
The network simplex algorithm
Combinatorial Optimization

Giovanni Righini
Università degli Studi di Milano

The min cost flow problem

The network simplex algorithm solves LP problems with the
combinatorial structure of the min cost flow problem.

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

We assume that:
• the flow network G = (N ,A) is connected;
• all data b, c and u are integer;
•
∑

i∈N
bi = 0;

• capacities and costs are non-negative.

Cycle free solutions

Let X be the feasible region.

For each x ∈ X , arcs can be classified as free or restricted:
• (i, j) ∈ A is free⇔ 0 < xij < uij ,
• (i, j) ∈ A is restricted⇔ xij = 0 or xij = uij .

x ∈ X is cycle-free⇔ x contains no cycle made of free arcs.

Along each cycle in a cycle-free solution x we can either increase or
decrease the flow, but not both.

Spanning tree solution

A spanning tree solution is defined by a pair (x ,T), where
• x is a feasible flow,
• T is a spanning tree on G (disregarding the orientation of the

arcs),

with the property that every arc out of T is restricted (i.e. all free arcs
are included in T).

In general, in a spanning tree solution the set of free arcs forms a
forest: different spanning trees can include it.
Hence several spanning tree solutions can correspond to the same
set of free arcs.

A fundamental property

Property. Apart from pathological cases (unbounded instances), min
cost flow instances always have an optimal solution that is a
cycle-free and a spanning tree solution.

The network simplex algorithm exploits this property by restricting the
search to the spanning tree solutions.

Given a spanning tree solution (x ,T) three arc sets are identified:
• T : the arcs in the spanning tree,
• L: non-tree arcs at the lower bound,
• U: non-tree arcs at the upper bound.

If T is made only of free arcs, then (x ,T) is non-degenerate.

Relationship between (T , L,U) and the flow

Given a spanning tree structure (T , L,U), one can compute a unique
corresponding feasible flow:
• set xij = 0 ∀(i, j) ∈ L
• set xij = uij ∀(i, j) ∈ U
• solve the system of the flow conservation equations to find

xij∀(i, j) ∈ T .

If the resulting flow x satisfies the bounds 0 ≤ xij ≤ uij ∀(i, j) ∈ T ,
then the spanning tree structure (T , L,U) is feasible.

Data structure

The spanning tree T can be represented by three arrays:
• a root node r ∈ N is arbitrarily selected;
• pred(i) indicates the predecessor of i in the path from r to i;
• depth(i) indicates the number of arcs between r and i;
• thread(i) points to the successor of i in the sequence generated

by a DFS visit of T from r .

For the purpose of computing pred , depth and thread , the orientation
of the arcs in T is neglected.

An example

1 2 3 4 5 6 7 8 9 10 11
pred 0 8 11 1 8 1 11 4 3 4 1
depth 0 3 2 1 3 1 2 2 3 2 1
thread 11 5 9 10 1 4 3 2 6 8 7

The network simplex algorithm

Initialize(T , L,U)
x ← ComputeFlow(T)
y ← ComputePotentials(T)
while OptimalityTest = false do
(k , l)← SelectEnteringArc(T , L,U, x , y)
(p, q)← SelectLeavingArc(T , L,U, x , y , (k , l))
Update(T , L,U, x , y , (k , l), (p, q))

Initialization

Option 1.
• Solve a max flow problem from s to t .
• Put all arcs (i, j) with xij = 0 in L.
• Put all arcs (i, j) with xij = uij in U.
• Put all the other arcs in T .

Option 2.
• Insert an arc (i, s) with large cost and capacity ∀i ∈ N with

bi > 0 and set xis = bi .
• Insert an arc (s, i) with large cost and capacity ∀i ∈ N with

bi < 0 and set xsi = −bi .
• Insert all these dummy arcs in T .
• Insert all the original arcs in L.
• Leave U empty.

Computing the flow (1/2)

Part I: flow on arcs in U and L.

for i ∈ N do
b′(i)← b(i)

for (i, j) ∈ U do
x(i, j)← u(i, j)
b′(i)← b′(i) − u(i, j)
b′(j)← b′(j) + u(i, j)

for (i, j) ∈ L do
x(i, j)← 0

Computing the flow (2/2)
Part II: flow on arcs in T . A stack S is used.

j ← r ; S ← ∅
repeat

Push(S, j); j ← thread(j)
until j = r
while Top(S) 6= r do

j ← Pop(S)
i ← pred(j)
if (i, j) ∈ T then

x(i, j)← −b′(j)
else

x(j, i)← b′(j)
b′(i)← b′(i) + b′(j)

Complexity: O(m).

Primal integrality property. u integer⇒ x integer.

Computing the potentials

Potentials must satisfy: cij − yi + yj = 0 ∀(i, j) ∈ T .

y(r)← 0
j ← thread(r)
while j 6= r do

i ← pred(j)
if (i, j) ∈ T then

y(j)← y(i) − c(i, j)
else

y(j)← y(i) + c(i, j)
j ← thread(j)

Complexity: O(n).

Dual integrality property. c integer⇒ y integer.

Optimality conditions

The reduced cost of each arc (i, j) ∈ A is cy
ij = cij − yi + yj .

Optimality conditions: (T , L,U) is optimal if and only if x ∈ X and
∃y : cy satisfies
• cy

ij = 0 ∀(i, j) ∈ T ;

• cy
ij ≥ 0 ∀(i, j) ∈ L;

• cy
ij ≤ 0 ∀(i, j) ∈ U.

Selection of the entering arc

Eligible arcs are
• arcs (i, j) ∈ L with cy

ij < 0;

• arcs (i, j) ∈ U with cy
ij > 0.

Any eligible arc can be chosen as an entering arc.

Several policies have been devised for this purpose. For instance:
• Dantzig’s rule;
• First eligible arc rule;
• Candidate list rule.

Entering arc selection rules

Dantzig’s rule: Select the eligible arc (i, j) that maximizes |cy
ij |.

Pro: This rule is likely to produce significant improvements per
iteration.

Con: It is time-consuming, because it requires to scan all the arcs to
find the one with maximum violation.

First eligible arc rule: Scanning the arc list as a circular list, find the
first eligible arc.

Pro: With this rule, each iteration is very fast.

Con: It is likely to require many iterations.

Entering arc selection rules

Candidate list rule: Select the eligible arc (i, j) that maximizes |cy
ij |

within a restricted candidate list of arcs.

It is a trade-off; it allows for tuning some parameters.

// Major iterations //
Scan a circular list of nodes
∀i ∈ N insert eligible arcs (i , j) in L

Stop at i when |L| = ∆
Minor iterations
Resume from i and loop

Parameters: ∆

// Minor iterations //
Select (k , l) ∈ L with max. violation
Remove (k , l) from the L
Pivot on (k , l)
Check all arcs in the L for eligibility
Stop when |L| = 0 or after K iterations

Parameters: K

Selection of the leaving arc

The entering arc (k , l) generates with T a unique cycle W , that can
be detected in O(n).

i ← k
j ← l
while i 6= j do

if depth(i) > depth(j) then
i ← pred(i)

else
if depth(j) > depth(i) then

j ← pred(j)
else

i ← pred(i)
j ← pred(j)

Selection of the leaving arc

If (k , l) ∈ L, then W is oriented as (k , l).
If (k , l) ∈ U, then W is oriented opposite to (k , l).

The orientation of W induces a partition of its arcs into
• W+: forward arcs, where flow is increased;
• W−: backward arcs, where flow is decreased.

The residual capacities of arcs in W are

rij =

{

uij − xij ∀(i, j) ∈W+

xij ∀(i, j) ∈W−.

An amount of flow δ = min(i,j)∈W{rij} is sent along W .
This sets the flow of one or more arcs at its lower or upper bound.
These arcs are eligible for being selected as the leaving arc.
Ties can be broken arbitrarily.

If δ = 0, then the iteration is degenerate.

Update

If δ = rkl = ukl , then T does not change. The entering arc is also the
leaving arc: it goes from L to U or from U to L.

Otherwise, the leaving arc (p, q) leaves T and enters U or L.

Consider the partition T = T1 ∪ T2 ∪ (p, q), with r ∈ T1.

For each i ∈ T1, yi is unchanged.
For each i ∈ T2,
• if (k ∈ T1) ∧ (l ∈ T2), then yi ← yi − cy

kl ;
• if (k ∈ T2) ∧ (l ∈ T1), then yi ← yi + cy

kl .

Update

if q ∈ T2 then
h← q

else
h← p

if k ∈ T1 then
∆← −cy

kl
else
∆← cy

kl
y(h)← y(h) + ∆
i ← thread(h)
while depth(i) > depth(h) do

y(i)← y(i) + ∆
i ← thread(i)

The arrays pred, depth and thread must also be updated in O(n).

Termination

Degenerate iterations may cause infinite loops. To guarantee finite
convergence, further properties are required to the spanning tree T .

Arcs in T , rooted at r , are
• upward arcs, directed to r or
• downward arcs, directed from r .

T is a strongly feasible spanning tree if and only if
• (i, j) empty⇒ (i, j) upward and
• (i, j) saturated⇒ (i, j) downward.

T is a strongly feasible spanning tree if and only if positive flow can
be sent from any node to r .

Leaving arc selection rule

W.l.o.g. assume (k , l) ∈ L, i.e. xkl = 0.

Then, the pivot cycle W is oriented according to (k , l).

Let w be the apex of W , ie. the first common ancestor of k and l.

Leaving arc selection rule. If more than one bottleneck arc exists in
W , select the last bottleneck arc encountered traversing W starting
from w .

This rule guarantees that the strong feasiblity property is kept after
each pivot step.

Leaving arc selection rule

Let (p, q) be the selected leaving arc.

Partition W\{(p, q)} into two parts:
• W1 from w to (p, q),
• W2 from (p, q) to w ,

according to the orientation of W .

Proof (part I).

No bottleneck arc can exist along W2, for the selection rule.
Therefore, all nodes in W2 can send flow to r after the pivot.

Leaving arc selection rule

Proof (part II), case A: δ > 0 along W .

After the pivot, the same amount δ > 0 can be sent back from all
nodes in W1 to r , following the reverse orientation of W1.

Proof (part II), case B: δ = 0 along W .

All nodes in W1 before (k , l) can send flow to r after the pivot,
because they are unaffected by the pivot.

Nodes in W1 between (k , l) and (p, q) cannot exist. Before the pivot
they could not have been able to send flow to r
• along W1 because (k , l) was not in T ;
• along W2 because (p, q) is a bottleneck imposing δ = 0.

Therefore all nodes in W1 can send flow to r after the pivot.

Leaving arc selection rule

Proof (part III). All other nodes i 6∈ W can send flow to r after the
pivot.

If the path from i ∈ N to r , P(i, r) does not pass through W , then it is
unaffected by the pivot.

If P(i, r) passes through W , let k be the first node of W that is
reached along P(i, r).
• The path from i to k is unaffected and can still carry flow;
• k ∈ W and then it can send flow to r , as proved above.

Finite termination

Keeping the strong feasibility property guarantees finite termination.

Proof.

Non-degenerate iterations are finite, because
• each iteration decreases the total cost by a positive integer

amount;
• the total cost is upper bounded by mUC and lower bounded by 0.

Degenerate iterations between two consecutive non-degenerate
iterations are finite, because
• each of them decreases the sum of the node potentials by a

positive integer amount;
• each node potential is lower bounded by −nC.

Dual network simplex algorithm

The dual network simplex algorithm
• keeps flow balance constraints satisfied at each iteration;
• allows for violation of flow bounds on arcs;
• sends flow along cycles in each iteration.

At each iteration the current solution is a triple (T , L,U) such that
• xij = 0 ∀(i, j) ∈ L;
• xij = uij ∀(i, j) ∈ U;
• but xij is unrestricted ∀(i, j) ∈ T (infeasible arcs can exist).

Dual network simplex algorithm

The leaving arc (p, q) is selected first, among the arcs violating the
flow bounds.

The violated constraint is repaired by sending a suitable amount of
flow along a suitably oriented cycle W .

To produce such a cycle, an entering arc (k , l) is suitably selected.

Dual network simplex algorithm

Consider T\{(p, q)} = T p ∪ T q, with p ∈ T p, q ∈ Tq.

If xpq > upq , flow must be sent from q to p: (k , l) must carry flow from
T p to T q. Forward and backward arcs are defined as

F = {(i, j) ∈ A : i ∈ T p, j ∈ T q}

B = {(i, j) ∈ A : i ∈ T q, j ∈ T p}

If xpq < 0, flow must be sent from p to q: (k , l) must carry flow from
T q to T p. Forward and backward arcs are defined as

F = {(i, j) ∈ A : i ∈ T q, j ∈ T p}

B = {(i, j) ∈ A : i ∈ T p, j ∈ T q}

The set of eligible arcs is

Q = (F ∩ L) ∪ (B ∩ U).

Dual network simplex algorithm

If Q = ∅, then the instance is infeasible.

Otherwise,

θij =

{

cy
ij ∀(i, j) ∈ F ∩ L
−cy

ij ∀(i, j) ∈ B ∩ U

and the entering arc is selected as

(k , l) = argmin(i,j)∈Q{θij}.

A dual pivot is degenerate if and only if θkl = 0.

Dual network simplex algorithm

If xpq > upq , then δ = xpq − upq units of flow are sent along W and
(p, q) enters U.
The potential y is decreased by θkl units for all nodes in T q.

If xpq < 0, then δ = −xpq units of flow are sent along W and (p, q)
enters L.
The potential y is decreased by θkl units for all nodes in T p.

The cost of the flow is increased by δθkl at each iteration.
It is upper bounded by mCU.
Hence the number of non-degenerate iterations is finite.
Degenerate iterations can be avoided by a suitable perturbation of the
costs.

Cost perturbation

Arbitrarily sort the arcs and add
(

1
2

)k

to the cost of each arc in

position k = 1, . . . , |A|.

Then, if x∗ is optimal for the perturbed problem, it is also optimal for
the original problem.

Proof. If there are no negative cost cycles in the perturbed residual
graph, there are no negative cost cycles in the original residual graph,
because the cost difference for each cycle is smaller than 1 and the
original cost is integer.

In the dual simplex algorithm on the perturbed graph, the reduced
cost of each non-tree arc is non-zero.

Proof. The reduced cost a non-tree arc is the cost of the cycle
created by inserting the arc in T and no cycle can have an integer
perturbed cost.

