The cost term for each
circumferencei ∈ N is the minimum of the distance betweenX andOi and the radiusri. The
objective function is as follows:

z = min
X∈ℜ2

{

∑

i∈N

wi min {d(Oi, X), ri}

}

,

whered() indicates the Euclidean distance inℜ2.
In 1991 Drezner et al. [2] proposed an algorithm to solve the SSWPLD as an unrestricted

single-source location problem for each region of the partition ofℜ2 induced by the circumfer-
ences. A region is defined by the subset of circumferences including it. Hence the objective can
be restated as follows:

z = min
Q⊆N ,X∈ℜ2

{

∑

i∈Q

wi d(Oi, X) +
∑

i 6∈Q

wiri : d(Oi, X) ≤ ri ∀i ∈ Q

}

.

The constraintd(Oi, X) ≤ ri ∀i ∈ Q can be dropped, because any solution(Q,X) : ∃i ∈
Q, d(Oi, X) > ri is dominated by another solution(Q′, X) with Q′ = Q\{i}.

Indicating withR the set of regions ofℜ2 induced by the circumferences, the SSWPLD can
be reformulated as

z = min
Q∈R,X∈ℜ2

{

∑

i∈Q

wi d(Oi, X) +
∑

i 6∈Q

wiri

}

.

If an algorithm is available to compute the optimal locationX∗(Q) for each regionQ ∈ R, with
the corresponding optimal valuez∗(Q), then the problem is

z = min
Q∈R

{

z∗(Q) +
∑

i 6∈Q

wiri

}

and it can be solved by enumerating the regions inR, as suggested by Drezner et al. [2].
The single-source optimal location problem, or 1-median problem, can be solved by the

classical infinite algorithm proposed by Weiszfeld [5] or one of its variations (e.g. Ostresh [3]).
In this paper the focus is on the complexity of the region enumeration algorithm, building

upon the papers by Drezner et al. [2] and Venkateshan [4].

2

The algorithm proposed by Drezner et al. relies upon a theorem stating thatn circumfer-
ences inℜ2 induce up to2n(n−1) distinct regions. Therefore the single-source optimal location
algorithm must be executed a quadratic number of times to findthe optimum of the SSWPLD.
The enumeration algorithm of Drezner et al. is based on the observation that each intersection
point between two circumferences is adjacent to four regions. For each intersection pointP
between two distinct circumferencesi ∈ N andj ∈ N , the setSP of circumferences different
from i andj that coverP is computed inO(n). Then, a setRP of four regions is generated:
RP = {SP , SP ∪{i}, SP ∪{j}, SP ∪{i, j}}. This procedure, repeated for all intersection points,
i.e.O(n2) times, generates the whole set of regionsR =

⋃

P RP in O(n3) time.
Unfortunately, this algorithm does not work correctly with“pathological” instances. One

possible reason is the presence of circumferences entirelyincluded in one another or disjoint
from all the others. Aloise et al. [1] showed how to correct the algorithm in order to cope with
instances with this structure. The complexity of their algorithm isO(n3) like that of Drezner et
al..

More recently, Venkateshan [4] pointed out the need for a further correction that is needed
because of instances in which more than two circumferences pass through the same intersection
point. In Venkateshan’s algorithm, given an intersection point P between circumferences, a
subsetSP is defined as the subset of circumferencesstrictly coveringP , while a subsetTP is
defined as the subset of circumferences passing throughP . A “small enough” neighborhood is
constructed aroundP and the intersections of the circumferences inTP with the frontier of the
neighborhood are computed. Then, following the frontier ofthe neighborhood one can correctly
enumerate the set of all relevant subsets ofTP , that correspond to the regions with a vertex inP .
The construction and analysis of the neighborhood requiresO(n4), suggesting that the need to
take into account the possible occurrence of degenerate intersections increases the complexity
of the region enumeration problem.

In this paper, in Section 2, it is shown that this is not the case, since the same result obtained
by Venkateshan’s method can be achieved with better computational complexity without actu-
ally constructing the neighborhoods, but just distinguishing the two sides of the circumferences
in TP , i.e. the interior and the exterior, and sorting the directions of their tangent lines accord-
ingly. In this way the enumeration of all relevant subsets takesO(n2 logn). However, after this
improvement the bottleneck of the overall enumeration algorithm is still the computation of all
subsetsSP , that requiresO(n3) in all algorithms devised so far.

In Section 3 a new region enumeration algorithm is illustrated: it does not require to compute
the subsetsSP and it allows to enumerate all regions inO(n2 log n).

It must be remarked that the true bottleneck in the solution of the SSWPLD is the need
of running the single-source optimal location algorithm for as many times as the number of
regions that are enumerated. A remarkable feature of the newalgorithm is that it guarantees to
enumerate all regions only once.

3

2 An improvement to existing algorithms

Pre-processing. A generic SSWPLD instance can be pre-processed for at least two purposes:
(i) merging pairs of circumferencesi ∈ N andj ∈ N with Oi = Oj andri = rj in a unique
circumference with the same center, the same radius and weight wi + wj; (ii) eliminating cir-
cumferences with radiusr = 0 or weightw = 0, since they have no effect on the value of
any solution. Such a pre-processing takesO(n logn) and it is not a computational complexity
bottleneck.

In the remainder the term “multiple intersection point” (abbreviated in m.i.p.) is used to
indicate a point inℜ2 where two or more circumferences intersect.

Given a m.i.p.P and the corresponding subsetTP of circumferences that intersect inP ,
the enumeration method proposed in [4] is based on the construction of a small enough circular
neighborhood ofP , such that there is no intersection other thanP between the circumferences
of TP within the neighborhood.

A neighborhood with this property certainly exists becausethere are no two circumferences
in TP with the same center and the same radius owing to pre-processing.

Given a m.i.pP and given a small enough neighborhood ofP with the property above,
let us indicate its radius withρP and its frontier withFP . For the definition of small enough
neighborhood and sinceρP is guaranteed to be strictly positive, the following observation holds.

Observation 1 Given a m.i.p.P and a small enough neighborhood ofP with frontierFP , the
intersection points of the circumferences inTP withFP are all distinct.

Assume to scanFP according to an arbitrary orientation (e.g. counter-clockwise) starting
from an arbitrary direction (e.g. the positivex semiaxis). Then, there exists a unique cyclic
order in which the intersection points with the circumferences inTP are encountered alongFP .
By cyclic order we mean a sequence in which the successor of the last element is the first one
and the predecessor of the first element is the last one. Two cyclic orders are defined to be equal
when they contain the same elements and each element has the same predecessor and successor
in both.

Let us indicate byei andli the directions fromP to the intersection points betweenFP and
each circumferencei ∈ TP , as shown in Figure 1. Assuming to scanFP counter-clockwise, the
intersection point corresponding toei is encountered when “entering” circumferencei ∈ N and
the intersection point corresponding toli is encountered when “leaving” it.

Obviously, the cyclic order of the intersection points is equal to the cyclic order of the cor-
responding directionse andl. We indicate such a cyclic order byLP . Note thatLP does not
depend onρP , although the position of the intersection points onFP does, because, by defini-
tion, any small enough neighborhood does not contain intersections between the circumferences
in TP , apart fromP .

The cyclic order of the intersection points alongFP is the piece of information needed to
correctly enumerate the regions aroundP , as shown by Venkateshan [4]. Here we observe that

4

i

j

P

FP

ei li

ej

lj

gi

gj

ei li

ej

lj

Figure 1: An intersection pointP between two circumferences, its neighborhood, the intersec-
tions along its frontierFP , the directionse, l, e andl. In this exampleLP = {lj , ei, ej, li}.

the same cyclic order can be computed in a slightly differentway, just by sorting the directions
of the tangent lines inP .

Let us callgi the direction fromP to the centerOi of each circumferencei ∈ TP . We
can easily obtain the directions of the lines tangent to circumferencei in P corresponding
to “entering” (ei) and “leaving” (li) the circumference whenF is scanned counter-clockwise:
ei = gi −

π
2

andli = gi +
π
2
, where all angles are computed modulo2π.

SinceFP is continuous and the circumferences are continuous, whenρP tends to0 the
intersection points onFP tend toP and thenei tends toei andli tends toli for eachi ∈ TP .
Therefore, there exists a cyclic orderLP of the directionse and l that coincides withLP , i.e.
these two properties hold: (i)LP can be obtained fromLP by replacingei with ei andli with li
for eachi ∈ TP ; (ii) LP is one of the possible cyclic orders in which directionse andl can be
sorted counter-clockwise.

Ties do not exist in the cyclic order of directionse and l, by Observation 1, but they can
occur in cyclic orders of directionse and l, because distinct circumferences inTP can have
coincident tangent lines. This can occur only whengi = gj ± π or whengi = gj. When ties
occur, the unique cyclic order of the tangent lines that corresponds toLP must be determined.
This is obtained by two simple tie-break criteria.

Tie-break criterion 1. For anyi 6= j ∈ TP such thatei = lj andej = li, lj precedesei and
li precedesej .

5

Tie-break criterion 2. For anyi 6= j ∈ TP such thatli = lj andei = ej with ri > rj, lj
precedesli andei precedesej.

Both criteria rely upon basic properties of tangent circumferences, illustrated in Figure 2.
Tie-break criterion 1 solves ties occurring whengi = gj ± π and it is illustrated in Figure 2 on
the left; tie-break criterion 2 solves ties occurring whengi = gj and it is illustrated in Figure
2 on the right. The two criteria allow to sort the directionse andl in a uniquely defined cyclic
orderLP equal to the unique cyclic orderLP of the directionse andl. In turn, this allows to
computeLP without computingLP and to obtain fromLP the same piece of information that
can be obtained fromLP .

i

j

P

FP

ei = lj

ei lj

i

j

P

FP

li = lj

ei = ej

lj

li

ei

ej

Figure 2: Tie-break criterion 1 (left): when leaving a circumferencej and entering a circumfer-
encei with gi = gj±π, directionlj is encountered beforeei. Tie-break criterion 2 (right): when
leaving circumferencesi andj with gi = gj andri > rj, directionlj is encountered beforeli;
when entering them,ei is encountered beforeej.

Venkateshan [4] described an algorithm to obtain the set of distinct regions around a m.i.p.
P , once the cyclic orderLP of the intersection points on its neighborhood frontier hasbeen
obtained. Here an alternative algorithm is described to achieve the same result fromLP . This
enumeration algorithm is outlined in Algorithm 1. The procedureScan is called for each m.i.p.
P ; its input is a sequenceVP , defined hereafter, and the setSP of circumferences strictly cover-
ingP as defined in [4]; its effect is to call the single-source optimal location algorithmEvaluate
for each region aroundP . For this purpose the cyclic orderLP of the directions fromP is
represented as a sequenceVP of 2c elements, withc = |TP |. The sequence is obtained starting
from an arbitrary element ofLP and replacingei with +i andli with −i for eachi ∈ TP .

In Scan, the sequenceVP is scanned twice. At any point during the execution a current
subsetQ of circumferences inTP is kept. Q is initialized at the empty set (line 2). WhenVP

6

is scanned for the first time (lines 3-8), for each element a circumference index in{1, . . . , n} is
inserted inQ or deleted fromQ: when the entering point of circumferencei is encountered (line
4), theni is inserted inQ (line 5); when the leaving point of circumferencei is encountered,
then if i ∈ Q (line 7), then it is deleted (line 8). It is trivial to prove that at the end of the first
scan,Q contains all indicesi ∈ TP for which−i precedes+i in VP and no indexi ∈ TP for
which+i precedes−i in VP . Therefore,Q correctly represents the subset of circumferences in
TP covering the points ofFP between the last element ofVP and the first one. This provides a
correct initialization for the second scan. During the second scan (lines 9-14) the same inser-
tion/deletion rule is applied, with the guarantee thati ∈ Q whenever−i is encountered. In this
way all regions aroundP are correctly identified and a single-source optimal location problem
is solved for each of them.

Algorithm 1 The enumeration algorithm to be executed for each m.i.p.P .
1: procedureScan(VP , SP)
2: Q← ∅
3: for t = 1, . . . , |VP | do
4: if VP [t] > 0 then
5: Q← Q ∪ {VP [t]}
6: else
7: if (−VP [t] ∈ Q) then
8: Q← Q\{−VP [t]}

9: for t = 1, . . . , |VP | do
10: if VP [t] > 0 then
11: Q← Q ∪ {VP [t]}
12: else
13: Q← Q\{−VP [t]}

14: Evaluate(Q ∪ SP)

Three examples are provided in Appendix 1, to show how the algorithm works in full detail.

2.1 Computational complexity

To establish the asymptotic worst-case time complexity of the region enumeration algorithm,
it is necessary to distinguish three main steps. In Step 1, one must compute the intersection
points for all pairs of distinct circumferences and one mustdetect when some of them coincide;
the output is a list of m.i.p.. In Step 2, for each m.i.p.P one must compute the setSP of
circumferences that strictly coverP . In Step 3, all regions with a vertex inP are enumerated
for each m.i.p.P and a single-source optimal location algorithm is run for each detected region.
Hereafter the worst-case time complexity of each of these three steps is analyzed.

7

Step 1. The set of intersection points between circumferences can be computed inO(n2). To
detect coincident intersections, intersection points canbe sorted so that coincident intersection
points turn out to be consecutive in the ordering. For instance, one can sort the intersection
points in lexicographical order according to thex value, using they value as a secondary cri-
terion in case of identicalx values. The intersection points areO(n2) and ordering a list of
O(n2) elements requiresO(n2 log n) time. After that, all subsetsTP for each m.i.p.P can be
identified inO(n2), by scanning the ordered list ofO(n2) elements and iteratively merging con-
secutive elements of the list when their positions coincide. Each merge operation takesO(1),
because it requires to check whether two circumferences already belong toTP and to insert
them if they are not already inTP ; insertion takes constant time if subsets are represented by
their binary characteristic vectors. Hence the asymptoticworst-case time complexity of Step 1
isO(n2 log n).

Step 2. For each m.i.p.P , listing the subsetSP of circumferences strictly covering it requires
O(n); therefore Step 2 has asymptotic worst-case time complexity O(n3). This is indeed the
complexity of the region enumeration algorithms proposed by Drezner et al. [2] and Aloise et
al. [1].

Step 3. This is the step on which we focus our study, because it is the bottleneck step in
Venkateshan’s algorithm [4]. We show that its complexity can be reduced fromO(n4) to
O(n2 log n).

Consider a m.i.p.P and the corresponding subsetTP of c circumferences intersecting in
P . Computing all directionsgi from P to Oi ∀i ∈ TP takesO(c). Computing all directionsei
andli takesO(c). Sorting the sequenceLP with 2c angle values takesO(c log c). ScanningLP

to enumerate all regions aroundP with Algorithm 1 takesO(c), since insertion and deletion
operations on lines 5, 8, 11 and 13 ofScan can be implemented asO(1) operations on a binary
array (whose initialization takesO(c)) and the number of iterations of the loops inScan is
bounded by2c.

ProcedureScan must be repeated for all m.i.p.. The number of m.i.p. grows asO(n2).
Therefore, the asymptotic worst-case complexity of Step 3,based on sorted tangent lines, is not
worse thanO(n3 log n), which is already an improvement with respect to theO(n4) complexity
of the algorithm based on the explicit construction of the neighborhood.

However, it is also possible to further refine the complexityanalysis of Step 3 to prove a
better bound. In a m.i.p.P , wherec > 2 circumferences intersect, a number of intersections
coincide. This number is the triangular number

∑c−1

h=1
h = c(c− 1)/2. Therefore, degeneration

actuallydecreasesthe computational complexity of the region enumeration problem, since a
quadratic number of intersection points is treated in a single point at the expense of a less-than-
quadratic overhead. To express this formally, we need to establish the following Theorem.

Theorem 1 Consider the multi-graphM = (V, E), defined byn intersecting circumferences,
whereV is the set of m.i.p. andE is the set of circumference arcs between them. Then,|E| grows
asO(n2).

8

Two proofs are given.

Proof 1. Consider the multi-graphM̃ = (Ṽ, Ẽ) obtained by a small perturbation of the
circumferences at the m.i.p. where more than two circumferences intersect, so that no degen-
erate intersections occur iñM. Then, all vertices inM̃ have degree4. The number of pairs of
distinct circumferences isn(n − 1)/2 and for each pair at most two intersection points exist.
Hence, the number of vertices iñM is not larger thann(n − 1). Since inM̃ all vertices have
degree4, the total degree inM̃ is bounded by4n(n − 1). Since each edge has two endpoints,
then |Ẽ | ≤ 2n(n − 1). By construction, all edges ofM have a counterpart inM̃, while the
converse does not hold: hence|E| ≤ |Ẽ|. Therefore, the number of edges inM is also bounded
above by2n(n− 1). �

Proof 2. For any given planar multi-graphM = (V, E) inducing a set of regionsR in ℜ2,
Euler formula holds:|E|+ 2 = |V|+ |R|. By Drezner et al. theorem|R| isO(n2). Since|V| is
alsoO(n2), then is|E| isO(n2). �

Corollary 1 The total degree of the vertices inV grows asO(n2).

This immediately follows from Theorem 1, since the total degree is twice the number of
edges.

The asymptotic worst-case time complexity of Step 3 is givenbyO(
∑K

k=1
ck log ck), where

K indicates the number of m.i.p. andck the number of circumferences intersecting in each
m.i.p. k = 1, . . . , K. Sinceck ≤ n ∀k = 1, . . . , K, and hencelog ck ≤ log n ∀k = 1, . . . , K,
a valid worst-case bound isO(logn

∑K

k=1
ck). The sum

∑K

k=1
ck is half the total degree of the

vertices of the multi-graphM defined above. For Corollary 1, such a total degree grows as
O(n2). Therefore an aymptotic worst-case bound for Step 3 isO(n2 logn).

The main conclusion of this complexity analysis is that degenerate intersections in the SSW-
PLD can be dealt with without worsening theO(n3) worst-case time complexity of the enumer-
ation algorithms proposed so far, that did not take degeneracy into account. The computational
complexity bottleneck in the enumeration is not due to degenerate intersections (affecting Steps
1 and 3), but rather to the need of checking whether each givencircumference covers each m.i.p.
in Step 2. All algorithms proposed so far requireO(n3) time complexity for this crucial step.
The next section describes a new enumeration algorithm thatdoes not require this step and has
O(n2 log n) complexity.

3 A new algorithm

A set of intersecting circumferences induces one or more planar multi-graphs inℜ2. Their
verticesare m.i.p., i.e. subsets of intersection points between pairs of circumferences. When

9

two or more intersection points coincide, they belong to thesame vertex. We calledgesthe
circumference arcs between adjacent vertices. We further remark that the multi-graphs induced
by the circumferences are planar by definition, i.e. there isno other intersection between edges
apart from vertices.

The new algorithm runs in four steps. In Step 1 all intersection points are enumerated and
they are sorted to find coincident intersections; they are the vertices of a set of planar multi-
graphs. In Step 2 the vertices occurring along each circumference are sorted according to a
given orientation and this allows to identify all edges of the multi-graphs and to compute the
star of each vertex. In Step 3 the circumference arcs incident to each vertex are sorted, so that
the star of each vertex can be scanned according to a given orientation. In Step 4 each planar
multi-graph is visited with a depth-first-search algorithmand all regions are enumerated.

3.1 Step 1: Enumeration of vertices

First of all, in order to compute the planar multi-graphs mentioned above, it is necessary to
find their vertices, i.e. all subsets of coincident intersection points. For the sake of clarity, the
description of this step is broken into three sub-steps.

3.1.1 Step 1.1: Enumeration of intersection points

The first sub-step of the algorithm is the enumeration of all intersection points between pairs of
distinct circumferences and it is described inIntersections in Algorithm 2.

Algorithm Intersections has three main effects: first, a subsetΩ(i) of enclosing circum-
ferences is computed for each circumferencei ∈ N ; second, a flagf(i) is set for each cir-
cumferencei ∈ N , stating whether the circumference intersects at least another one or it is
isolated; third, a listΛ of all intersection points is produced, by considering all pairs of distinct
circumferences.

All setsΩ are initially empty. When the test on line 8 succeeds, then one of the two circum-
ferencesi andj is strictly enclosed in the other; then, the subsetΩ of the smallest circumference
is updated to include the largest circumference and no intersection point is computed.

All flags f are initially set to false. If the test on line 8 fails and the test on line 14 succeeds,
then circumferencesi andj have two (possibly coincident) intersection points; therefore their
flagsf(i) andf(j) are set to true. The two intersection points are identified asP (i, j) and
P (j, i) for each pair of circumferencesi and j with i < j. Assume all circumferences are
followed counter-clockwise. Then, as shown in Figure 3,P (i, j) is where circumferencei
enters circumferencej and circumferencej leaves circumferencei, while the converse occurs
in P (j, i). The coordinates of the two intersection points are computed in constant time by
a suitable functionIntersect() (line 15). Then, they are added to the listΛ of all intersection
points (line 18). Each element ofΛ is a record with four fields[i, j, x, y], representing the
entering circumference, the leaving circumference and thecoordinates of the intersection point.

If both tests fail, then circumferencesi andj are disjoint and no update occurs toΩ, f and
Λ.

10

Algorithm 2 The algorithm that enumerates all intersection points and all enclosing circumfer-
ences.

1: procedure Intersections IN: O, r. OUT: Ω, f,Λ
2: for i = 1, . . . , n do
3: f(i)← false

4: Ω(i)← ∅

5: Λ← ∅
6: for i = 1, . . . , n− 1 do
7: for j = i+ 1, . . . , n do
8: if (d(Oi, Oj) < |ri − rj|) then
9: if ri > rj then

10: Ω(j)← Ω(j) ∪ {i}
11: else
12: Ω(i)← Ω(i) ∪ {j}

13: else
14: if (d(Oi, Oj) ≤ ri + rj) then
15: [P (i, j), P (j, i)]← Intersect(i, j)
16: f(i)← true

17: f(j)← true

18: Λ← Λ ∪ {[i, j, x(P (i, j)), y(P (i, j))], [j, i, x(P (j, i)), y(P (j, i))]}

i

j
P (i, j)

P (j, i)

Figure 3: Intersection points between two circumferences.

The complexity ofIntersections isO(n2) due to the two nested loops (lines 6-7) that contain
O(1) operations.

3.1.2 Step 1.2: Ordering the intersection points

Step 1-2 is quite simple to describe, but it turns out to be a bottleneck of the whole region
enumeration algorithm. It consists of ordering the listΛ of the intersection points according to

11

any arbitrary criterion, so that coincident points occur inconsecutive positions in the ordered
list. In this way, it is possible to enumerate the vertices ofthe multi-graphs induced by the
intersecting circumferences.

For instance, the points inΛ can be sorted by non-decreasing values ofx and ties can be
broken by sorting them by non-decreasing values ofy.

Since|Λ| isO(n2), the complexity of sorting the intersection points isO(n2 logn).

3.1.3 Step 1.3: Enumeration of vertices

For notational convenience, we assume here that the sorted list Λ is transformed into an array.
The sorted arrayΛ is scanned to find the vertices; this is done byFindVertices, illustrated in
Algorithm 3. Indicest′ andt′′ are used to find the first and last position of the elements in each
subset of coincident points. The integerv indicates the number of vertices found.

Algorithm 3 The algorithm that enumerates the vertices of the multi-graphs.
1: procedureFindVertices. IN: Λ. OUT: x, y, T , v
2: v ← 0
3: t′ ← 1
4: while t′ ≤ |Λ| do
5: t′′ ← t′ + 1
6: while (t′′ ≤ |Λ|) ∧ (Λ[t′′].x = Λ[t′].x) ∧ (Λ[t′′].y = Λ[t′].y) do
7: t′′ ← t′′ + 1

8: v ← v + 1
9: x(v)← Λ[t′].x

10: y(v)← Λ[t′].y
11: T (v)← ∅
12: for h = t′, . . . , t′′ − 1 do
13: T (v)← T (v) ∪ {Λ[h].i,Λ[h].j}

14: t′ ← t′′

For each vertexk = 1, . . . , v, x(k) andy(k) are its coordinates whileT (k) is the set of all
circumferences passing through it. Each setT (k) can be implemented as a balanced tree: in this
way duplicates can be detected so that each circumference appears only once in it. This implies
that inserting an element inT (k) (line 13 ofFindVertices) hasO(logn) complexity.

Since|Λ| isO(n2), the complexity ofFindVertices is O(n2 log n).
Therefore the overall worst-case time complexity of Step 1 isO(n2 logn).

3.2 Step 2: Enumeration of edges

In Step 2, vertices are sorted according to the order in whichthey are encountered when moving
along each circumference counter-clockwise. For the sake of clarity, the description of Step 2
is broken into three sub-steps.

12

3.2.1 Step 2.1: Enumeration of the vertices along each circumference

For each circumferencei ∈ N , a setW (i) of vertices is computed. This is done byEnumerateVertices,
illustrated in Algorithm 4. The list of all verticesk = 1, . . . , v is scanned: for each circumfer-
encei ∈ N that occurs inT (k), an elementk is inserted in the subsetW (i).

Algorithm 4 The algorithm that enumerates all vertices along each circumference.
1: procedureEnumerateVertices. IN: T , v. OUT: W
2: for i ∈ N do
3: W (i)← ∅

4: for k = 1, . . . , v do
5: for i ∈ T (k) do
6: W (i)←W (i) ∪ {k}

Every time a vertex is found to belong to a circumference, it contributes by an amount of2
to the total degree of the multi-graphs. Since the total degree of the multi-graphs isO(n2), the
insertion on line 6 is doneO(n2) times and therefore the time complexity ofEnumerateVertices

is alsoO(n2).

3.2.2 Step 2.2: Sorting the vertices along each circumference

Each circumferencei ∈ N is examined separately. For each vertexk in W (i) the direction from
Oi to the point of coordinates(x(k), y(k)) is considered and the corresponding angleα(i, k)
is computed. Functionarctan() is assumed to return a value in[0, 2π) computed counter-
clockwise from the positivex semiaxis (line 4). Then the subsetW (i) is sorted by increasing
values ofα. No tie can occur in the order, because by construction all vertices are distinct and
distinct points along a circumference are guaranteed to produce distinct values ofα. Step 2.2 is
executed bySortVertices illustrated in Algorithm 5.

Algorithm 5 The algorithm that sorts the vertices along each circumference.
1: procedureSortVertices. IN: W . OUT: W
2: for i = 1, . . . , n do
3: for k ∈ W (i) do
4: α(i, k)← arctan(Oi, (x(k), y(k)))

5: W (i)← Sort(W (i))

As already shown in Subsubsection 3.2.1, the number of(i, k) pairs in the multi-graphs is
O(n2). Therefore the number of calls toarctan() is O(n2). The time complexity bottleneck is
given by the sorting operation: sorting the vertices takesO(|W (i)| log |W (i)|) for each circum-
ferencei ∈ N . Since|W (i)| ≤ 2(n − 1) ∀i ∈ N and

∑n

i=1
|W (i)| ≤ 2n(n − 1), the time

complexity ofSortVertices is O(n2 log n). As for Step 1.2, this is a computational complexity
bottleneck of the new enumeration algorithm.

13

3.2.3 Step 2.3: Building vertex stars

The structure of the multi-graphs is finally produced by connecting the vertices with circumfer-
ence arcs. Once the list of vertices along each circumference has been sorted in Step 2.2, this
information is used to build a suitable data-structureH for each vertex, representing the star of
the vertex, i.e. the ordered set of edges with an endpoint in that vertex. For a generic vertex
k each element in its starH(k) is a triplet (i, γ, h), wherei is the index of a circumference
passing through the vertex,γ is a bit representing “counter-clockwise” with1 and “clockwise”
with 0, andh is the index of the vertex that is reached from vertexk following circumferencei
in directionγ.

The pseudo-code ofBuildStar is shown in Algorithm 6. The setH(k) is initialized to the
empty set for each vertexk (line 3). Then, each circumference is considered and each pair of
consecutive verticesk′ andk′′ is considered along it, scanningW (i) as a circular list so that also
the last element and the first one form a consecutive pair (line 6). Finally the edge betweenk′

andk′′ is inserted inH(k′) as a counter-clockwise edge enteringk′′ and inH(k′′) as a clockwise
edge enteringk′. As a special case, it is possible thatW (i) contain a single vertexk. In this
case two edges are inserted inH(k) with opposite directionsγ and with the second endpoint
equal tok.

Algorithm 6 The algorithm that builds the star of each vertex.
1: procedureBuildStar. IN: W . OUT: H
2: for k = 1, . . . , v do
3: H(k)← ∅

4: for i ∈ N do
5: for k′ ∈ W (i) do
6: k′′ ← succ(k′)
7: H(k′)← H(k′) ∪ {(i, 1, k′′)}
8: H(k′′)← H(k′′) ∪ {(i, 0, k′)}

The complexity for scanning all theW subsets isO(n2), as already observed above. The
total number of elements in subsetsH is twice the total number of edges in the multi-graphs
since each edge is inserted in two stars. Hence, the time complexity of BuildStar isO(n2).

3.3 Step 3: Sorting vertex stars

The subsetsH computed in Step 2 indicate which edges of the multi-graphs are incident to each
vertex. The aim of Step 3 is to sort the stars, so that consecutive edges belong to the frontier of
a same region, owing to the planarity of the multi-graphs. This step is necessary to enumerate
the regions while visiting the multi-graphs.

For the sake of clarity, the description of Step 3 is broken into two sub-steps.

14

3.3.1 Step 3.1: Computing edge directions

A directionβ(k, i, γ) is associated with each edge along a circumferencei ∈ N and belonging
toH(k) for some vertexk = 1, . . . , v: it is the direction of the line tangent to the circumference
i in vertexk, orientedfrom the vertex in directionγ. The tangent certainly exists, because pre-
processing guarantees that all circumferences have strictly positive radius. As before, angles
are computed counter-clockwise starting from the direction of the positivex semiaxis. The
computation is done byComputeDirections, shown in Algorithm 7. The effect of this procedure
is to add a fourth fieldβ to the three-field records(i, γ, h) in the subsetH(k) ∀k = 1, . . . , v
(line 8).

Algorithm 7 The algorithm that computes a direction for each edge in eachvertex star.
1: procedureComputeDirections. IN: H , O, (x, y). OUT: β
2: for k = 1, . . . , v do
3: for (i, γ, h) ∈ H(k) do
4: if γ = 1 then
5: β ← (arctan(Oi, (x(k), y(k))) + π/2) mod 2π
6: else
7: β ← (arctan(Oi, (x(k), y(k)))− π/2) mod 2π

8: Replace(i, γ, h) with (i, γ, h, β)

Since the total number of elements in the subsetsH isO(n2), the complexity ofComputeDirections

isO(n2).

3.3.2 Step 3.2: Sorting the edges

For each vertexk = 1, . . . , v, its starH(k) is sorted counter-clockwise, according to the values
of the angleβ of each incident edge. However, ties may occur, because it may happen that two
or more circumferences have the same tangent lines in their intersection points. In these cases
the following criteria are used to break ties.

Tie-break criterion 3. Given a tie between two edges(i, 0, β) and(j, 1, β), (i, 0, β) must
precede(j, 1, β) in H(k).

Tie-break criterion 4. (a) Given a tie between two edges(i, 0, β) and(j, 0, β) with ri < rj,
(i, 0, β) must precede(j, 0, β) in H(k). (b) Given a tie between two edges(i, 1, β) and(j, 1, β)
with ri < rj, (j, 1, β) must precede(i, 1, β) in H(k).

The above criteria are quite similar to those illustrated inSection 2 and they have the same
meaning. Their justification is trivial and it is illustrated in Figure 4.

The resulting sorted listH(k) for eachk = 1, . . . , v is managed as a circular array, so that
the successor of the last element is the first one.

15

j, 1

i, 0

j, 0

j, 1

i, 0

i, 1

Figure 4: Sorting edges with the same tangent line in a vertexstar. Left: Tie-break criterion 3
is applied to break ties between(i, 0, β) and(j, 1, β). Right: Tie-break criterion 4 is applied to
break ties between(i, 0, β) and(j, 0, β) and between(i, 1, β) and(j, 1, β).

The effect of Step 3 is to sort the edges inH(k) in the same order as they would be encoun-
tered moving counter-clockwise along the frontier of a small enough neighborhood of vertexk.
Consequently, consecutive edges inH(k) belong to the contour of a same region.

There areO(n2) vertices and there are|H(k)| edges in each vertex star. The complexity
for sorting all vertex stars isO(

∑v

k=1
|H(k)| log |H(k)|). Since|H(k)| ≤ 2n ∀k = 1, . . . , v

and
∑v

k=1
|H(k)| ≤ 4n(n− 1), the time complexity of Step 3.2 isO(n2 log n). Together with

the sorting steps 1.2 and 2.2, this is the third computational complexity bottleneck of the new
algorithm.

3.4 Step 4: Region enumeration

Besides multi-graphs, the set of given circumferences of a SSWPLD instance may also con-
tain isolated circumferences, i.e. circumferences with nointersections with others. It is also
possible that some multi-graphs or isolated circumferences are completely enclosed in other
multi-graphs or isolated circumferences. In order to correctly deal with all these cases, we need
some preliminary observations.

We define aconnected componentto be either a multi-graph or an isolated circumference.
Each circumference belongs to exactly one connected component. We indicate byφ(i) ⊆ N
the connected component of circumferencei; it exists and it is unique for eachi ∈ N . With
this definition, an isolated circumference is just a specialcase of a connected component made
of a single circumference.

16

As shown in the introduction, in order to correctly solve theSSWPLD it is necessary and
sufficient to enumerate all regions ofℜ2 induced by all connected components. The set of
points not enclosed in any connected component is of no interest, because it cannot contain the
optimal solution. Actually, it is the set of the worst solutions of the SSWPLD, wherez attains
its maximum value

∑

i∈N wiri.
Non-overlapping connected components induce disjoint sets of regions, that can be enumer-

ated independently. Their union is the whole set of regions that must be enumerated.
Step 4 visits the whole set of input circumferences, one connected component at a time. If a

connected component is a multi-graph, then it is completelyvisited and all its internal regions
are enumerated. The pseudo-code ofComponents is shown in Algorithm 8.

Algorithm 8 The algorithm that enumerates all connected components.
1: procedureComponents

2: N ← SortCircles(N)
3: µ← 0
4: for k ∈ 1, . . . , v do
5: µ(k)← 0

6: while N 6= ∅ do
7: i∗ ← Rightmost(N)
8: Q← Ω(i∗)
9: if f(i∗) then

10: /* Multi-graph */
11: k ←W (i∗)1
12: µ← µ+ 1
13: µ(k)← µ
14: ScanStar(k, i∗, 1)
15: else
16: /* Isolated circumference */
17: Flip(i∗)
18: Evaluate(Q)
19: N ← N\{i∗}

A setN , implemented as a binary array, is initialized to the set of all given circumferences
N . Then, every time a connected component is examined, all itscircumferences are deleted
from N as soon as they are encountered during the visit (see line 19 of Components and line
6 of ScanStar). The algorithm terminates whenN is empty (line 6 ofComponents). This
guarantees that all connected components are examined once. Algorithm SortCircles (line 2 of
Components) initially sorts the circumferences inN by non-increasing value of the abscissa of
their rightmost point. In case of ties, the circumferences are sorted by decreasing values of their
radius. In case of further tie the selection is done at random. At each iteration of the loop on
lines 6-19 ofComponents a rightmost unvisited circumferencei ∈ N is selected by the function

17

Rightmost (line 7 ofComponents) and its connected component is examined.
In this paragraph we indicate byCi the subset made of a single circumferencei ∈ N , i.e.

Ci = {i}. To indicate that a circumference encloses another one or a whole connected compo-
nent, we use the symbol⊐. By “enclosing” we mean “strictly covering”: for a circumferenceC
and a connnected componentφ, C ⊐ φ if and only if all points ofφ are withinC and no point
of C belongs toφ. Recall thatΩ(i) ⊂ N , computed in Step 1, is the subset of circumferences
that strictly enclose each circumferencei ∈ N , i.e. Ω(i) = {j ∈ N : Cj ⊐ Ci} ∀i ∈ N . With
these definitions the set of all circumferences strictly enclosing the connected componentφ(i)
is determined by the following property.

Theorem 2 If circumferencei ∈ N is the rightmost circumference in its connected component
φ(i), thenΩ(i) is the set of circumferences that strictly encloseφ(i):

j ∈ Ω(Rightmost(φ))⇔ Cj ⊐ φ.

Proof. (i) Assumej ∈ Ω(Rightmost(φ)). ThenCj ⊐ Ci ∀i ∈ φ. Let i∗ = Rightmost(φ).
So, in particularCj ⊐ Ci∗. By contradiction, assume thatj ∈ φ. ThenCj ⊐ Ci∗ implies that
j precedei∗ in N , i.e. i∗ cannot beRightmost(φ). Hence, it is proven by contradiction that
(j ∈ Ω(Rightmost(φ))) ⇒ j 6∈ φ. If j 6∈ φ andCj ⊐ Ci∗ with i∗ = Rightmost(φ), then
Cj ⊐ φ becauseφ is connected and it cannot intersect circumferencej.

(ii) AssumeCj ⊐ φ. ThenCj ⊐ Ci ∀i ∈ φ. In particularCj ⊐ Ci∗ for i∗ = Rightmost(φ).
Thereforej ∈ Ω(Rightmost(φ)). �

Theorem 2 justifies the initialization of the current regionQ (more on it later) on line 8
of Components: Q is initialized as the set of circumferences enclosing the current connected
componentφ(i∗), with i∗ = Rightmost(N). They belong to all regions enumerated while the
connected componentφ(i∗) is visited.

Once a rightmost circumferencei∗ ∈ N has been detected, two cases may occur, depending
on whether the circumference has intersections or not: thisis indicated by the flagf(i∗) (line
9 of Components) computed in Step 1. If circumferencei∗ has intersections, then its multi-
graph is visited (lines 11-14 ofComponents); if circumferencei∗ has no intersections, then it is
directly processed (lines 17-19 ofComponents).

Multi-graphs. In order to visit multi-graphs, an additional data-structure is needed. An in-
tegerµ(k) is associated with each vertexk = 1, . . . , v, to indicate the sequence in which the
vertices are visited. It is initialized at0 (meaning “not visited”) in the loop on lines 4-5 of
Components. A counterµ of visited vertices is kept. It starts from0 (line 3 ofComponents);
every time a vertexk is visited for the first timeµ is increased by1 andµ(k) is set toµ (see
lines 12 and 13 ofComponents and lines 9 and 10 ofScanStar).

When the test on line 9 ofComponents succeeds, a depth-first-search algorithm is initialized.
By construction, the first vertex in the sorted subsetW (i) is the first vertex that is encountered

18

moving along circumferencei counter-clockwise starting from its rightmost point. Thisvertex
is indicated byW (redi∗)1 on line 11 ofComponents. The multi-graph is visited by recursive
calls to the procedureScanStar, shown in Algorithm 9. The initial call for each multi-graph
occurs on line 14 ofComponents. The depth-first-search algorithm that visits a multi-graph is
described in Subsubsection 3.4.1.

Isolated circumferences. Whenφ(i∗) consists of an isolated circumference, the internal re-
gion is computed by adding elementi∗ to subsetQ (line 17 ofComponents), by flipping its
componenti∗, as explained in the remainder. Then, the internal region isenumerated, i.e. the
single-source optimal location algorithmEvaluate is called (line 18); finallyi∗ is deleted from
N (line 19).

3.4.1 Depth-first-search visit to multi-graphs

In the circular arrayH(k), representing the sorted star of each vertexk = 1, . . . , v, each edge
incident tok has a successor (see line 4 ofScanStar). Exploiting this ordering, it is possible to
visit all edges of the planar multi-graphs induced by a set ofintersecting circumferences. The
visit is done with a depth-first-search algorithm. Every time a vertex is reached for the first
time, its star is scanned counter-clockwise starting from the successor of the edge from which
the vertex has been reached. Each edge in the star of the vertex is traversed. If and only if the
other endpoint of the edge has not yet been visited, then a recursive call is made to scan its star.
This guarantees that each star is scanned at most once and therefore each edge is traversed at
most twice.

The recursive procedureScanStar uses three parameters: the first parameter,k, indicates
the vertex whose star must be scanned; the second parameter,i, indicates the circumference
of the edge traversed to reach vertexk; the third parameter,γ, indicates the direction in which
circumferencei has been traversed to reach vertexk: 1 stands for “counter-clockwise” and0
stands for “clockwise”. These three parameters are passed by value, i.e. they are local to each
instance ofScanStar which means that a copy is created for each call toScanStar.

WhenScanStar is called the first time inComponents on line 14, the second parameter is
the circumference with the rightmost point of the multi-graph, the first parameter is the first
vertex along it (thestart vertex, in the remainder) and the third parameter indicates “counter-
clockwise”.

When ScanStar(k, i, γ) is executed, the circular arrayH(k) is searched with procedure
FindEdge (line 2) to find the positiont that corresponds to the edge that has been traversed
to reach vertexk: it is the edge leaving vertexk along circumferencei in direction opposite to
γ. Such an edge certainly exists and is unique, because by constructionH(k) contains exactly
two records(i, 0, ∗) and(i, 1, ∗) for each circumferencei passing through vertexk.

Then, all the other|H(k)| − 1 edges in the star of vertexk are sequentially scanned in the
loop on lines 3-17. Each edge inH(k) is represented by a triple(j, γ′, h), wherej is the index
of the circumference to which the edge belongs,γ′ indicates the direction along which the edge

19

Algorithm 9 The recursive procedure that scans the star of a vertex of a multi-graph.
1: procedureScanStar(k, i, γ)
2: t← FindEdge(k, i, 1− γ)
3: for p = 1, . . . , |H(k)| − 1 do
4: t← t mod |H(k)|+ 1
5: (j, γ′, h)← H(k)[t]
6: N ← N\{j}
7: if µ(h) = 0 then
8: /* Forward edge */
9: µ← µ+ 1

10: µ(h)← µ
11: ScanStar(h, j, γ′)
12: else
13: /* Backtrack edge */
14: Flip(j)
15: if (µ(h) < µ(k)) ∨ ((µ(h) = µ(k)) ∧ (γ′ = 1)) then
16: /* First traversal */
17: Evaluate(Q)

is traversed from vertexk to the other endpoint andh is the index of the other endpoint (line 5).
Three cases can occur. Ifµ(h) = 0 (line 7), then vertexh has not yet been visited; in this case

ScanStar is recursively called to scan the star of vertexh (line 11). Otherwise, the algorithm
backtracks fromh to k and the current regionQ is updated as explained in the remainder (line
14). If the test on line 15 succeeds, then the edge fromk to h has been traversed for the first
time (as explained later); in this case a region is enumerated (line 17). Otherwise, the edge had
already been traversed before and the second traversal has no effect.

In all cases, when the algorithm backtracks to nodek, it proceeds to the next edge in the star
of vertexk counter-clockwise (line 4).

Traversing the edges. The following observations characterize some useful properties of the
depth-first-search algorithm that traverses the edges of a multi-graph.

Observation 2 Since vertex stars are completely scanned, and since each multi-graph is by
definition connected, all vertices in the multi-graphs are visited and all edges in the multi-
graphs are traversed.

Observation 3 The depth-first-search algorithm defines an orientation of the edges, that indi-
cates the direction in which each edge is traversed the first time. Since all edges are traversed,
all edges are oriented.

Consider a directed multi-graph defined by the orientation of its edges and let us distinguish
betweenforward edgesandbacktrack edges. Consider a generic edge traversed by depth-first-

20

search for the first time. Let us callk its tail vertex andh its head vertex. Ifµ(h) = 0, then the
edge is a forward edge; otherwise, it is a backtrack edge.

Observation 4 Since all vertices of the multi-graph are reached for the first time once, then
each vertex has one forward edge entering it, with the only exception of the start vertex which
has none.

Observation 5 Forward edges cannot form directed circuits, sinceµ(h) > µ(k) for all forward
edges fromk to h.

Theorem 3 The set of forward edges forms a spanning arborescence rooted at the starting
vertex.

Proof. The proof directly follows from Observation 4 and Observation 5.�

Updating the current region. Let us indicate withright(e) and left(e) the regions on the
right side and the left side of a generic edgee according to its orientation. “Right” and “left”
are well-defined owing to the planarity of multi-graphs and the unique orientation of all edges.

The algorithm uses a global variable, namely a subsetQ, representing thecurrent region.
The subset is assumed to be represented by a binary vector, sothat inserting or deleting an
element is done inO(1) by flipping the corresponding bit. This is done by the procedure Flip

(see line 17 ofComponents and line 14 ofScanStar).

Observation 6 Two adjacent regions separated by an edge belonging to circumferencej cor-
respond to subsets that differ only by the componentj.

Hence, flippingQ[j] corresponds to moving from the region on one side of an edge belong-
ing to circumferencej ∈ N to the region on the other side.

The algorithm updates the current regionQ according to the following rule.

Rule 1. Q[j] is flipped if and only if a backtrack occurs on an edge along circumference
j ∈ N (line 14 ofScanStar).

Detecting second traversals. No attempt is made to traverse forward edges for the second
time, because the starH(k) of the head vertexk of a forward edgee is scanned only up to the
edge precedinge (see line 3 ofScanStar).

On the contrary, backtrack occurs twice on each backtrack edge, since each backtrack edge
is traversed twice by the depth-first-search algorithm, However, for the analysis of the algorithm
presented hereafter it is necessary to detect when a backtrack edge is traversed for the first time
and when not.

21

For this purpose, let us define a vertex asopenonce it has been reached by a forward edge
andclosedwhen its star has been completely scanned. Let us indicate bycurrent vertex the
vertexk when an edge fromk toh is traversed. By definition of depth-first-search, the following
observation holds.

Observation 7 The current vertex is the vertex with maximum value ofµ among all open ver-
tices.

Theorem 4 If a backtrack edge is traversed the first time and its orientation is from vertexk to
vertexh, thenµ(h) ≤ µ(k).

Proof. When an edge fromk to h is traversed the first time,k is the current vertex. Since the
edge belongs also toH(h) and it has not yet been traversed fromh to k, this implies thath is
also open. Therefore, by Observation 7,µ(k) ≥ µ(h). �

As a consequence of Theorem 4, when the two endpoints of a backtrack edge are differ-
ent, the second traversal of the edge can be easily detected by comparing theµ values of its
endpoints: ifµ(h) < µ(k) then the backtrack edge fromk to h is traversed the first time;
if µ(h) > µ(k) then the backtrack edge fromk to h is traversed the second time. When
µ(h) = µ(k), the edge is a self-loop.

Observation 8 The unique vertexk of a self-loop on a circumferencei ∈ N cannot be reached
from any forward edge within circumferencei.

This immediately follows from the observation that the rightmost point of the multi-graph can-
not be in the circumference. Therefore, whenH(k) is scanned counter-clockwise the edge
corresponding to traversing the self-loop counter-clockwise is always encountered before the
edge corresponding to traversing the self-loop clock-wise. This is also illustrated by the ex-
ample shown in Figure 17 in Appendix 2. Hence, the test for detecting when a self-loop is
traversed the first time isγ′ = 1.

Justified by the Theorem 4 and Observation 8, the tests on lines 7 and 15 ofScanStar corre-
spond to the following rule.

Rule 2. The current regionQ is enumerated if and only if it is on the left side of a backtrack
edge traversed the first time (line 17 ofScanStar).

Enumerating the regions. Exploiting the planarity property of the multi-graphs, thedepth-
first-search algorithm transforms the guarantee of traversing all edges into the guarantee of
enumerating all regions within them. To prove the properties of the algorithm we need some
preliminary definitions and observations.

Let us defineforward movesandbackward moves, occurring respectively when the depth-
first-search algorithm traverses an edge and when it backtracks along an edge. Let us associate

22

a natural numberν with each move corresponding to the order in which moves occur during
the visit of the multi-graph. Let us indicate withe(ν) the edge along which moveν occurs.
Let us indicate withright(ν) and left(ν) the regions on the right side and the left side with
respect to the move. Note thatright(ν) = right(e(ν)) and left(ν) = left(e(ν)) if and only
if e(ν) is traversed for the first time, according to its orientation, while right(ν) = left(e(ν))
and left(ν) = right(e(ν)) if and only if e(ν) is traversed for the second time, opposite to its
orientation.

Let us indicate withR(ν) the set of regions enumerated by the depth-first-search algorithm
up to moveν and byQ(ν) the current region when moveν is done. For initialization purposes,
we introduceR(0) to indicate the region surrounding the current multi-graph(for which there
is no need to callEvaluate). We observe thatR(ν ′) ⊆ R(ν ′′) ∀ν ′ < ν ′′ sinceR is only subject
to insertions, not to deletions.

Theorem 5 For each forward moveν, Q(ν) = right(ν) ∈ R(ν − 1) (right property). For each
backward moveν, Q(ν) = left(ν) ∈ R(ν) (left property).

Proof. The proof is by induction. We assume that the two properties hold for all moves up to
moveν − 1 and we prove that they must hold for moveν.

Basis of the induction: the right property holds forν = 1. By the initialization ofQ,
Q(1) = Ω(i), whereΩ(i) is the external region surrounding the current multi-graph. By con-
struction, the external region is guaranteed to be the region on the right side of the first traversed
edge, i.e.Ω(i) = right(e(1)). The edge traversed by moveν = 1 is certainly traversed for the
first time; henceright(1) = right(e(1)). By the initialization,R(0) = Ω(i). Hence the right
property holds for the first forward move.

To prove the induction step we distinguish four cases, depending onν − 1 andν being for-
ward or backward moves.

Case I: moveν − 1 is forward and moveν is forward. In this casee(ν − 1) ande(ν) be-
long to the star of a same vertexk ande(ν − 1) is the forward edge enteringk. Since edge
e(ν − 1) is a forward edge, thenk is reached for the first time when it is reached along edge
e(ν − 1). Therefore edges incident tok are not traversed by any moveν ′ < ν − 1. Then
e(ν − 1) ande(ν) are traversed according to their orientations:right(ν − 1) = right(e(ν − 1))
andright(ν) = right(e(ν)). Edgee(ν) is the edge next toe(ν − 1) in H(k) counter-clockwise.
Henceright(e(ν)) = right(e(ν − 1)) (see Figure 5). By the induction hypothesis,Q(ν − 1) =
right(ν−1) ∈ R(ν−2). By Rule 1,Q(ν) = Q(ν−1). By construction,R(ν−2) ⊆ R(ν−1).
The combination of the equations above impliesQ(ν) = right(ν) ∈ R(ν − 1). So, the right
property holds for the forward moveν.

Case II: moveν − 1 is forward and moveν is backward. In this casee = e(ν − 1) = e(ν)
is a backtrack edge.

23

k

ν − 1

ν

Q(ν − 1) = Q(ν)

Figure 5: Case I: both movesν − 1 andν are forward moves:right(ν − 1) = right(ν) and
Q(ν − 1) = Q(ν).

If e is traversed for the first time,right(ν − 1) = right(e) and left(ν) = left(e). By the
induction hypothesis,Q(ν − 1) = right(ν − 1). By Rule 1, componente is flipped: hence
Q(ν − 1) = right(e) impliesQ(ν) = left(e). The combination of the equations above implies
Q(ν) = left(ν) (see Figure 6). By Rule 2, ife is traversed for the first time,Q(ν) is inserted in
R(ν). HenceQ(ν) = left(ν) ∈ R(ν).

If e is traversed for the second time, thenright(ν − 1) = left(e), left(ν) = right(e). By
the induction hypothesis, the right property holds up toν − 1, i.e. Q(ν − 1) = right(ν − 1) ∈
R(ν−2). By Rule 1, componente is flipped: henceQ(ν−1) = left(e) impliesQ(ν) = right(e).
The combination of the equations above impliesQ(ν) = left(ν). If e = e(ν − 1) is visited
for the second time, there exists a forward moveν ′ < ν − 1 such thate = e(ν ′). By the
induction hypothesis,Q(ν ′) = right(ν ′) ∈ R(ν ′ − 1); moreoverright(ν ′) = right(e), because
ν ′ is a forward move traversinge for the first time. By Rule 2,R(ν) = R(ν − 1). Therefore
Q(ν) = left(ν) = right(e) = right(ν ′) ∈ R(ν ′ − 1) ⊆ R(ν).

So, in both cases the left property holds for the backward moveν.

ν − 1ν

Q(ν − 1)Q(ν)

e

Figure 6: Case II: moveν − 1 is forward and moveν is backward along the same edgee:
left(ν − 1) = left(ν), right(ν − 1) = right(ν) and{e} is the symmetric difference between
Q(ν − 1) andQ(ν).

Case III: moveν − 1 is backward and moveν is forward. In this casee(ν − 1) and
e(ν) belong to the star of a same vertexk and e(ν) is next toe(ν − 1) in H(k) counter-

24

clockwise. Henceleft(ν − 1) = right(ν) (independently of the orientation of the edges). For
the induction hypothesisQ(ν − 1) = left(ν − 1) and by Rule 1Q(ν) = Q(ν − 1). Hence
Q(ν) = Q(ν − 1) = left(ν − 1) = right(ν) (see Figure 7). For the induction hypothesis
Q(ν − 1) ∈ R(ν − 1). HenceQ(ν) = Q(ν − 1) ∈ R(ν − 1). So, the right property holds for
the forward moveν.

k

ν − 1
ν

Q(ν − 1) = Q(ν)

Figure 7: Case III: moveν − 1 is backward and moveν is forward: left(ν − 1) = right(ν) and
Q(ν − 1) = Q(ν).

Case IV: moveν − 1 is backward and moveν is backward. In this casee(ν − 1) ande(ν)
belong to the star of a same vertexk, e(ν) is the forward edge enteringk and it is next toe(ν−1)
in H(k) counter-clockwise. Henceleft(ν − 1) = left(ν) (independently of the orientation of
e(ν − 1)). For the induction hypothesisQ(ν − 1) = left(ν − 1) ∈ R(ν − 1). By Rule 1,
Q(ν) = Q(ν − 1) and henceQ(ν) = left(ν) (see Figure 8). By Rule 2,R(ν) = R(ν − 1) and
henceQ(ν) ∈ R(ν). So, the left property holds for the backward moveν. �

k

ν − 1
ν

Q(ν − 1) = Q(ν)

Figure 8: Case IV: both movesν− 1 andν are backward:left(ν− 1) = left(ν) andQ(ν− 1) =
Q(ν).

Observation 9 Since forward edges do not form circuits, every region must have at least one
backtrack edge along its contour.

25

Theorem 6 All regions are enumerated.

Proof. If a region is on the left side of a backtrack edge, then it is enumerated when the back-
track edge is traversed for the first time. If a region is on theright hand side of a backtrack
edgee, then it must also be on the left side of another backtrack edge e′ traversed for the first
time beforee, because for Theorem 5, whene is traversed for the first time the regionright(e)
must have been already enumerated. Since all backtrack edges are traversed, all regions are
guaranteed to be enumerated.�

Now we can prove that duplicate enumerations do not occur.

Lemma 1 The number of backtrack edges is equal to the number of internal regions of the
multi-graph.

Proof. Let us indicate byEfw the number of forward edges, byEbt the number of back-
track edges, by|R| the number of regions and byv the number of vertices of a directed planar
multi-graph. By Euler formula,E + 2 = v + |R|, whereE = Efw + Ebt. By Proposition 3,
Efw = v − 1. ThereforeEbt = |R| − 1. SinceR includes the external region which is unique,
then|R| − 1 is the number of internal regions of the multi-graph.�

Theorem 7 Each region is enumerated once.

Proof. The proof relies on the propositions above: (i) all internalregions are enumerated
at least once, by Theorem 6; (ii) every internal region is enumerated if and only if it is found
on the left side of a backtrack edge traversed the first time, by Rule 2; (iii) there are as many
backtrack edges as the number of internal regions, by Lemma 1. Combining (i), (ii) and (iii) the
theorem follows.�

3.4.2 Computational complexity

To establish the worst-case time complexity of Step 4, let usconsiderComponents first. Sorting
then elements ofN with SortCircles takesO(n logn).

Initializing µ takes constant time for each vertex, i.e.O(n2).
The while loop (lines 6-19) is executedO(n) times, since at least one circumference is

deleted fromN at each iteration. Therefore all constant-time operationsin the loop have an
overallO(n) time complexity.

The total time complexity of the executions ofRightmost (line 7) isO(n2), since a sorted
list of cardinalityO(n), produced bySortCircles must be scannedO(n) times.

Initializing Q takesO(n) for each componentφ; therefore its overall contribution isO(n2).
The overall contribution of all constant time flip operations needed to updateQ (line 17 of

26

Components and line 14 ofScanStar) is trivially bounded by twice the number of edges in the
multi-graphs, i.e.O(n2).

The overall contribution of deletions (line 19 ofComponents and line 6 ofScanStar) isO(n)
because|N | = n and each deletion takes constant time, whenN is implemented as a binary
array.

Finally, let us examine the time complexity ofScanStar.
The time complexity of all executions ofFindEdge isO(

∑v

k=1
|H(k)|), i.e.O(n2), because

FindEdge is executed only once for each vertex, when the vertex is reached for the first time.
Therefore the total number of steps required byFindEdge is bounded by the total degree of the
multi-graphs, which isO(n2) (see Theorem 1).

The total number of iterations of the loop (lines 3-17) in allexecutions ofScanStar is also
bounded by the total degree of the multi-graphs, i.e.O(n2) and the loop includes only constant
time operations.

Therefore the overall worst-case time complexity of Step 4 isO(n2).

This allows to establish that the overall complexity of the new region enumeration algorithm
is O(n2 log n). The bottlenecks are the three sorting procedures in Step 1.2, Step 2.2 and Step
3.2. This complexity analysis does not take into account thetime taken byO(n2) calls to
Evaluate, that imply the execution of a single-source optimal location algorithm. However, the
number of calls is exactly equal to the number of regions to beenumerated, with no duplicates.

4 Conclusions

The possible occurrence of coincident intersection pointsrequires to correct the SSWPLD al-
gorithm proposed by Drezner et al. [2] and a similar algorithm devised by Aloise et al. [1], as
pointed out by Venkateshan [4]. However, the occurrence of such “pathological” cases does not
increase but rather decreases the computational effort needed to enumerate all the regions in-
duced byn circumferences inℜ2. Coincident intersection points can be detected and correctly
taken into account without increasing theO(n3) time complexity of the enumeration algorithms
[2, 1].

Furthermore, the computational bottleneck of these algorithms can be eliminated, by enu-
merating the regions in a different way. The new algorithm isbased on the depth-first-search
visit of a set of (possibly nested) planar multi-graphs, whose vertices and edges are identified by
suitable sorting procedures. This providesO(n2 log n) time complexity for enumerating all re-
gions. Even more important, duplicate enumerations are avoided with no additional complexity,
allowing to execute the single-source optimal location algorithm a minimum number of times.

The algorithm presented here can be easily extended to enumerate regions induced by closed
curves of many other types, such as ellipses, Cartesian ovals and in general any kind of closed
curves for which it is possible to efficiently sort points along the contour (Step 2.2) and the

27

tangent line is always defined along the contour (Step 3.2).

Some interesting questions remain open fur further developments.

Finite precision arithmetics. Devising implementations in finite precision machines, pre-
serving correctness and complexity, is an issue common to almost all geometrical algorithms,
since they typically require to compute and compare irrational numbers (in equality and in-
equality tests). The critical point in the new algorithm, asin previous ones, is the ability to
detect when intersection points coincide.

The problem with the algorithm by Drezner et al., corrected by Venkateshan, occurs when
intersection points are found to coincide. Numerical approximations tend to make this un-
likely: intersections that would coincide in infinite precision computations may be found non-
coincident in finite precision arithmetics. In this case numerical approximations may cause a
degenerate multi-graph to be analyzed as a non-degenerate one, playing the same role of small
perturbations introduced on purpose, as suggested by Venkateshan [4]. This would not pro-
duce wrong solutions, since no region of the degenerate multi-graph would be disregarded.
Moreover, it would not affect theO(n2 logn) worst-case time complexity of the new algorithm,
which is the same for degenerate and non-degenerate multi-graphs.

On the other side, it is also possible (although extremely unlikely) that very close but non-
coincident intersection points are treated as coincident in finite precision arithmetics. However,
all SSWPLD algorithms considered in this paper and its references can be made robust to these
occurrences by checking the following transitive property: if two intersection pointsP (i, j)
andP (j, k) coincide, then alsoP (k, i) must coincide with them. If this does not occur, then a
“numerically critical” triple of circumferences(i, j, k) is detected and further suitable tests (with
increased numerical accuracy, for instance) can be done to determine whether they intersect
in the same point or not. Anyway, it should be noted that the values of d(X,Oi) for each
circumferencei ∈ N would not be affected by more than the rounding error itself,i.e. by a
negligible amount.

Implementations. Implementing the new algorithm to evaluate its computational performances
is also a possible topic for future research. This can lead tothe development of furher algorith-
mic ideas. For instance, instead of evaluating the regions in the order they are enumerated, it
may be profitable to evaluate them following the reverse order, i.e. starting from the innermost
to the outermost regions. This is because innermost regionsare more likely to contain the opti-
mal solution then outermost regions. It is possible to provethat the order in which regions are
enumerated by the new algorithm in each multi-graph corresponds to a path in the dual multi-
graph. This property can be exploited to record only the bit to be flipped from one region to the
next one, in a last-in-first-out stack, allowing for the efficient evaluation of the regions in the
reverse order. Another idea is to early terminate the single-source optimal location algorithm,
which iteratively updates a current point according to a gradient information, when the current
point leaves the region to be evaluated. A third possible idea is to directly skip some region, by

28

computing a corresponding lower bound based on centers, radii and weights, without running
the single-source optimal location algorithm.

Acknowledgments. Detailed and constructive comments from two anonymous referees were
very useful to improve both the content and the presentation.

References

[1] Aloise, D., P. Hansen, L. Liberti. 2012. An Improved Column Generation Algorithm for
Minimum Sum-of-Squares Clustering. Mathematical Programming. 131.1-2. 195-220.

[2] Drezner, Z., A. Mehrez, G.O. Wesolowsky. 1991. The Facility Location Problem with
Limited Distances. Transportation Science. 25.3. 183-187.

[3] Ostresh Jr., L.M. 1978. On the Convergence of a Class of Iterative Methods for Solving
the Weber Location Problem. Operations Research. 26.4. 597-609.

[4] Venkateshan P. 2020. A Note on “The Facility Location Problem with Limited Distances”.
Transportation Science.

[5] Weiszfeld A. 1937. Sur le point pour lequel la somme des distances den points donnés est
minimum, Tohoku Mathematical Journal 34. 355-386.

29

Appendix A Three examples

A.1 Example 1.

In Example 1 (taken from [4]), illustrated in Figure 9, four circumferences share two m.i.p..

C1

C2

C3

C4
P

Figure 9: Example 1 [4]: four circumferences sharing two m.i.p..

As pointed out in [4], the algorithms proposed in [2] and [1] would fail to enumerate all
regions aroundP . For every pair of circumferences intersecting inP , the subsetSP , as defined
by [2] and [1], would include the other two circumferences; therefore the regions covered by
a single circumference (C1 or C4) would be missed in the enumeration. On the contrary, con-
structing the neighborhood ofP shown in Figure 10 on the left and its eight intersection points
with C1, . . . , C4, one can correctly enumerate all regions aroundP .

Figure 10 on the right shows how the same remedy provided by constructing the neighbor-
hood can be obtained by considering the tangent lines and their orientation. Assume to store
the angles corresponding to the directionsei andli for eachi = 1, . . . , 4 in a set of8 elements
and then to sort it, obtaining a cyclic order. In Example 1 we obtain the cyclic orderL =
{l3, l4, e1, e2, e3, e4, l1, l2}. Now, replacing eachli with−i and eachei with +i, the vectorVP =
{−3,−4,+1,+2,+3,+4,−1,−2} is obtained. Then, procedureScan shown in Algorithm 1
is executed: after the first scan ofVP it yieldsQ = {3, 4}; during the second scan ofVP the
following set of regions is found:{{4}, ∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4}, {3, 4}}.

Example 1 illustrates a case of a m.i.p.P , but it is “easy” in the sense that all tangent lines
have distinct angles inP , so that there is no need to use tie-break criteria.

30

C1

C2

C3

C4

P

1

8

765

4

3
2

C1

C2

C3

C4

P

l4

l3

l2
l1

e4

e3

e2
e1

Figure 10: Left: a neighborhood of a m.i.p., as defined in [4].Right: the tangent lines. For each
tangent line two little arrows indicate the side where the center lies. The order in which the in-
tersection points numbered1, . . . , 8 are encountered following the frontier of the neighborhood
on the left corresponds to the order in which the directionse1, . . . , e4 andl1, . . . , l4 on the right
appear when they are sorted according to their angles.

A.2 Example 2.

In Example 2 (taken from [4]), illustrated in Figure 11, fourcircumferences share a single m.i.p..

C1

C2

C3

C4
P

Figure 11: Example 2 [4]: four circumferences sharing a single m.i.p..

31

C1

C2

C3

C4

P 1

23

4

5

6 7

8

C1

C2

C3

C4

Pl1 e1
e3 l3

e2

l2

l4

e4

Figure 12: Left: a neighborhood of the m.i.p.. Right: the tangent lines.

Figure 12 compares the actual construction of the neighborhood of the m.i.p. with the
more efficient sorting of the directions of the tangent lines. Assume to store the angles cor-
responding to the directionsei andli for eachi = 1, . . . , 4 in a set of8 elements and then to
sort it obtaining a cyclic order. The cyclic orderLP = {[l3, e1], [l2, e4], [l1, e3], [l4, e2]} is ob-
tained. Pairs indicated in square brackets have the same value of the angle: tie-break criterion
1 must be used to sort them correctly. Replacing eachli with −i and eachei with +i the vector
VP = {−3,+1,−2,+4,−1,+3,−4,+2} is obtained. After that, Algorithm 1 is executed: after
the first scan ofVP it yieldsQ = {2, 3}; during the second scan the following set of regions is
found{{2}, {1, 2}, {1}, {1, 4}, {4}, {3, 4}, {3}, {2, 3}}.

A.3 Example 3.

Example 3, illustrated in Figure 13, is even more tricky: four circumferences share a m.i.p. and
a same tangent line. However, two of them lie on one side of theline and two of them on the
other.

C1

C3 C2

C4

P

Figure 13: Example 3: four circumferences sharing a single m.i.p. and the same tangent line.

32

C1

C3 C2

C4

P

1
23

4

5
6 7

8

C1

C3 C2

C4

P

l4
l3

e2
e1

e4
e3

l2
l1

Figure 14: Left: the neighborhood of the m.i.p.. Right: the directions of the tangent lines.

Figure 14 shows the correspondence between the intersections along the frontier of the
neighborhood ofP and the sorted angle values. To correctly sort the angles in this example it
is necessary to apply both tie-break criteria. According totie-break criterion 1,l1 andl2 must
precedee3 ande4; for the same reasonl3 andl4 must precedee1 ande2. According to tie-break
criterion 2,l2 must precedel1, e4 must precedee3, l3 must precedel4 ande1 must precedee2.
Therefore the vectorVP = {−2,−1,+4,+3,−3,−4,+1,+2} is obtained. When Algorithm 1
is executed, after the first scan ofVP we getQ = {1, 2}; during the second scan the following
(redundant) set of regions is found:{{1}, ∅, {4}, {3, 4}, {4}, ∅, {1}, {1, 2}}.

33

Appendix B The three examples rivisited

Hereafter we report the same three examples shown in the Appendix A to show how they are
solved by the new algorithm. In Figures 15, 16 and 17 forward edges are indicated by big
arrows and backtrack edges by small arrows.

B.1 Example 1.

C1

C2

C3

C4

B

A

Figure 15: Example 1 [4]: four circumferences sharing two m.i.p..

The steps of the algorithm produce the output reported in Tables 1 to 6.

i f Ω
1 true ∅
2 true ∅
3 true ∅
4 true ∅

Table 1: Output ofIntersections, Algorithm 2.

34

Λ SortedΛ
(1, 2, xA, yA) (1, 2, xA, yA)
(2, 1, xB, yB) (1, 3, xA, yA)
(1, 3, xA, yA) (1, 4, xA, yA)
(3, 1, xB, yB) (2, 3, xA, yA)
(1, 4, xA, yA) (2, 4, xA, yA)
(4, 1, xB, yB) (3, 4, xA, yA)
(2, 3, xA, yA) (2, 1, xB, yB)
(3, 2, xB, yB) (3, 1, xB, yB)
(2, 4, xA, yA) (4, 1, xB, yB)
(4, 2, xB, yB) (3, 2, xB, yB)
(3, 4, xA, yA) (4, 2, xB, yB)
(4, 3, xB, yB) (4, 3, xB, yB)

Table 2: List of the intersection points before and after sorting.

v T
A {1, 2, 3, 4}
B {1, 2, 3, 4}

Table 3: Output ofFindVertices, Algorithm 3.

i W SortedW
1 {A,B} {B,A}
2 {A,B} {B,A}
3 {A,B} {B,A}
4 {A,B} {B,A}

Table 4: Output ofEnumerateVertices, Algorithm 4, andSortVertices, Algorithm 5.

v H
A {(1, 0, B), (1, 1, B), (2, 0, B), (2, 1, B), (3, 0, B), (3, 1, B), (4, 0, B), (4, 1, B)}
B {(1, 1, A), (1, 0, A), (2, 1, A), (2, 0, A), (3, 1, A), (3, 0, A), (4, 1, A), (4, 0, A)}

Table 5: Output ofBuildStar, Algorithm 6.

35

v H
A {(3, 1, B), (2, 1, B), (1, 1, B), (4, 0, B), (3, 0, B), (2, 0, B), (1, 0, B), (4, 1, B)}
B {(3, 0, A), (4, 0, A), (1, 1, A), (2, 1, A), (3, 1, A), (4, 1, A), (1, 0, A), (2, 0, A)}

Table 6: Sorted vertex stars.

Table 7 reports the values of the main variables and data-structures during the execution of
Step 4. Columns 1 indicates the open vertices. Closed vertices are not indicated explicitly for
space reasons; however, a vertex is closed when it disappears from the set of open vertices.
Columns 2-5 indicate the edge that is traversed:k is the tail,i is the circumference,γ is the
direction,h is the head. Whenh = k, the edge is a self-loop. Column 6 indicates whether the
edge is a forward edge (fw), a backward edge traversed for thefirst time (bt1) or a backward
edge traversed for the second time (bt2). The values ofµ are reported for all vertices: when
µ(h) = 0 then the edge is a forward edge; in the other cases it is a backtrack edge. The last
but one column indicates the current regionQ, that is updated every time a backtrack edge is
traversed, by flipping the circumference that the traversededge belongs to. The last column
indicates the region that is evaluated when the single-source optimal location procedure is exe-
cuted. It coincides withQ, but the evaluation only occurs when backtrack edges are traversed
for the first time.

Open k i γ h fw/bt µ µ(A) µ(B) Q Evaluated
0 0 0

4 1 B 1 1
B B 1 1 A fw 2 2

A,B A 4 1 B bt1 {4} {4}
A,B A 3 1 B bt1 {3, 4} {3, 4}
A,B A 2 1 B bt1 {2, 3, 4} {2, 3, 4}
A,B A 1 1 B bt1 {1, 2, 3, 4} {1, 2, 3, 4}
A,B A 4 0 B bt1 {1, 2, 3} {1, 2, 3}
A,B A 3 0 B bt1 {1, 2} {1, 2}
A,B A 2 0 B bt1 {1} {1}
B B 2 1 A bt2 {1, 2}
B B 3 1 A bt2 {1, 2, 3}
B B 4 1 A bt2 {1, 2, 3, 4}
B B 1 0 A bt2 {2, 3, 4}
B B 2 0 A bt2 {3, 4}
B B 3 0 A bt2 {4}

Table 7: The iterations ofScanStar, Algorithm 9. The effect ofComponents, Algorithm 8, is
indicated above the horizontal line.

36

B.2 Example 2.

C1

C4

C3

C2

EB

A D

C

Figure 16: Example 2 [4]: four circumferences sharing a single m.i.p..

The steps of the algorithm produce the output reported in Tables 8 to 13.

i f Ω
1 true ∅
2 true ∅
3 true ∅
4 true ∅

Table 8: Output ofIntersections, Algorithm 2.

37

Λ SortedΛ
(1, 2, xC, yC) (4, 3, xA, yA)
(2, 1, xE, yE) (1, 4, xB, yB)
(1, 3, xC, yC) (1, 2, xC, yC)
(3, 1, xC, yC) (1, 3, xC, yC)
(1, 4, xB, yB) (3, 1, xC, yC)
(4, 1, xC, yC) (4, 1, xC, yC)
(2, 3, xC, yC) (2, 3, xC, yC)
(3, 2, xD, yD) (2, 4, xC, yC)
(2, 4, xC, yC) (4, 2, xC, yC)
(4, 2, xC, yC) (3, 4, xC, yC)
(3, 4, xC, yC) (3, 2, xD, yD)
(4, 3, xA, yA) (2, 1, xE, yE)

Table 9: List of the intersection points before and after sorting.

v T
A {3, 4}
B {1, 4}
C {1, 2, 3, 4}
D {2, 3}
E {1, 2}

Table 10: Output ofFindVertices, Algorithm 3.

i W SortedW
1 {B,C,E} {E,B,C}
2 {C,D,E} {E,C,D}
3 {A,C,D} {D,C,A}
4 {A,B,C} {C,B,A}

Table 11: Output ofEnumerateVertices, Algorithm 4, andSortVertices, Algorithm 5.

38

v H
A {(3, 1, D), (3, 0, C), (4, 1, C), (4, 0, B)}
B {(1, 0, E), (1, 1, C), (4, 1, A), (4, 0, C)}
C {(1, 0, B), (1, 1, E), (2, 1, D), (2, 0, E), (3, 1, A), (3, 0,D), (4, 1, B), (4, 0, A)}
D {(2, 1, E), (2, 0, C), (3, 1, C), (3, 0, A)}
E {(1, 1, B), (1, 0, C), (2, 1, C), (2, 0, D)}

Table 12: Output ofBuildStar, Algorithm 6.

v SortedH
A {(4, 1, C), (3, 0, C), (4, 0, B), (3, 1, D)}
B {(4, 0, C), (1, 0, E), (4, 1, A), (1, 1, C)}
C {(3, 0, D), (1, 1, E), (2, 0, E), (4, 1, B), (1, 0, B), (3, 1, A), (4, 0, A), (2, 1, D)}
D {(2, 1, E), (3, 1, C), (2, 0, C), (3, 0, A)}
E {(2, 0, D), (1, 1, B), (2, 1, C), (1, 0, C)}

Table 13: Sorted vertex stars.

Table 14 reports the values of the main variables and data-structures during the execution of
Step 4. The meaning is the same as for Example 1.

39

Open k i γ h fw/bt µ µ(A) µ(B) µ(C) µ(D) µ(E) Q Evaluated
0 0 0 0 0 0

2 1 E 1 1
E E 1 1 B fw 2 2

B,E B 4 1 A fw 3 3
A,B,E A 3 1 D fw 4 4

A,B,D,E D 2 1 E bt1 {2} {2}
A,B,D,E D 3 1 C fw 5 5 {2}

A,B,C,D,E C 1 1 E bt1 {1, 2} {1, 2}
A,B,C,D,E C 2 0 E bt1 {1} {1}
A,B,C,D,E C 4 1 B bt1 {1, 4} {1, 4}
A,B,C,D,E C 1 0 B bt1 {4} {4}
A,B,C,D,E C 3 1 A bt1 {3, 4} {3, 4}
A,B,C,D,E C 4 0 A bt1 {3} {3}
A,B,C,D,E C 2 1 D bt1 {2, 3} {2, 3}
A,B,D,E D 2 0 C bt2 {3}
A,B,E A 4 1 C bt2 {3, 4}
A,B,E A 3 0 C bt2 {4}
B,E B 1 1 C bt2 {1, 4}
B,E B 4 0 C bt2 {1}
E E 2 0 C bt2 {1, 2}
E E 1 0 C bt2 {2}

Table 14: The iterations ofScanStar, Algorithm 9. The effect ofComponents, Algorithm 8, is
indicated above the horizontal line.

40

B.3 Example 3.

C1

C3 C2

C4

A

Figure 17: Example 3: four circumferences sharing a single m.i.p. and the same tangent line.
In this very special case, the multi-graph includes only onevertex and no forward edge.

The steps of the algorithm produce the output reported in Tables 15 to 20.

i f Ω
1 true ∅
2 true ∅
3 true ∅
4 true ∅

Table 15: Output ofIntersections, Algorithm 2.

(sorted)Λ
(1, 2, xA, yA)
(2, 1, xA, yA)
(1, 3, xA, yA)
(3, 1, xA, yA)
(1, 4, xA, yA)
(4, 1, xA, yA)
(2, 3, xA, yA)
(3, 2, xA, yA)
(2, 4, xA, yA)
(4, 2, xA, yA)
(3, 4, xA, yA)
(4, 3, xA, yA)

Table 16: List of the intersection points.

41

v T
A {1, 2, 3, 4}

Table 17: Output ofFindVertices, Algorithm 3.

i (Sorted)W
1 {A}
2 {A}
3 {A}
4 {A}

Table 18: Output ofEnumerateVertices, Algorithm 4, andSortVertices, Algorithm 5.

v H
A {(1, 1, A), (1, 0, A), (2, 1, A), (2, 0, A), (3, 1, A), (3, 0, A), (4, 1, A), (4, 0, A)}

Table 19: Output ofBuildStar, Algorithm 6.

v SortedH
A {(2, 0, A), (1, 0, A), (4, 1, A), (3, 1, A), (3, 0, A), (4, 0, A), (1, 1, A), (2, 1, A)}

Table 20: Sorted vertex stars.

Table 21 below reports the values of the main variables and data-structures during the exe-
cution of Step 4. The meaning is the same as for Examples 1 and 2.

42

Open k i γ h fw/bt µ µ(A) Q Evaluated
0 0

1 1 A 1 1
A A 4 1 A bt1 {4} {4}
A A 3 1 A bt1 {3, 4} {3, 4}
A A 3 0 A bt2 {4}
A A 4 0 A bt2 {}
A A 1 1 A bt1 {1} {1}
A A 2 1 A bt1 {1, 2} {1, 2}
A A 2 0 A bt2 {1}

Table 21: The iterations ofScanStar, Algorithm 9. The effect ofComponents, Algorithm 8, is
indicated above the horizontal line.

43

