#### All-pairs maximum flows Combinatorial Optimization

Giovanni Righini

University of Milan



#### All-pairs max flows

A maximum flow for each pair of nodes *s* and *t* in a graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  can be obviously found by running any maxflow algorithm  $O(n^2)$  times, where  $n = |\mathcal{V}|$ .

For undirected graphs it is possible to do better: a Gomory-Hu tree, representing all minimum cuts in the graph, can be found in O(n) runs of any maxflow algorithm.



# Gomory-Hu tree (1961)

Let  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  a graph and  $u : \mathcal{E} \mapsto \Re_+$  a capacity function.

A Gomory-Hu tree for  $\mathcal{G}$  and u is a tree  $\mathcal{T} = (\mathcal{V}, \mathcal{F})$  (not necessarily a subgraph of  $\mathcal{G}$ ) such that  $\forall e = [s, t] \in \mathcal{F}$ ,  $\delta(S)$  is a minimum capacity (s, t)-cut of  $\mathcal{G}$ , where S is one of the two components of  $\mathcal{T} \setminus \{e\}$ . + **Property 1.** For any  $\mathcal{G}$  and u a Gomory-Hu tree exists.

**Property 2.** A Gomory-Hu tree can be computed in O(n) maxflow computations.



#### An example

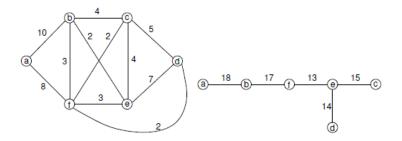
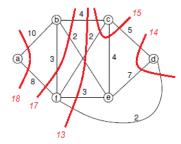
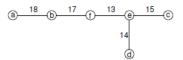


Figure: From Vazirani, Approximation algorithms, Springer, 2004.



### An example





|             | а  | b      | С               | d               | е               | f               |
|-------------|----|--------|-----------------|-----------------|-----------------|-----------------|
| а           |    | 18     | 13              | 13              | 13              | 17              |
| b           |    |        | 13              | 13              | 13              | 17              |
| С           |    |        |                 | 14              | 15              | 13              |
| c<br>d      |    |        |                 |                 | 14              | 13              |
| e<br>f      |    |        |                 |                 |                 | 13              |
| f           |    |        |                 |                 |                 |                 |
|             | •  |        |                 |                 |                 |                 |
|             |    |        |                 |                 |                 |                 |
|             | la | b      | C               | Ь               | e               | f               |
| а           | а  | b<br>a | c<br>abf        | d<br>abf        | e<br>abf        | f<br>ab         |
| a<br>b      | а  |        | c<br>abf<br>abf | d<br>abf<br>abf |                 |                 |
| a<br>b<br>c | а  |        | abf             | abf             | abf             | ab              |
| b           | а  |        | abf             | abf<br>abf      | abf<br>abf      | ab<br>ab        |
| b<br>c      | а  |        | abf             | abf<br>abf      | abf<br>abf<br>c | ab<br>ab<br>abf |



## Gomory-Hu trees and min cuts

For any two distinct vertices *s* and *t* in  $\mathcal{V}$ , let r(s, t) be the minimum capacity of an (s, t)-cut.

Property. The following triangle inequality holds:

$$r(i,j) \geq \min_{k \in \mathcal{V} \setminus \{i,j\}} \{r(i,k), r(k,j)\} \quad \forall i,j \in \mathcal{V} : i \neq j.$$



# Gomory-Hu trees and min cuts

Let *s* and *t* be two distinct vertices in graph  $\mathcal{G}$  with capacity function *u*. Let  $\mathcal{T}$  be a Gomory-Hu tree for  $\mathcal{G}$  and *u*. Let  $\mathcal{P}$  be the (unique) (*s*, *t*)-path in  $\mathcal{T}$ . Let e = [i, j] the edge of  $\mathcal{P}$  with minimum value of *r*. Let *S* be one of the two components of  $\mathcal{T} \setminus \{e\}$ .

**Theorem.** The capacity r(s, t) = r(i, j) and  $\delta(S)$  is a minimum capacity (s, t)-cut.

**Proof.** Inductively,  $r(s, t) \ge r(i, j)$ .

 $\delta(S)$  is an (s, t)-cut, because the deletion of e = [i, j] disconnects s from t.

 $r(s,t) \le u(\delta(S))$  by definition of r(s,t).  $u(\delta(S)) = r(i,j)$  by the property of Gomory-Hu trees. Therefore  $r(s,t) \le u(\delta(S)) = r(i,j)$ . Therefore r(s,t) = r(i,j).



# A lemma

To prove the existence of a Gomory-Hu tree for any graph G and capacity function u, a lemma in needed.

#### Lemma.

- Let *s* and *t* be two distinct vertices in graph *G* with capacity function *u*,
- let  $\delta(S)$  be a minimum capacity (s, t)-cut in  $\mathcal{G}$ ,
- let *i* and *j* be two distinct vertices in *S*.

Then, there exists a minimum capacity (i, j)-cut  $\delta(X)$  with  $X \subseteq S$ .



#### Existence: proof of the lemma

**Proof.** Consider a minimum (i, j)-cut  $\delta(X)$ . W.I.o.g. assume  $s \in S$  and  $t \notin S$  (otherwise swap s and t). W.I.o.g. assume  $s \in X$  (otherwise swap X and  $S \setminus X$ ). W.I.o.g. assume  $i \in X$  and  $j \notin X$  (otherwise swap i and j). Two cases may occur:  $t \notin X$  and  $t \in X$ .

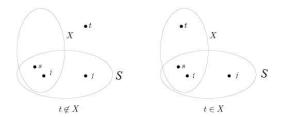


Figure: From by A. Schrijver, *Combinatorial optimization*, Springer 2003, page 249.

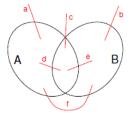


#### Two inequalities

For any two vertex sets A and B

$$u(\delta(A \cap B)) + u(\delta(A \cup B)) \le u(\delta(A)) + u(\delta(B)).$$
(1)

$$u(\delta(A \setminus B)) + u(\delta(B \setminus A)) \le u(\delta(A)) + u(\delta(B)).$$
(2)



(1):  $(c+d+e) + (a+b+c) \le (a+c+e+f) + (b+c+d+f)$ . (2):  $(a+d+f) + (b+e+f) \le (a+c+e+f) + (b+c+d+f)$ .



### Proof of the lemma - case 1

Both  $\delta(S \cap X)$  and  $\delta(S \setminus X)$  are (i, j)-cuts.

```
If t \notin X, then \delta(S \cup X) is an (s, t)-cut.
```

For inequality (1):

$$u(\delta(S \cap X)) + u(\delta(S \cup X)) \le u(\delta(S)) + u(\delta(X)).$$

Since  $\delta(S \cup X)$  an (s, t)-cut and by definition  $\delta(S)$  is a minimum capacity (s, t)-cut,

$$u(\delta(S \cup X)) \ge u(\delta(S)).$$

Hence

$$u(\delta(S \cap X)) \leq u(\delta(X)).$$

Since by definition  $\delta(X)$  is a minimum capacity (i, j)-cut, then also  $\delta(S \cap X)$  is a minimum capacity (i, j)-cut.



## Proof of the lemma - case 2

If  $t \in X$ , then  $\delta(X \setminus S)$  is an (s, t)-cut.

For inequality (2):

$$u(\delta(S \setminus X)) + u(\delta(X \setminus S)) \le u(\delta(S)) + u(\delta(X)).$$

Since  $\delta(X \setminus S)$  is an (s, t)-cut and by definition *S* is a minimum capacity (s, t)-cut,

 $u(\delta(X \setminus S)) \ge u(\delta(S)).$ 

Hence

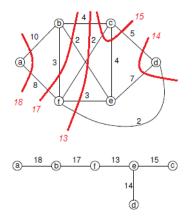
$$u(\delta(S \setminus X)) \leq u(\delta(X)).$$

Since by definition X is a minimum capacity (i, j)-cut, then also  $\delta(S \setminus X)$  is a minimum capacity (i, j)-cut.



#### The lemma

A different (more intuitive) way to state the lemma is: *minimum capacity cuts cannot intersect.* 





# Existence of the Gomory-Hu tree

**Theorem.** For any graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  and any capacity function  $u : \mathcal{E} \mapsto \Re_+$ , there exists a Gomory-Hu tree for  $\mathcal{G}$  and u.

**Proof.** The proof is by induction.

For each  $R \subseteq \mathcal{V}$  consider

- a tree  $\mathcal{T} = (\mathcal{R}, \mathcal{F})$ ,
- a partition of  $\mathcal{V}$  into subsets  $C_r \ \forall r \in R$ , such that:
  - $r \in C_r \quad \forall r \in R;$
  - for each edge e = [s, t] in F, δ(S) is a minimum capacity (s, t)-cut, where S = U<sub>k∈K</sub> C<sub>k</sub> and K is a component of T \{e}.

 $C_r$  is made by the vertices that lie on the same side as r in some minimum capacity cut.



# Existence of the Gomory-Hu tree

If  $|\mathbf{R}| = 1$ , the conditions are trivially satisfied. Then, assume  $|\mathbf{R}| \ge 2$ .

Let  $\delta(W)$  be a minimum capacity cut separating at least one pair of vertices in *R*.

Contract  $\mathcal{V} \setminus W$  into a single vertex, v', yielding graph  $\mathcal{G}'$ . Consider the vertex subset  $R' = R \cap W$ . By induction,  $\mathcal{G}'$  has a Gomory-Hu tree  $(R', \mathcal{F}')$ , with a partition of R' in subsets  $C'_r \forall r \in R'$ .

Similarly, contract *W* into a single vertex, v'', yielding graph  $\mathcal{G}''$ . Consider the vertex subset  $R'' = R \setminus W$ . By induction,  $\mathcal{G}''$  has a Gomory-Hu tree  $(R'', \mathcal{F}'')$ , with a partition of R'' in subsets  $C''_r \forall r \in R''$ .



## Existence of the Gomory-Hu tree

Let  $r' \in R'$  be such that  $v' \in C'_{r'}$ . Let  $r'' \in R''$  be such that  $v'' \in C''_{r''}$ .

Consider  $\mathcal{F} = \mathcal{F}' \cup \mathcal{F}'' \cup [r', r'']$ . Consider  $C_{r'} = C'_{r'} \setminus \{v'\}$  and  $C_r = C'_r$  for all the other  $r \in R'$ . Consider  $C_{r''} = C''_{r''} \setminus \{v''\}$  and  $C_r = C''_r$  for all the other  $r \in R''$ .

Now the tree  $\mathcal{T} = (R, \mathcal{F})$  and the partition  $C_r$  form a Gomory-Hu tree for R.

#### Proof.

For any  $e \in \mathcal{F}$  with  $e \neq [r', r'']$ , the Gomory-Hu properties follow from the Lemma.

If e = [r', r''], then S = W and r(W) is a minimum capacity (r', r'')-cut, because it is one with minimum capacity over all cuts separating at least one pair of vertices in *R*.



Procedure GomoryHuTree( $\mathcal{G}, R$ ) if |R| = 1 then // Recursion base // Select *r* such that  $R = \{r\}$  $\mathcal{T} \leftarrow (\{r\}, \emptyset)$  $C_r \leftarrow \mathcal{V}; C \leftarrow \{C_r\}$ else Select  $r_1, r_2 \in R$  $\delta(W) \leftarrow MinCut(r_1, r_2)$ // Create two sub-instances of the problem //  $\mathcal{G}_1 \leftarrow \text{Shrink}(\mathcal{G}, \mathcal{V} \setminus W, v_1); R_1 \leftarrow R \cap W$  $\mathcal{G}_2 \leftarrow \text{Shrink}(\mathcal{G}, W, v_2); R_2 \leftarrow R \setminus W$ // Recursive step //  $(\mathcal{T}_1, \mathbb{C}^1) \leftarrow \text{GomoryHuTree}(\mathcal{G}_1, \mathbb{R}_1)$  $(\mathcal{T}_2, \mathbb{C}^2) \leftarrow \text{GomoryHuTree}(\mathcal{G}_2, \mathbb{R}_2)$ // Vertex selection // Select  $r' \in R_1$  such that  $v_1 \in C_{r'}^1$ Select  $r'' \in R_2$  such that  $v_2 \in C_{r''}^2$ // Compute tree and partitions for  $(\mathcal{G}, R)$  //  $\mathcal{T} \leftarrow (R_1 \cup R_2, \mathcal{E}(T_1) \cup \mathcal{E}(T_2) \cup \{[r', r'']\})$  $C \leftarrow Compute Partitions(R_1, R_2, C^1, C^2, r', r'')$ return  $(\mathcal{T}, C)$ 



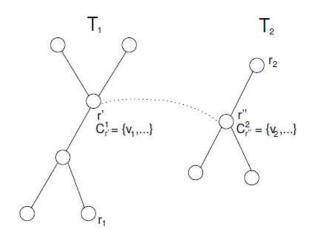
# Computing a Gomory-Hu tree

Procedure ComputePartitions( $R_1, R_2, C^1, C^2, r', r''$ ) // Remove  $v_1$  and  $v_2$  from  $C_{r'}$  and  $C_{r''}$  // for  $r \in R_1 : r \neq r'$  do  $C_r \leftarrow C_r^1$   $C_{r'} \leftarrow C_{r'}^1 \setminus \{v_1\}$ for  $r \in R_2 : r \neq r''$  do  $C_r \leftarrow C_r^2$   $C_{r''} \leftarrow C_{r''}^2 \setminus \{v_2\}$ return C

Vertices in  $C_r$  must appear on the same side of r in some min cut.



# Computing a Gomory-Hu tree



From two Gomory-Hu trees a larger one is obtained, recursively.



# Computing a Gomory-Hu tree

When two trees are merged in a larger one,

- all the edges of  $\mathcal{T}_1$  and  $\mathcal{T}_2$  correspond to min cuts, because  $\mathcal{T}_1$  and  $\mathcal{T}_2$  are Gomory-Hu trees and because the Lemma guarantees that each subtree can be considered separately because min cuts do not cross;
- the new edge [*r'*, *r''*] also corresponds to a min cut (this can be easily proven by contradiction).

Vertices  $r_1$  and  $r_2$  can be selected arbitrarily: the correctness of the algorithm is not affected.

The number of calls to *MinCut* is the same as the number of edges in the final Gomory-Hu tree, that is n - 1.

