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Definitions

A flow network is a digraph D = (N ,A) with two particular nodes s
and t acting as source and sink of a flow.

The flow is a quantity that can traverse the arcs from their tails to their
heads, starting from s and reaching t .

The digraph D is weighted with
• a capacity u : A 7→ ℜm

+;
• a cost c : A 7→ ℜm

+;

Arc capacity: limit to the amount of flow that can traverse the arc.
Arc cost: cost to be paid for each unit of flow traversing the arc.
• An arc with no flow is empty.
• An arc with a flow equal to its capacity is saturated.
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A formulation

We use a continuous and non-negative variable xij to indicate the
amount of flow on each arc (i, j) ∈ A.

A mathematical model of the min-cost flow problem is:

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

We assume that:
• all data are integer;
• ∑

i∈N
bi = 0;

• capacities and costs are non-negative.
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Optimality conditions

A feasible solution x∗ is optimal if and only if

1. the residual digraph R(x) does not contain any negative cost
cycle;

2. there is a dual vector y such that the reduced cost
c ij = cij − yi + yj ≥ 0 for all arcs in the residual digraph R(x);

3. complementary slackness conditions hold.

All these conditions are equivalent.
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Flow decomposition
The difference between two feasible flows of the same value, is a set
of directed cycles.
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Figure: Two feasible flows, x1 and x2.
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Flow decomposition
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Figure: The difference x1 − x2.

s

1

2

3

4

t

4

4

4

2

2

5

5

2,1

1,5

1,5

Figure: Decomposition in 4 directed
cycles.



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Negative cycles optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if the residual graph R(x) does not contain any negative
cost cycle.

Proof (1): x optimal⇒ No negative cycles in R(x).

By construction of the residual digraph, any directed cycle in R(x) is
an augmenting cycle for x .

Then, sending a unit of flow along a negative cost cycle decreases
the cost, without violating any constraint.

Therefore, if R(x) contains a negative cost cycle, x cannot be optimal.
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Negative cycles optimality conditions

Proof (2): No negative cycles in R(x)⇒ x optimal.

Assume that x∗ is feasible, xo is optimal (i.e. a min cost flow) with
xo 6= x∗ and R(x∗) has no negative cost cycles.
The difference vector xo − x∗ can be decomposed into a set of
augmenting cycles with respect to x∗ on R(x∗) and the sum of the
costs of the flows along them is equal to cxo − cx∗.

Since there are no negative cost cycles, cxo − cx∗ ≥ 0 for each
augmenting cycle: hence cxo ≥ cx∗.

Since xo is a min cost flow, then cxo ≤ cx∗.

Therefore cxo = cx∗ and x∗ is also optimal.
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Reduced cost optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if there exists a vector of node potentials y satisfying the
condition

cy
ij = cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x).

Proof (1): ∃y : cy
ij ≥ 0 ∀(i, j) ∈ R(x)⇒ x optimal.

If cy
ij ≥ 0 ∀(i, j) ∈ R(x), then

∑

(i,j)∈W cy
ij ≥ 0 for any cycle W in R(x).

For every cycle W ,
∑

(i,j)∈W cy
ij =

∑

(i,j)∈W cij , because potentials
cancel out along the cycle.

Therefore for every cycle W in R(x),
∑

(i,j)∈W cij ≥ 0, i.e. R(x) does
not contain any negative cost cycle. Therefore x is optimal.
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Reduced cost optimality conditions

Proof (2): x optimal⇒ ∃y : cy
ij ≥ 0 ∀(i, j) ∈ R(x).

If x is optimal, then R(x) has no negative cost cycles.
Consider a feasible flow x∗ such that R(x∗) has no negative cost
cycles.
Then the shortest path problem is well-defined on R(x∗).

Compute min cost paths from s to all nodes in R(x∗): let di be the
resulting min cost ∀i ∈ N.

From optimality conditions for shortest paths

dj ≤ di + cij ∀(i, j) ∈ R(x∗).

Now choosing y = −d , we obtain

cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x∗).
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The dual problem

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

maximize w =
∑

i∈N

biyi −
∑

(i,j)∈A

uijλij

s.t. yi − yj − λij ≤ cij ∀(i, j) ∈ A
yi free ∀i ∈ N
λij ≥ 0 ∀(i, j) ∈ A.

Integer capacities⇒ integer optimal solution.
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Complementary slackness conditions

Primal C.S.C.

xij(cij + yj − yi + λij) = 0 ∀(i, j) ∈ A
Dual C.S.C.

λij(uij − xij) = 0 ∀(i, j) ∈ A

While the previous optimality conditions are formulated on the
residual digraph, the c.s. optimality conditions are formulated on the
original digraph.
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Complementary slackness optimality conditions

Theorem. A feasible flow x is optimal for the min cost flow problem, if
and only if for some node potential y , the reduced costs c and the
flow values x satisfy the following c.s.c. for each arc (i, j) ∈ A:
• if c ij > 0 then xij = 0;
• if 0 < xij < uij then c ij = 0;
• if c ij < 0 then xij = uij .

Proof. From linear programming duality.

This is a notable case of LP with bounded variables: flow variables x
can be non-basic in two different ways: either because they are at
their lower bound (0) or because they are at their upper bound (u).
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Optimal flows and optimal potentials

Question 1. Given an optimal flow x∗, how can we obtain optimal
node potentials y∗?

Question 2. Given optimal node potentials y∗, how can we obtain an
optimal flow x∗?

Answer 1. By computing a shortest path.

Answer 2. By computing a maximum flow.



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

From x∗ to y∗

Let R(x∗) be the residual graph corresponding to an optimal flow x∗.
Since x∗ is optimal, R(x∗) does not contain any negative cost cycle.

Let d be the vector of shortest distances from node s to all the other
nodes, using c as arc lengths.

Shortest path optimality conditions imply

dj ≤ di + cij ∀(i, j) ∈ R(x∗)

Let yi = −di ∀i ∈ N . Then

cij − yi + yj ≥ 0 ∀(i, j) ∈ R(x∗).

Then y is an optimal vector of node potentials.
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From y∗ to x∗

Let y∗ be an optimal vector of node potentials.
We can compute the corresponding reduced costs:

c ij = cij − yi + yj ∀(i, j) ∈ A.

We examine each arc (i, j) ∈ A:
• if c ij > 0, then x∗

ij = 0: delete (i, j).
• if c ij < 0, then x∗

ij = uij : set bi := bi −uij ; bj := bj +uij ; delete (i, j).
• if c ij = 0, then we have the constraint 0 ≤ x∗

ij ≤ uij .

Insert a dummy source s′ and a dummy sink t ′.
Insert an arc (s′, i) for each i ∈ N with b′

i > 0.
Insert an arc (i, t ′) for each i ∈ N with b′

i < 0.
Send a maximum flow x∗ from s′ to t ′.
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Algorithms

Algorithms for the min-cost flow problem can be roughly classified
according to the optimality conditions they exploit.

1. Cycle-canceling algorithms find a maximum flow first and then
iteratively improve its cost by detecting negative cost cycles.

2. Successive shortest path algorithms iteratively increase a
min-cost flow by detecting minimum cost augmenting paths.

3. Primal-dual algorithms send an augmenting flow at each iteration
instead of using a single augmenting path.

4. Out-of-kilter algorithm.
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Cycle-canceling algorithms

Algorithm 1 Cycle-canceling algorithm
Compute a max flow x and the corresponding residual graph R(x);
while R(x) contains a negative cost cycle do

Select a negative cost cycle W ;
δ ← min(i,j)∈W{rij};
Send δ units of flow along W and update R(x);
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Cycle-canceling algorithms: complexity

Let define
• C = max(i,j)∈A{cij};
• U = max(i,j)∈A{uij};

Then mCU is a trivial upper bound on the cost of the initial maximum
flow.

Then the algorithm terminates in at most mCU iterations, since δ ≥ 1
at each iteration.

If negative cost cycles are identified in O(nm) (with Moore algorithm
with FIFO policy), the overall complexity is O(nm2CU), which is not
polynomial.



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Polynomial-time implementations

Two possible polynomial-time implementations of the generic
cycle-canceling algorithm select
• a negative cost cycle with maximum residual capacity:

O(m log (mCU))

• a negative cost cycle with minimum mean cost:
O(min{nm log (nC), nm2 log n}).

Both of them yield algorithms with polynomial-time complexity.
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Cycle with maximum residual capacity

Any two feasible flows on a given network can be obtained from each
other by at most m augmenting cycles in the residual graph.

Let x be a feasible flow and x∗ an optimal flow.
Then the cost cx∗ equals cx plus the (negative) cost of at most m
cycles in R(x).
The improvement in cost is cx − cx∗.

Consequently, at least one of the augmenting cycles must produce a
decrease of at least (cx − cx∗)/m.
Then, by selecting the cycle yielding maximum improvement, the
algorithm requires O(m log (mCU)) iterations.

Unfortunately, finding the maximum improvement cycle is an NP-hard
problem.
However a slight modification of this approach yields an overall
polynomial-time complexity.
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Cycle with minimum mean cost

The mean cost of a cycle is its cost divided by the number of arcs it
contains.

A cycle with minimum mean cost can be identified in O(nm) or
O(
√

nm log (nC)).

If the cycle canceling algorithm always selects a minimum mean cost
cycle, it requires O(min{nm log (nC), nm2 log n}) iterations.

Therefore it is strongly polynomial.
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A basic property

Basic property. Given any flow x and its corresponding residual
graph R(x), for each cycle W in R(x) and for each choice of the node
potentials y ,

∑

(i,j)∈W

cij =
∑

(i,j)∈W

cy
ij

where cy
ij = cij − yj + yi ∀(i, j) ∈ R(x), because the potentials cancel

out along the cycle.
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ǫ-optimality

Definition. A flow x is ǫ-optimal if ∃y : cy
ij ≥ −ǫ ∀(i, j) ∈ R(x).

Given a vector of potentials y , let define

ǫy(x) = − min
(i,j)∈R(x)

{cy
ij }.

Then
{

cy
ij ≥ −ǫy(x) ∀(i, j) ∈ R(x)
∃(u, v) ∈ R(x) : cy

uv = −ǫy (x)

Therefore x is ǫ-optimal for ǫ = ǫy (x).

For different choices of y , we can have different values for ǫy (x).
Let ǫ(x) be the minimum value of ǫy (x) for which x is ǫy(x)-optimal:

ǫ(x) = min
y
{ǫy(x)}.



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Reduced costs along cycles

Let µ(x) be the mean cost of the minimum mean cost cycle in R(x).

If x is ǫ-optimal, then for each cycle W of R(x) and for each vector of
potentials y

∑

(i,j)∈W

cij =
∑

(i,j)∈W

cy
ij ≥ −ǫy(x)|W |.

If W ∗ is the minimum mean cost cycle in R(x), then

µ(x) ≥ −ǫy(x)

and
∃y : cy

ij = −ǫ(x) ∀(i, j) ∈W ∗.
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Lemma 1: relationship between µ(x) and ǫ(x)

Lemma 1. Consider a sub-optimal flow x 6= x∗. Then ǫ(x) = −µ(x).

Proof. Let modify the costs c into c′ as follows:

c′
ij = cij − µ(x) ∀(i, j) ∈ A.

The resulting digraph R′(x) has the same arcs as R(x).

The cost modification reduces the mean cost of all cycles by µ(x)
(which is negative).

The mean cost of W ∗ is zero in R′(x).

Therefore R′(x) does not contain cycles with negative cost.
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Lemma 1: relationship between µ(x) and ǫ(x)

Select a node s ∈ N and consider the shortest paths arborescence
from s in R′(x).

Let d ′ be the shortest distances.

d ′
j ≤ d ′

i + c′
ij = d ′

i + cij − µ(x) ∀(i, j) ∈ R′(x).

Setting yj = d ′
j ∀j ∈ N we have

yj ≤ yi + cij − µ(x) ∀(i, j) ∈ R(x)

cy
ij ≥ µ(x) ∀(i, j) ∈ R(x)

Therefore x is (−µ(x))-optimal.

Since µ(x) does not depend on y , then ǫ(x) = −µ(x).
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Lemma 2: relationship between cy and µ(x) and ǫ(x)

Lemma 2. Consider a sub-optimal flow x 6= x∗. Then
∃y : cy

ij = −ǫ(x) = µ(x) ∀(i, j) ∈W ∗.

Proof. Selecting y as before, cy
ij ≥ µ(x) ∀(i, j) ∈ R(x).

By definition

c(W ∗) =
∑

(i,j)∈W∗

cij =
∑

(i,j)∈W∗

cy
ij = µ(x)|W ∗|.

So, the mean value of cy
ij along W ∗ is µ(x) and all values of cy

ij are at
least µ(x). Therefore

cy
ij = µ(x) ∀(i, j) ∈W ∗

and from Lemma 1

cy
ij = −ǫ(x) ∀(i, j) ∈W ∗.
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Lemma 3: monotonicity of ǫ(x)

Lemma 3. Consider a sub-optimal flow x 6= x∗. After deleting W ∗,
ǫ(x) does not increase and µ(x) does not decrease.

Proof. Consider a dual vector y such that

{

cy
ij = −ǫ(x) ∀(i, j) ∈W ∗

cy
ij ≥ −ǫ(x) ∀(i, j) ∈ R(x)

Let x ′ be the flow and R′(x ′) the residual graph after the cancellation
of W ∗.

At least one arc of R(x) does not belong to R′(x ′) (because it has
been saturated).
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Lemma 3: monotonicity of ǫ(x)

Some new arcs may appear in R′(x ′) that were not in R(x).
For all (i, j) ∈ R′(x ′):

{

if (i, j) ∈ R(x) cy
ij ≥ −ǫ(x)

if (i, j) 6∈ R(x) cy
ji = −ǫ(x)((j, i) ∈ W ∗)

In the latter case cy
ij = −cy

ji = ǫ(x) > 0 > −ǫ(x).
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Lemma 3: monotonicity of ǫ(x)

Therefore, in both cases

cy
ij ≥ −ǫ(x) ∀(i, j) ∈ R′(x ′).

Then x ′ is still ǫ(x)-optimal: ǫ(x ′) ≤ ǫ(x).

µ(x ′) =
∑

(i,j)∈W∗
′

cij

|W ∗′ | =
∑

(i,j)∈W∗
′

cy
ij

|W ∗′ | ≥ min
(i,j)∈W∗

′

{cy
ij } ≥ −ǫ(x) = µ(x).

Therefore µ(x ′) ≥ µ(x).
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Lemma 4: decrease rate of ǫ(x)

Lemma 4. Within at most m iterations, ǫ decreases by a factor at
least (1− 1

n ).

Proof. We have already proven that

∃y : cy
ij ≥ −ǫ(x) ∀(i, j) ∈ R(x).

Type-1 iterations: cy
ij < 0 ∀(i, j) ∈ W ∗

Type-2 iterations: otherwise.

Every type-1 iteration deletes an arc with negative reduced cost from
the residual graph.

All arcs inserted by type-1 iterations have positive reduced cost.

Therefore the algorithm can execute at most m consecutive type-1
iterations.



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Lemma 4: decrease rate of ǫ(x)

When a type-2 iteration is done, the eliminated cycle W ∗ contains at
least one arc with non-negative reduced cost.
Therefore it contains at most |W ∗| − 1 arcs with negative reduced
cost.
Let x ′ and x ′′ be the flows before and after the iteration.

cy
ij ≥ −ǫ(x ′) ∀(i, j) ∈W ∗

c(W ∗) =
∑

(i,j)∈W∗

cy
ij

c(W ∗) ≥ (|W ∗| − 1)(−ǫ(x ′))

µ(x ′) = c(W ∗)/|W ∗|
Then

µ(x ′) ≥ |W
∗| − 1
|W ∗| (−ǫ(x ′)).



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Lemma 4: decrease rate of ǫ(x)

µ(x ′) ≥ |W
∗| − 1
|W ∗| (−ǫ(x ′)).

From Lemma 3, µ(x ′′) ≥ µ(x ′).

Then

−ǫ(x ′′) = µ(x ′′) ≥ µ(x ′) ≥
(

1− 1
|W ∗|

)

(−ǫ(x ′)) ≥
(

1− 1
n

)

(−ǫ(x ′)).

Therefore

ǫ(x ′′) ≤
(

1− 1
n

)

ǫ(x ′).
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Lemma 5: stop criterion

Lemma 5. If ǫ < 1
n , every ǫ-optimal flow is also optimal.

Proof. If x is ǫ-optimal, then a dual vector y exists such that cy
ij ≥ −ǫ

for all arcs in R(x).

Let W be a cycle in R(x). Then

c(W ) =
∑

(i,j)∈W

cy
ij ≥ −ǫ|W | ≥ −ǫn > −1.

Since c(W ) is integer, c(W ) > −1 implies c(W ) ≥ 0.

Then R(x) contains no negative cost cycle, and x is optimal.
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Lemma 6: exponential decrease rate

Lemma 6. Consider an integer α > 1 and a series of real numbers
such that zk+1 ≤ (1− 1

α
)zk for each k . Then zk+α ≤ 1

2 zk for any k .

Proof. From zk+1 ≤ (1− 1
α
)zk we obtain

zk ≥ zk+1 +
zk+1

α− 1
.

The same holds replacing k with k + 1:

zk+1 ≥ zk+2 +
zk+2

α− 1
.

Combining the two inequalities:

zk ≥ zk+2 +
zk+2

α− 1
+

zk+1

α− 1
> zk+2 + 2

zk+2

α− 1

because zk+2 < zk+1.
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Lemma 6: exponential decrease rate

Repeating the same procedure we get

zk > zk+3 + 3
zk+3

α− 1

zk > zk+4 + 4
zk+4

α− 1

and so on. In general

zk > zk+α + α
zk+α

α− 1
.

This inequality can be rewritten as

zk > zk+α

(

1 +
α

α− 1

)

> 2 zk+α.
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Proof of complexity

Let C be the maximum cost of an arc in the original digraph.

Initially the trivial bound ǫ(x) ≤ C holds: every flow is C-optimal.

For every m consecutive iterations ǫ(x) decreases by a factor (1− 1
n )

at least.

When ǫ < 1
n the algorithm stops.

Therefore ǫ must decrease by a factor of nC in the worst case.



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Proof of complexity

Selecting α = n and letting k be the index of type-2 iterations we
know that ǫ(x)k+1 ≤ (1− 1

n )ǫ(x)k .

For Lemma 6 we have ǫ(x)k+n ≤ 1
2ǫ(x)k .

Using an index h to count all iterations, since there can be up to m
type-1 iterations for each single type-2 iteration, ǫ(x)h+mn ≤ 1

2 ǫ(x)h.

Therefore ǫ(x) is halved after at most nm iterations.

Hence the number of iterations is bounded by nm log2 (nC).
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Proof of complexity

Detecting the minimum mean cost cycle requires O(nm).

Therefore the overall worst-case time complexity of the cycle
cancelling algorithm is O(n2m2 log (nC)).

Strongly polynomial complexity can be also proven (see Network
flows, chapter 10).
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Successive shortest paths algorithm

In this case the algorithm keeps the optimality of the flow and
iteratively achieves feasibility with respect to the flow constraints.

At each iteration, the current flow x is the minimum cost flow among
all flows of its value.

When the flow is maximum, then the algorithm stops.
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Notation

Flow constraints:

ei = bi +
∑

(j,i)∈A

xji −
∑

(i,j)∈A

xij ∀i ∈ N

We define E = {i ∈ N : ei > 0} and D = {i ∈ N : ei < 0}.

Given a dual vector y , the corresponding reduced costs are

cy
ij = cij − yi + yj ∀(i, j) ∈ R(x).
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Lemma 1: optimality conditions

Lemma 1. Let x be a min cost flow and let d be the min distance
vector from s ∈ N and the other nodes in R(x) according to the
reduced costs cy . Then

1. x is still a min cost flow with respect to potentials y ′ = y − d ;

2. cy ′

ij = 0 ∀(i, j) ∈ P(s, k) ∀k ∈ N, where P(s, k) indicates the
shortest path from s to k .
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Lemma 1: optimality conditions

Proof (1). Since x is a min cost flow, the optimality conditions hold:

cy
ij ≥ 0 ∀(i, j) ∈ R(x).

For the properties of shortest paths (using a cy cost function)

dj ≤ di + cy
ij ∀(i, j) ∈ R(x).

By definition
cy

ij = cij − yi + yj .

Therefore

dj ≤ di+cij−yi+yj ⇒ cij−(yi−di)+(yj−dj) ≥ 0⇒ cy ′

ij ≥ 0 ∀(i, j) ∈ R(x).
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Lemma 1: optimality conditions

Proof (2). Given any shortest path P(s, k), we have

dj = di + cy
ij ∀(i, j) ∈ P(s, k).

Therefore
dj = di + cij − yi + yj ,

i.e.
cy ′

ij = 0 ∀(i, j) ∈ P(s, k).
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Lemma 2: optimality conservation

Optimality conditions are initially satisfied because cy = c ≥ 0.

Lemma 2. Let x be a min cost flow and let x ′ be the flow obtained
from x after sending flow along a shortest path from a node u ∈ E to
a node v ∈ D. Then x ′ is still a min cost flow.

Proof. From Lemma 1, cy ′

ij = 0 ∀(i, j) ∈ P(u, v).

After sending flow along P(u, v), some arc (j, i) can appear in R(x ′)
corresponding to an arc (i, j) ∈ P(u, v).

However, cy ′

ij = 0 implies cy ′

ji = 0.

Therefore all reduced costs remain non-negative.
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Pseudo-code

x ← 0
y ← 0
ei ← bi ∀i ∈ N
E ← {i ∈ N : ei > 0}
D ← {i ∈ N : ei < 0}
while E 6= ∅ do

Select u ∈ E and Select v ∈ D
(P(u, v), d)← ShortestPath(u, v ,R(x), cy )
y ← y − d
δ ← min{eu,−ev ,min(i,j)∈P(u,v){rij}}
(x ,R(x),E ,D, cy )← Update(u, v , δ)



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Complexity

The total excess decreases by at least one unit for each iteration.

The initial excess is bounded by nB, where B is the maximum supply
of a a node:

B = max
i∈N
{|bi |}.

Therefore no more than nB iterations are required.

Every iteration requires the computation of a shortest path.

The resulting complexity is pseudo-polynomial.

However polynomial-time versions also exist (using scaling
techniques).
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A practical improvement

The computation of labels d from any node u ∈ E can be stopped as
soon as any node v ∈ D is labelled permanently.

The dual update rule is

yi ←
{

yi − di if i is labelled permanently
yi − dv if i is not labelled permanently

This update rule guarantees that the reduced costs remain
non-negative.
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Primal-dual algorithm

Consider a flow network with a single excess node s a single deficit
node t (wlog).

This is obtained by connecting all nodes i with an excess bi > 0 to
node s with arcs (s, i) of capacity bi and all nodes i with a deficit
bi < 0 to node t with arcs (i, t) of capacity −bi . Let z be the sum of all
excesses.

The primal-dual algorithm iteratively solves a max flow problem on an
admissible graph A(x , y), which depends on the current flow x and a
set of potentials y .

The admissible graph A(x , y) contains only the arcs of the residual
graph R(x) that have zero reduced cost cy .

The residual capacity of each arc in A(x , y) is the same as in R(x).
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Primal-dual algorithm: pseudo-code

x ← 0
y ← 0
e(s)← z
e(t)← −z
while e(s) > 0 do

d ← ShortestPaths(s,R(x), cy)
y ← y − d
Define A(x , y)
ComputeMaxFlow(s, t ,A(x , y))
Update e(s), e(t), R(x)
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An example

1

2

3

4

2

2

-2

-2

1,1

2,1

1,1

2,2

The original network with excess
nodes 1 and 2 and deficit nodes 3
and 4.
Node labels: b.
Arc labels: (c, u).

s

1

2

3

4

t4 -4

0,2

0,2

1,1

2,1

1,1

2,2

0,2

0,2

The equivalent flow network.
Node labels: e.
Arc labels: (c, u).
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An example

s

1

2

3

4

t4 -4

0,2

0,2

1,1

2,1

1,1

2,2

0,2

0,2

The equivalent flow network.
Node labels: e.
Arc labels: (c, u).

s

1

2

3

4

t4,0

0

0

1

2

-4,1

0,2

0,2

1,1

2,1

1,1

2,2

0,2

0,2

Dual iteration 1.
Shortest paths from s on R(x).
Node labels: e, d .
Arc labels: (c, u).
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An example

s

1

2

3

4

t4,0

0

0

1

2

-4,1

0,2

0,2

1,1

2,1

1,1

2,2

0,2

0,2

Dual iteration 1 on R(x).
Node labels: e, d .
Arc labels: (c, u).

s

1

2

3

4

t4,0

0

0

-1

-2

-4,-1

0,0,2

0,0,2

0,1,1

0,2,1

0,1,1

0,2,2

0,0,2

1,0,2

Potentials and reduced costs.
Node labels: e, y .
Arc labels: (cy , c, u).
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An example

s

1

2

3

4

t4,0

0

0

-1

-2

-4,-1

0,0,2

0,0,2

0,1,1

0,2,1

0,1,1

0,2,2

0,0,2

1,0,2

Potentials and reduced costs.
Node labels: e, y .
Arc labels: (cy , c, u).

s

1

2

3

4

t4,0

0

0

-1

-2

-4,-1

2

2

1

1

1

2

2

The admissible graph A(x , y).
Node labels: e, y .
Arc labels: u.
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An example

s

1

2

3

4

t4,0

0

0

-1

-2

-4,-1

2

2

1

1

1

2

2

The admissible graph A(x , y).
Node labels: e, y .
Arc labels: u.

s

1

2

3

4

t4,0

0

0

-1

-2

-4,-1

1,2

1,2

1,1

0,1

1,1

0,2

2,2

Primal iteration 1.
A max flow on A(x , y).
Node labels: e, y .
Arc labels: (x , u).
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An example

s

1

2

3

4

t4,0

0

0

-1

-2

-4,-1

1,2

1,2

1,1

0,1

1,1

0,2

2,2

Primal iteration 1.
A max flow on A(x , y).
Node labels: e, y .
Arc labels: (x , u).

s

1

2

3

4

t2,0

0

0

-1

-2

-2,-1

0,0,1

0,0,1

0,0,1

0,0,1

0,-1,1

0, 2,1

0,-1,1

0, 2,1

0, 0,2

1, 0,2

The updated residual graph.
Node labels: e, y .
Arc labels: (cy , c, u).
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An example

s

1

2

3

4

t2,0

0

0

-1

-2

-2,-1

0,0,1

0,0,1

0,0,1

0,0,1

0,-1,1

0, 2,1

0,-1,1

0, 2,1

0, 0,2

1, 0,2

The updated residual graph.
Node labels: e, y .
Arc labels: (cy , c, u).

s

1

2

3

4

t2,0,0

0,0

0,0

-1,1

-2,0

-2,-1,1

0,0,1

0,0,1

0,0,1

0,0,1

0,-1,1

0, 2,1

0,-1,1

0, 2,1

0, 0,2

1, 0,2

Dual iteration 2.
Shortest paths on R(x).
Node labels: e, y , d .
Arc labels: (cy , c, u).
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An example

s

1

2

3

4

t2,0,0

0,0

0,0

-1,1

-2,0

-2,-1,1

0,0,1

0,0,1

0,0,1

0,0,1

0,-1,1

0, 2,1

0,-1,1

0, 2,1

0, 0,2

1, 0,2

Dual iteration 2.
Shortest paths on R(x).
Node labels: e, y , d .
Arc labels: (cy , c, u).

s

1

2

3

4

t2,0

0

0

-2

-2

-2,-2

0,0,1

0,0,1

0,0,1

0,0,1

1,-1,1

0, 2,1

1,-1,1

0, 2,1

0, 0,2

0, 0,2

Updated potentials and reduced
costs.
Node labels: e, y .
Arc labels: (cy , c, u).
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An example

s

1

2

3

4

t2,0

0

0

-2

-2

-2,-2

0,0,1

0,0,1

0,0,1

0,0,1

1,-1,1

0, 2,1

1,-1,1

0, 2,1

0, 0,2

0, 0,2

Updated potentials and reduced
costs.
Node labels: e, y .
Arc labels: (cy , c, u).

s

1

2

3

4

t2,0

0

0

-2

-2

-2,-2

0,0,1

0,0,1

0,0,1

0,0,1

0, 2,1

0, 2,1

0, 0,2

0, 0,2

The admissible graph A(x , y).
Node labels: e, y .
Arc labels: (cy , c, u).



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

An example

s

1

2

3

4

t2,0

0

0

-2

-2

-2,-2

0,0,1

0,0,1

0,0,1

0,0,1

0, 2,1

0, 2,1

0, 0,2

0, 0,2

The admissible graph A(x , y).
Node labels: e, y .
Arc labels: (cy , c, u).

s

1

2

3

4

t2,0

0

0

-2

-2

-2,-2

1,0,0,1

0,0,0,1

1,0,0,1

0,0,0,1

1,0, 2,1

1,0, 2,1

0,0, 0,2

2,0, 0,2

Primal iteration 2.
A max flow on A(x , y).
Node labels: e, y .
Arc labels: (x , cy , c, u).
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Complexity

The algorithm guarantees that at each iteration
• the excess of node s decreases by at least 1 unit.

Proof: a strictly positive amount of flow is sent from s to t .
• the potential of node t decreases by at least 1 unit.

Proof: no more (s, t)-paths of zero reduced cost can exist in the
residual graph.

Initially e(s) ≤ nB and at the end e(s) = 0.
Initially y(t) = 0 and at the end y(t) ≥ −nC.

Therefore, the number of iterations is bounded by O(min{nB, nC}).

This bound must be multiplied by the complexity for solving a shortest
path problem and a max flow problem at each iteration.
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The out-of-kilter algorithm

The out-of-kilter algorithm is a primal-dual algorithm in which
• flow balance constraints are kept satisfied, while flow bounds

constraints can be violated;
• flows and potentials are iteratively modified to move the solution

towards feasiblity and optimality.

Since flow bounds constraints can be violated before the algorithm
stops, the out-of-kilter algorithm can be used to solve the min cost
flow problem when lower bounds are imposed on arc flows.
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Circulation problem

A circulation problem is a special case of the min cost flow problem,
in which bi = 0 ∀i ∈ N .

The flow is forced to be non-zero, although costs are positive, by the
lower bounds.

Every min cost flow problem instance can be reformulated as an
equivalent circulation problem instance:
• add a node s and arcs (s, i) ∀i ∈ N : bi > 0, with lsi = usi = bi

and csi = 0;
• add a node t and arcs (j, t) ∀j ∈ N : bj < 0, with ljt = ujt = bj and

cjt = 0;
• add an arc (t , s) with lts = uts = B and cts = 0,

where B =
∑

i∈N :bi>0 bi = −
∑

i∈N :bi<0 bi .
Now, setting all b to zero a circulation problem instance is obtained.
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Primal and dual problems

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = 0 ∀i ∈ N

xij ≥ lij ∀(i, j) ∈ A
− xij ≥ −uij ∀(i, j) ∈ A
(xij integer) ∀(i, j) ∈ A.

maximize w =
∑

(i,j)∈A

lijµij −
∑

(i,j)∈A

uijλij

s.t. yi − yj + µij − λij ≤ cij ∀(i, j) ∈ A
yi free ∀i ∈ N
λij ≥ 0 ∀(i, j) ∈ A
µij ≥ 0 ∀(i, j) ∈ A.
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Complementary slackness conditions

maximize w =
∑

(i,j)∈A

lijµij −
∑

(i,j)∈A

uijλij

s.t. yi − yj + µij − λij ≤ cij ∀(i, j) ∈ A
yi free ∀i ∈ N
λij ≥ 0 ∀(i, j) ∈ A
µij ≥ 0 ∀(i, j) ∈ A.

Defining the reduced costs cy
ij = cij − yi + yj for any given vector y ,

dual optimality requires µij − λij = cy
ij for each arc, because uij ≥ lij .

Therefore
• µij = max{0, cy

ij }: if cy
ij > 0, then µij > 0;

• λij = max{0,−cy
ij }: if cy

ij < 0, then λij > 0.
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Complementary slackness conditions

Primal C.S.C.

xij(cij + yj − yi − µij + λij) = 0 ∀(i, j) ∈ A.

Dual C.S.C.
λij(uij − xij) = 0 ∀(i, j) ∈ A
µij(xij − lij) = 0 ∀(i, j) ∈ A.

Therefore

xij = lij ⇒ cy
ij ≥ 0

lij < xij < uij ⇒ cy
ij = 0

xij = uij ⇒ cy
ij ≤ 0.
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The restricted residual graph

The out-of-kilter algorithm works on a restricted residual graph,
because
• not all arcs with residual capacity are allowed to carry additional

flow;
• the residual capacity of an arc (i, j) does not depend only on xij ,

uij and lij , but also on cy
ij .

Only admissible arcs are allowed to receive additional flow.
Only admissible arcs are included in R(x , y), which then depends
both on x and y .

To measure how far the pair of solutions (x , y) is from optimality, a
kilter number is defined for each arc (i, j) ∈ A.
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Kilter numbers and residual capacities

The kilter diagram for
(i, j) ∈ A.

Kilter numbers for each original arc.
Residual capacities for each arc in
R(x , y).

A : kij = lij − xij rij = lij − xij

B : kij = xij − lij rji = xij − lij
C : kij = lij − xij rij = uij − xij

D : kij = xij − uij rji = xij − lij
E : kij = uij − xij rij = uij − xij

F : kij = xij − uij rji = xij − uij

G : kij = 0 rij = uij − xij

rji = xij − lij
H : kij = 0 rij = uij − lij
L : kij = 0 rji = uij − lij
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Admissible arcs

The kilter diagram.

R(x , y) includes only admissible arcs:
• arcs (i, j) ∈ R(x , y) corresponding to

arcs (i, j) ∈ A of type A, C and E (xij can
be increased);
• arcs (j, i) ∈ R(x , y) corresponding to

arcs (i, j) ∈ A of type B, D and F (xij can
be decreased);
• arcs (i, j) and (j, i) ∈ R(x , y)

corresponding to arcs (i, j) ∈ A of type
G (xij can be increased/decreased);

In-kilter arcs of type H and L are not
admissible.



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

The algorithm

Primal initialization. The flow starts from 0 on all arcs.

Dual initialization. The potential starts from 0 on all nodes.

Primal iteration. A maximum flow is sent along a circuit in a restricted
residual graph R(x), including only admissible arcs.
The circuit must include at least one out-of-kilter arc.

Dual iteration. A shortest path is computed to modify the potentials
and the restricted residual graph.
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Primal iteration

An out-of-kilter arc (i, j) ∈ A is selected.

The corresponding arc (p, q) ∈ R(x , y) is considered:
• R(x , y) includes arc (i, j) if xij is of type A, C or E ((p, q) = (i, j));
• R(x , y) includes arc (j, i) if xij is of type B, D or F ((p, q) = (j, i)).

A path P(q, p) from q to p in R(x , y) is searched by labelling nodes
from q.

Different labelling strategies can be used to select P(q, p).



 

Problem properties Cycle canceling Shortest augm. paths Primal-dual Out-of-kilter

Primal iteration

The effects of a primal
iteration.

P(q, p) can only use admissible arcs in
R(x , y).

Sending flow along admissible arcs can only
decrease their kilter number.

When a (q, p)-path is found (breakthrough),
the maximum residual capacity along the
circuit P(q, p) ∪ (p, q) determines the amount
of flow.
R(x , y) is updated.
If out-of-kilter arcs still exist, a new primal
iteration is started.
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Primal iteration

If no (q, p)-path exists in R(x , y), a dual iteration is executed.

Let Q be the set of nodes reachable from q in R(x , y) and Q be its
complement.

There are no arcs with positive residual capacity in R(x , y) across the
(Q,Q) cut.
Therefore there are no out-of-kilter arcs (i, j) such that
• (i, j) is of type A, C or E ((i, j) ∈ R(x , y)) and i ∈ Q and j ∈ Q;
• (i, j) is of type B, D or F ((j, i) ∈ R(x , y)) and j ∈ Q and i ∈ Q.

There are no in-kilter arcs (i, j) of type G with an endpoint in Q and
the other in Q.
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Dual iteration

The effects of a dual
iteration (direct arcs

from Q to Q).

R(x , y) does not include any arc
(i, j) ∈ (Q,Q) such that
• (i, j) is of type A, C or E ;
• (i, j) is of type G and xij < uij .

Consider the set Fw of forward arcs in A
across the (Q,Q) cut:

Fw = {(i, j) ∈ A : i ∈ Q, j ∈ Q, cy
ij > 0, xij < uij}.

They all correspond to arcs of type B and H.

Compute α = min(i,j)∈Fw{cy
ij }.
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Dual iteration

The effects of a dual
iteration (reverse arcs

from Q to Q).

R(x , y) does not include any arc
(j, i) ∈ (Q,Q) such that
• (i, j) is of type B, D or F ;
• (i, j) is of type G and xij > lij .

Consider the set Bw of backward arcs in A
across the (Q,Q) cut:

Bw = {(i, j) ∈ A : j ∈ Q, i ∈ Q, cy
ij < 0, xij > lij}.

They all correspond to arcs of type E and L.

Compute β = max(i,j)∈Bw{cy
ij }.
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Dual iteration

The effects of a dual
iteration.

Define θ = min{α,−β}.

Update yi ← yi + θ ∀i ∈ Q.

For all arcs across the (Q,Q) cut:
• positive reduced costs are reduced by θ,
• negative reduced costs are increased by θ

and kilter numbers can only decrease.

The other arcs are unaffected.

At least one more arc gets zero reduced cost
and becomes admissible (type G).

Update R(x , y) and resume the primal iteration.
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Pseudo-code

x ← 0; y ← 0
for all (i, j) ∈ A do

Compute kij ; Compute rij or rji in R(x , y)
while ∃(i, j) ∈ A : kij > 0 do

if xij < lij ∨ (cy
ij < 0 ∧ xij < uij) then

(p, q)← (i, j)
else
(p, q)← (j, i)

label(i) ← null ∀i ∈ N
repeat

PropagateLabels(q)
if label(p) = null then

Dual Iteration
until label(p) 6= null
Reconstruct the (q − p)-path P; C ← P ∪ (p, q)
δ ← min(u,v)∈C{ruv}
Send δ units of flow along C and update x , k and R(x , y)
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Correctness and complexity

Correctness.
Lemma 1. Updating the node potentials y does not increase the kilter
number of any arc.

Lemma 2. Sending flow along C does not increase the kilter number
of any arc.

Complexity.
Initially the kilter number of any arc is bounded by U.
Hence the sum of all kilter numbers is at most mU.

The sum of the kilter numbers decreases by at most 1 unit for each
primal or dual iteration.

Therefore the algorithm requires O(mU) primal or dual iterations.
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