
 

All-pairs maximum flows
Combinatorial Optimization

Giovanni Righini
University of Milan



 

All-pairs max flows

A maximum flow for each pair of nodes s and t in a graph G = (V , E)
can be obviously found by running any maxflow algorithm O(n2)
times, where n = |V|.

For undirected graphs it is possible to do better: a Gomory-Hu tree,
representing all minimum cuts in the graph, can be found in O(n)
runs of any maxflow algorithm.



 

Gomory-Hu tree (1961)

Let G = (V , E) a graph and u : E 7→ ℜ+ a capacity function.

A Gomory-Hu tree for G and u is a tree T = (V ,F) (not necessarily a
subgraph of G) such that ∀e = [s, t] ∈ F , δ(S) is a minimum capacity
(s, t)-cut of G, where S is one of the two components of T \{e}.
+ Property 1. For any G and u a Gomory-Hu tree exists.

Property 2. A Gomory-Hu tree can be computed in O(n) maxflow
computations.



 

An example

Figure: From Vazirani, Approximation algorithms, Springer, 2004.



 

An example

a b c d e f
a 18 13 13 13 17
b 13 13 13 17
c 14 15 13
d 14 13
e 13
f

a b c d e f
a a abf abf abf ab
b abf abf abf ab
c d c abf
d d abf
e abf
f



 

Gomory-Hu trees and min cuts

For any two distinct vertices s and t in V , let r(s, t) be the minimum
capacity of an (s, t)-cut.

Property. The following triangle inequality holds:

r(i, j) ≥ min
k∈V\{i,j}

{r(i, k), r(k , j)} ∀i, j ∈ V : i 6= j.



 

Gomory-Hu trees and min cuts

Let s and t be two distinct vertices in graph G with capacity function u.
Let T be a Gomory-Hu tree for G and u.
Let P be the (unique) (s, t)-path in T .
Let e = [i, j] the edge of P with minimum value of r .
Let S be one of the two components of T \{e}.

Theorem. The capacity r(s, t) = r(i, j) and δ(S) is a minimum
capacity (s, t)-cut.

Proof. Inductively, r(s, t) ≥ r(i, j).
δ(S) is an (s, t)-cut, because the deletion of e = [i, j] disconnects s
from t.
r(s, t) ≤ u(δ(S)) by definition of r(s, t).
u(δ(S)) = r(i, j) by the property of Gomory-Hu trees.
Therefore r(s, t) ≤u(δ(S)) = r(i, j).
Therefore r(s, t) = r(i, j).



 

A lemma

To prove the existence of a Gomory-Hu tree for any graph G and
capacity function u, a lemma in needed.

Lemma.
• Let s and t be two distinct vertices in graph G with capacity

function u,
• let δ(S) be a minimum capacity (s, t)-cut in G,
• let i and j be two distinct vertices in S.

Then, there exists a minimum capacity (i, j)-cut δ(X) with X ⊆ S.



 

Existence: proof of the lemma

Proof. Consider a minimum (i, j)-cut δ(X).
W.l.o.g. assume s ∈ S and t 6∈ S (otherwise swap s and t).
W.l.o.g. assume s ∈ X (otherwise swap X and S\X ).
W.l.o.g. assume i ∈ X and j 6∈ X (otherwise swap i and j).
Two cases may occur: t 6∈ X and t ∈ X .

Figure: From by A. Schrijver, Combinatorial optimization, Springer 2003,
page 249.



 

Two inequalities

For any two vertex sets A and B

u(δ(A ∩ B)) + u(δ(A ∪ B)) ≤ u(δ(A)) + u(δ(B)). (1)

u(δ(A\B)) + u(δ(B\A)) ≤ u(δ(A)) + u(δ(B)). (2)

(1): (c + d + e) + (a + b + c) ≤ (a + c + e + f ) + (b + c + d + f ).
(2): (a + d + f ) + (b + e + f ) ≤ (a + c + e + f ) + (b + c + d + f ).



 

Proof of the lemma - case 1

Both δ(S ∩ X) and δ(S\X) are (i, j)-cuts.

If t 6∈ X , then δ(S ∪ X) is an (s, t)-cut.

For inequality (1):

u(δ(S ∩ X)) + u(δ(S ∪ X)) ≤ u(δ(S)) + u(δ(X)).

Since δ(S ∪ X) an (s, t)-cut and by definition δ(S) is a minimum
capacity (s, t)-cut,

u(δ(S ∪ X)) ≥ u(δ(S)).

Hence
u(δ(S ∩ X)) ≤ u(δ(X)).

Since by definition δ(X) is a minimum capacity (i, j)-cut, then also
δ(S ∩ X) is a minimum capacity (i, j)-cut.



 

Proof of the lemma - case 2

If t ∈ X , then δ(X\S) is an (s, t)-cut.

For inequality (2):

u(δ(S\X)) + u(δ(X\S)) ≤ u(δ(S)) + u(δ(X)).

Since δ(X\S) is an (s, t)-cut and by definition S is a minimum
capacity (s, t)-cut,

u(δ(X\S)) ≥ u(δ(S)).

Hence
u(δ(S\X)) ≤ u(δ(X)).

Since by definition X is a minimum capacity (i, j)-cut, then also
δ(S\X) is a minimum capacity (i, j)-cut.



 

The lemma

A different (more intuitive) way to state the lemma is:
minimum capacity cuts cannot intersect.



 

Existence of the Gomory-Hu tree

Theorem. For any graph G = (V , E) and any capacity function
u : E 7→ ℜ+, there exists a Gomory-Hu tree for G and u.

Proof. The proof is by induction.

For each R ⊆ V consider
• a tree T = (R,F),
• a partition of V into subsets Cr ∀r ∈ R, such that:

• r ∈ Cr ∀r ∈ R;
• for each edge e = [s, t ] in F , δ(S) is a minimum capacity (s, t)-cut,

where S =
⋃

k∈K Ck and K is a component of T\{e}.

Cr is made by the vertices that lie on the same side as r in some
minimum capacity cut.



 

Existence of the Gomory-Hu tree

If |R| = 1, the conditions are trivially satisfied. Then, assume |R| ≥ 2.

Let δ(W ) be a minimum capacity cut separating at least one pair of
vertices in R.

Contract V\W into a single vertex, v ′, yielding graph G′.
Consider the vertex subset R′ = R ∩ W .
By induction, G′ has a Gomory-Hu tree (R′,F ′), with a partition of R′

in subsets C′
r ∀r ∈ R′.

Similarly, contract W into a single vertex, v ′′, yielding graph G′′.
Consider the vertex subset R′′ = R\W .
By induction, G′′ has a Gomory-Hu tree (R′′,F ′′), with a partition of
R′′ in subsets C′′

r ∀r ∈ R′′.



 

Existence of the Gomory-Hu tree

Let r ′ ∈ R′ be such that v ′ ∈ C′
r ′ .

Let r ′′ ∈ R′′ be such that v ′′ ∈ C′′
r ′′ .

Consider F = F ′ ∪ F ′′ ∪ [r ′, r ′′].
Consider Cr ′ = C′

r ′\{v ′} and Cr = C′
r for all the other r ∈ R′.

Consider Cr ′′ = C′′
r ′′\{v ′′} and Cr = C′′

r for all the other r ∈ R′′.

Now the tree T = (R,F) and the partition Cr form a Gomory-Hu tree
for R.

Proof.
For any e ∈ F with e 6= [r ′, r ′′], the Gomory-Hu properties follow from
the Lemma.

If e = [r ′, r ′′], then S = W and r(W ) is a minimum capacity
(r ′, r ′′)-cut, because it is one with minimum capacity over all cuts
separating at least one pair of vertices in R.



 

Procedure GomoryHuTree(G,R)
if |R| = 1 then

// Recursion base //
Select r such that R = {r}
T ← ({r}, ∅)
Cr ← V ; C ← {Cr}

else
Select r1, r2 ∈ R
δ(W )← MinCut(r1, r2)
// Create two sub-instances of the problem //
G1 ← Shrink(G,V\W , v1); R1 ← R ∩W
G2 ← Shrink(G,W , v2); R2 ← R\W
// Recursive step //
(T1,C1)← GomoryHuTree(G1,R1)
(T2,C2)← GomoryHuTree(G2,R2)
// Vertex selection //
Select r ′ ∈ R1 such that v1 ∈ C1

r ′

Select r ′′ ∈ R2 such that v2 ∈ C2
r ′′

// Compute tree and partitions for (G,R) //
T ← (R1 ∪ R2, E(T1) ∪ E(T2) ∪ {[r ′, r ′′]})
C ← ComputePartitions(R1,R2,C1,C2, r ′, r ′′)

return (T ,C)



 

Computing a Gomory-Hu tree

Procedure ComputePartitions(R1,R2,C1,C2, r ′, r ′′)
// Remove v1 and v2 from Cr ′ and Cr ′′ //
for r ∈ R1 : r 6= r ′ do

Cr ← C1
r

Cr ′ ← C1
r ′\{v1}

for r ∈ R2 : r 6= r ′′ do
Cr ← C2

r
Cr ′′ ← C2

r ′′\{v2}
return C

Vertices in Cr must appear on the same side of r in some min cut.



 

Computing a Gomory-Hu tree

From two Gomory-Hu trees a larger one is obtained, recursively.



 

Computing a Gomory-Hu tree

When two trees are merged in a larger one,
• all the edges of T1 and T2 correspond to min cuts, because T1

and T2 are Gomory-Hu trees and because the Lemma
guarantees that each subtree can be considered separately
because min cuts do not cross;

• the new edge [r ′, r ′′] also corresponds to a min cut (this can be
easily proven by contradiction).

Vertices r1 and r2 can be selected arbitrarily: the correctness of the
algorithm is not affected.

The number of calls to MinCut is the same as the number of edges in
the final Gomory-Hu tree, that is n − 1.


