Minimum mean cycle problem

Combinatorial optimization

Giovanni Righini

Università degli Studi di Milano

Problem definition

We are given a strongly connected digraph $\mathcal{D}=(\mathcal{N}, \mathcal{A})$ with a cost function $c: \mathcal{A} \mapsto \Re$.

The arc costs are unrestricted in sign; negative cost cycles may exist.
We want to find the cycle of minimum mean cost.
The mean cost of a cycle is the average value of costs of the arcs in the cycle.

Directed walks

A directed walk on a digraph is a sequence of nodes, including possible repetitions as well as cycles.

Every directed walk is composed by a directed path and possibly some directed cycles.

The algorithm

Let $s \in \mathcal{N}$ be a node.

Let $d^{k}(j)$ be the cost of the minimum cost directed walk from s to j with k arcs.

$$
\begin{cases}d^{0}(j)=\infty & \forall j \in \mathcal{N} \\ d^{k}(j)=\min _{(i, j) \in \mathcal{A}}\left\{d^{k-1}(i)+c(i, j)\right\} & \forall j \in \mathcal{N}\end{cases}
$$

From the values $d^{k}(j)$ for all nodes one computes the values $d^{k+1}(j)$
for all nodes in $O(m)$.
Since $k=0, \ldots, n$, the overall time complexity is $O(m n)$.

The optimal solution

Let μ^{*} be the mean cost of the minimum mean cost cycle.
Then

$$
\mu^{*}=\min _{j \in \mathcal{N}} \max _{0 \leq k \leq n-1}\left\{\frac{d^{n}(j)-d^{k}(j)}{n-k}\right\}
$$

Therefore μ^{*} can be computed with the above labelling algorithm in $O(m n)$.

Now we must prove this statement on μ^{*} in two cases: when $\mu^{*}=0$ and when $\mu^{*} \neq 0$.

Proof: $\mu^{*} \neq 0$

The main part of the proof concerns the case when both the lhs and the rhs are zero, i.e. when the digraph contains a cycle of zero cost and no negative cost cycles.

When $\mu^{*} \neq 0$, consider what happens if all arc costs are decreased by an amount Δ (unrestricted in sign):

- The optimum μ^{*} (the lhs) is reduced by Δ.
- Every value $d^{k}(j)$ is decreased by $k \Delta$.
- The rhs $\frac{d^{n}(j)-d^{k}(j)}{n-k}$ is decreased by $\frac{n \Delta-k \Delta}{n-k}$, that is by Δ.

Then both the lhs and the rhs are reduced by the same amount Δ.
Then, selecting $\Delta=\mu^{*}$ we prove that the statement remains true, if it is true for $\mu^{*}=0$.

Proof: $\mu^{*}=0(1)$

We can assume now that $\mu^{*}=0$.

Then

- the digraph contains a cycle C with zero cost (the optimal solution);
- the digraph does not contain any cycle with negative cost.

Since the digraph does not contain negative cost cycles, the shortest path problem is well defined.

Let $d(j)$ be the cost of the shortest path from s to j for each $j \in \mathcal{N}$.

Proof: $\mu^{*}=0(2)$

Compute the shortest path arborescence T_{s} from s to all the other nodes.

The reduced costs of the arcs are

$$
\bar{c}(i, j)=c(i, j)+d(i)-d(j) \forall(i, j) \in \mathcal{A} .
$$

For the properties of the shortest paths arborescence, the following relations hold:

- $\bar{c}(i, j) \geq 0 \quad \forall(i, j) \in \mathcal{A}$, because this is required by dual constraints.
- $\bar{c}(i, j)=0 \quad \forall(i, j) \in C$, because the cost reductions $+d(i)-d(j)$ cancel out along cycles; therefore for each cycle the sum of the reduced costs is the same as the sum of the original costs.
- $\bar{c}(i, j)=0 \quad \forall(i, j) \in T_{s}$, because of the complementary slackness conditions.

Proof: $\mu^{*}=0(3)$

Furthermore, the distances $\bar{d}^{k}(j)$ computed according to the reduced costs differ by a constant from the distances computed according to the original costs:

$$
\bar{d}^{k}(j)-d^{k}(j)=\lambda_{j} \quad \forall k=0, \ldots, n \forall j \in \mathcal{N}
$$

because cost reductions $+d(i)-d(j)$ cancel out in the intermediate nodes along the path from s to j.
Therefore

$$
d^{n}(j)-d^{k}(j)=\bar{d}^{n}(j)-\bar{d}^{k}(j) \quad \forall j \in \mathcal{N} \quad \forall k=0, \ldots, n .
$$

Proof: $\mu^{*}=0(4)$

The shortest path from s to j has zero reduced cost, because it belongs to T_{s}.

Let $k^{*}(j)$ be the number of arcs of the shortest path from s to j. Then $k^{*}(j)<n$, because the shortest path contains at most $n-1$ arcs.

Since the path is optimal $\bar{d}^{k^{*}(j)}(j)=0$. In general, for $k \neq k^{*}(j)$ we have $\bar{d}^{k}(j) \geq 0$.

Consider the directed walk of n arcs from s to j. Its reduced cost is non-negative: $\bar{d}^{n}(j) \geq 0$.

Hence $\bar{d}^{n}(j)-\bar{d}^{k^{*}(j)}(j) \geq 0$ and hence

$$
\max _{0 \leq k \leq n-1}\left\{\bar{d}^{n}(j)-\bar{d}^{k}(j)\right\} \geq 0 \quad \forall j \in \mathcal{N} .
$$

Proof: $\mu^{*}=0(5)$

Lemma. There exists a node $p \in \mathcal{N}$ such that

$$
\max _{0 \leq k \leq n-1}\left\{\bar{d}^{n}(p)-\bar{d}^{k}(p)\right\}=0
$$

Proof. Let j be a node in the optimal cycle C.
Consider a walk of n arcs made by

- the shortest path from s to j;
- the arcs of C, starting from j and running along the cycle until n arcs have been selected (possibly with repetitions).
Let p be the final node of the walk.
The reduced cost of the walk is 0 , because all its arcs are in $T_{s} \cup C$. The walk must contain at least one cycle, because it has n arcs. Canceling the cycles from the walk, an (s, p) path is left, with zero reduced cost and $\hat{k} \leq n-1$ arcs.
Hence $\bar{d}^{n}(p)=\bar{d}^{\hat{k}}(p)=0$, while for $k \neq \hat{k}$ we have $\bar{d}^{k}(p) \geq 0$.
This proves the lemma.

Proof: $\mu^{*}=0(6)$

When $\mu^{*}=0$ we have proven that:

- $d^{n}(j)-d^{k}(j)=\bar{d}^{n}(j)-\bar{d}^{k}(j) \quad \forall j \in \mathcal{N} \quad \forall k=0, \ldots, n$
- $\max _{0 \leq k \leq n-1}\left\{\bar{d}^{n}(j)-\bar{d}^{k}(j)\right\} \geq 0 \quad \forall j \in \mathcal{N}$
- $\exists p \in \mathcal{N}: \max _{0 \leq k \leq n-1}\left\{\bar{d}^{n}(p)-\bar{d}^{k}(p)\right\}=0$

Therefore this proves the statement:

$$
\mu^{*}=0=\min _{j \in \mathcal{N} N} \max _{0 \leq k \leq n-1}\left\{\frac{d^{n}(j)-d^{k}(j)}{n-k}\right\} .
$$

