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A major drawback

Algorithms based on augmenting paths send flow multiple times
along non-saturated arcs.
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Each augmenting path sends one unit of flow along arcs
{(s, 1), (1, 2), (2, 3), (3, 4)}.



Preflow

To overcome this drawback, we consider preflow instead of flow.

A preflow is an assignment of values to the arc flow variables x that
can violate the flow conservation constraints, but satisfies them as
inequalities: ∑

i∈N :(i,j)∈A

xij −
∑

i∈N :(j,i)∈A

xji ≥ 0.

The preflow entering each node (different from s and t) is not less
than the preflow leaving the node. The excess flow ei at node i ∈ N is

ei =
∑

i∈N :(i,j)∈A

xij −
∑

i∈N :(j,i)∈A

xji .

Node s has negative excess; all the others have non-negative excess.



Preflow push

Any node i ∈ N\{s, t} with ei > 0 is an active node.

If there are active nodes, the solution is infeasible.

The preflow push algorithm iteratively pushes excess flow along arcs
from active nodes to the sink t , until it achieves feasibility.

Flow is sent only along admissible arcs, defined as in the shortest
augmenting path algorithm.

When this is not possible, the distance of the active node is updated
to create at least one admissible arc.



Preflow push algorithm

Algorithm 1 Preflow push
x ← 0
ExactDistance
for (s, j) ∈ A do

xsj ← usj

ds ← n
while Activenodes 6= ∅ do

Select(i ∈ Activenodes)
PushRelabel(i)

Algorithm 2 PushRelabel(i)
if ∃(i, j) admissible then
δ ← min{ei , rij}
Push(δ, i, j)

else
di ← 1 +min(i,j)∈AR

{dj}



An example
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An example: initialization
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An example: iteration 1
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Iteration 1: send preflow
from node 1.



An example: iteration 2
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Iteration 2: send preflow
from node 2



An example: iteration 3
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Iteration 3: send preflow
from node 3



An example: iteration 4
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Iteration 4: update d2



An example: iteration 5
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Iteration 5: send preflow
from node 2



An example: iteration 6
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Iteration 6: send preflow
from node 3



An example: iteration 7
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Iteration 7: update d2



An example: iteration 8
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Iteration 8: send preflow
from node 2



An example: iteration 9

-8,4

0,5

2,1

6,0

1
4

4

3

1

5

Iteration 8

-8,4

0,5

2,5

6,0

1
4

4

3

1

5

Iteration 9: update d3



An example: iteration 10
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Iteration 10: send preflow
from node 3



Correctness

Property 1. Distance labels are always valid.

Property 2. At any point during the execution of the algorithm, every
node i with positive excess ei > 0 is connected to the source by an
i − s path in the residual graph.

This guarantees that the Relabel operation is always possible.



Complexity

It is also possible to establish a bound on the number of times every
node is relabeled.

Property 3. For each node i ∈ N, di < 2n.

Proof. The last time a node i is relabeled is has a positive excess;
hence there exists a path P from i to s in the residual network. Such
a path has at most n − 1 nodes (including i and s) and n− 2 arcs.
Since ds = n and dk ≤ dh + 1 for each (k , h) in P, it follows that
di ≤ n + (n − 2) < 2n.



Complexity

Property 4. Each distance label increases at most 2n times.

This follows directly from Property 3, because labels increase by at
least one unit each time.

Property 5. Consequently, the total number of Relabel operations is
at most 2n2.

We had already proven that the total time required for all Relabel
operations (search for an admissible arc, computation of the new
value for the distance label) is O(km) if each node is relabeled at
most k times. Here k = 2n.

Therefore the overall time required for relabeling is O(nm).



Complexity

The amount of flow that is pushed at each iteration along an arc (i, j)
is δ = min{ei , rij}.

Definition.
• A push is saturating, if δ = rij .
• A push is non-saturating, if δ = ei < rij .

Property 6. The algorithm performs at most 2nm saturating pushes.

The proof relies upon the lemma stating that if each node is relabeled
at most k times then each arc is saturated no more than km times. In
this case k = 2n and Property 6 follows.



Complexity

To establish a bound on the number of non-saturating pushes, we use
a potential function Φ =

∑
i∈I di , where I is the set of active nodes.

The initial value of Φ is at most 2n2, because
• the number of active nodes is less than n;
• di < 2n for every active node.

The final value of Φ is 0, because no active nodes are left.

We now prove bounds on the maximum possible increase and the
minimum possible decrease of Φ in case of saturating and
non-saturating pushes.



Complexity

Case I: Relabel. The distance of an active node i is increased by at
least one unit and this increases Φ by the same amount. The total
increase of di is bounded by 2n. Hence, the total increase of Φ due to
all Relabel operations is bounded by 2n2.

Case II: Saturating push. A saturating push along an arc (i, j) can
create a new active node j. In this case Φ is increased by dj which is
at most 2n. Since the number of saturating pushes is at most nm,
then the total increase of Φ due to saturating pushes is at most 2n2m.

Case III: Non-saturating push. A non-saturating push along an arc
(i, j) makes i inactive and therefore it decreases Φ by di . If j was
inactive, then Φ is increased by dj = di − 1. Therefore Φ is decreased
by at least one unit.



Complexity

Summarizing:
• The initial value of Φ is at most 2n2.
• The final value of Φ is 0.
• The value of Φ is always non-negative.
• The maximum possible increase of Φ is 2n2 + 2n2m.
• The decrease of Φ is at least 1 for each non-saturating push.

Property 7. The generic preflow push algorithm performs O(n2m)
non-saturating pushes.



Complexity

The complexity of inserting and deleting elements from a
data-structure containing the active nodes can be done in O(1) (e.g.
using a doubly linked list).

Summarizing:
• The overall time required for relabeling is O(nm).
• The overall time required for O(nm) saturating pushes is O(nm).
• The overall time required for O(n2m) non-saturating pushes is

O(n2m).

Hence the overall complexity of the generic preflow push algorithm is
O(n2m).



Specific implementations

The bottleneck is the number of non-saturating pushes and this
depends on how the active node is selected.

We consider three specific implementations:
• FIFO preflow push algorithm: O(n3) (tight).
• Highest label preflow push algorithm: O(n2

√
m) (tight).

• Excess scaling algorithm: O(nm + n2 logU).

In all cases we assume that the active node remains active after
every saturating push.



FIFO preflow push algorithm

Active nodes are kept in a queue.

Starting from the queue obtained after initialization (preflow sent from
s), a stage is the set of iterations when the nodes in the queue are
examined once.

The state of the queue at the end of each stage determines the set of
nodes to be examined in the next stage.

To establish the complexity we determine a bound on the number of
stages.



FIFO preflow push algorithm

Consider a potential function ψ = maxi∈I{di}, where I is the set of
active nodes.

We consider stages with at least one Relabel operation and stages
with no Relabel operations and we bound them separately.

Case I: stages that increase the potential.
The potential can grow only in stages including at least one Relabel
operation. We have already proven that at most 2n2 Relabel
operations can occur. So, at most 2n2 stages of this type can occur.

Since all distance labels are non-decreasing and they always remain
bounded by 2n, then the total increase of ψ is at most 2n for each
node, i.e. 2n2.



FIFO preflow push algorithm

Case II: stages that decrease the potential.
If a stage does not include any Relabel operation, then all the excess
is pushed from active nodes to other nodes with smaller distance
values. Hence ψ decreases by at least 1 unit during the stage.

The initial value of ψ is not larger than n.
The final value of ψ is 0.
The maximum increase of ψ is 2n2.
Therefore the number of stages without Relabel operations is at most
2n2 + n.

Hence, the total number of stages is 2n2 + 2n2 + n, i.e. O(n2).



FIFO preflow push algorithm

The number of stages is O(n2).

Each stage examines every node at most once.

Each node examination performs at most one non-saturating push.

Hence the number of non-saturating pushes is O(n3).

Since the number of non-saturating pushes is the bottleneck in the
generic preflow push algorithm, the time complexity of the FIFO
implementation is O(n3).



Highest label preflow push algorithm

Another specific implementation of the preflow push algorithm selects
an active node with the highest distance label. The number of
non-saturating pushes in this case can be easily bounded by O(n3).

Proof. Let d∗ be the maximum distance among all active nodes. The
algorithm examines nodes with label d∗, pushing flow from them to
nodes with distance d∗ − 1. Then the same is repeated from nodes
with label d∗ − 1 to nodes with label d∗ − 2 and so on, until either a
node is relabeled or no active nodes are left.

No more than n nodes can be examined between two Relabel
operations.
No more than 2n2 Relabel operations can occur.
No more than one non-saturating push can occur for each node
examination.
Therefore the number of non-saturating pushes is O(n3).



Highest label preflow push algorithm: complexity

With a more detailed analysis (Cheriyan and Maheshwari, 1989), it is
possible to establish a better worst-case bound on the number of
non-saturating pushes. For this analysis we need some observations
and definitions.

At any point during the execution of the algorithm each node i ∈ N
may have a successor j ∈ N . This is the effect of Relabel(i) that sets
d(i) to d(j) + 1 and makes arc (i, j) admissible. We say that Succ(i)
is set to j.

Since each node has no more than one successor, the set of arcs
(i,Succ(i)) forms a forest F in the residual digraph AR . One of its
components is rooted in t .



Highest label preflow push algorithm: complexity

We define D(i) as the set of descendants of each node i. It includes i
itself and all nodes from which i can be reached following the arcs of
F . Therefore d(j) > d(i) ∀j ∈ D(i), j 6= i.

A maximal active node is an active node with no active descendants.

Let H be the set of maximal active nodes.



Highest label preflow push algorithm: complexity

Let K be a parameter.

We define a potential function

Φ =
∑

i∈H

φ(i)

where
φ(i) = max{0,K + 1− |D(i)|}.

The following properties hold:
• φ(i) ≤ K ∀i ∈ N , because |D(i)| ≥ 1 for all nodes.
• Φ changes when:

• H changes or
• |D(i)| changes for some node i ∈ H.

Now we examine the effect of different operations on Φ.



Highest label preflow push algorithm: complexity

Non-saturating pushes.

Push operations can only occur from nodes in H because of the
“highest label” selection rule.
Push operations can only occur along admissible arcs from i to
Succ(i). Consider a non-saturating push from i ∈ H along arc (i, j).

• F does not change;
• node i becomes inactive and leaves H;
• node j can become a maximal active node, entering H;
• j is the successor of i and hence |D(j)| > |D(i)| and hence
φ(j) ≤ φ(i).

Therefore, the potential Φ:
• decreases by at least one unit, if |D(i)| ≤ K (because φ(i) ≥ 1

and φ(j) ≤ φ(i))
• remains unchanged, otherwise (because φ(i) = 0 and hence
φ(j) = 0 too).



Highest label preflow push algorithm: complexity

Saturating pushes.

Consider a saturating push from i ∈ H along an admissible arc (i, j):
• arcs (i, j) leaves F , becoming inadmissible;
• node i remains active and then it remains in H;
• node j can become a maximal active node, entering H;

This can increase Φ by at most K units (because φ(j) ≤ K ).



Highest label preflow push algorithm: complexity

Relabel.

Consider an operation Relabel(i) on a node i ∈ H:
• there is no arc (i, j) ∈ F , then i is one of the roots of F ;
• since i ∈ H, no descendants of i are active;
• all arcs (k , i) ∈ F become inadmissible when i is relabeled;

• no new maximal active nodes are created;
• |D(i)| is decreased to 1; so, φ(i) can increase by at most K ;

• new arcs entering F do not create new nodes in H;
• some node can leave H;
• |D(k)| can increase for some k ;

In both cases Φ does not increase.



Highest label preflow push algorithm: complexity

Summing up, indicating the variation of Φ by ∆Φ:
• Non-saturating pushes: ∆Φ ≤ 0 in general and ∆Φ ≤ −1 if
|D(i)| ≤ K ;
• Saturating pushes: ∆Φ ≤ K ;
• Relabelling: ∆Φ ≤ K ;

We define d = maxi∈I{d(i)} the maximum label of an active node.

We define a stage as the sequence of pushes during which d
remains unchanged.

Since there are O(n2) Relabel operations, there are O(n2) stages.

A stage is short if it contains no more than 2n/K non-saturating
pushes, long otherwise.



Highest label preflow push algorithm: complexity

There are O(n2) stages.

Each short stage has no more than 2n/K non-saturating pushes.

Hence, the number of non-saturating pushes in short stages is
O(n3/K ).

For the definition of the set D(i), the sets of descendants of different
maximal active nodes are disjoint.

Therefore, there are at most n/K maximal active nodes with K
descendants or more.

Then at least n/K non-saturating pushes occur from maximal active
nodes with less than K descendants.

These pushes decrease Φ by at least one unit.



Highest label preflow push algorithm: complexity

Summing up:
• there are O(nm) pushes;
• saturating pushes produce ∆Φ ≤ K ;
• there are O(n2) relabelings;
• relabelings produce ∆Φ ≤ K .

Then, the total increase of Φ due to saturating pushes and relabelings
is O(nmK ).

Non-saturating pushes do not increase Φ.

Non-saturating pushes in long stages decrease Φ by at least one unit.

Therefore the number of non-saturating pushes in long stages is
O(nmK ).



Highest label preflow push algorithm: complexity

The number of non-saturating pushes in short stages is O(n3/K ).
The number of non-saturating pushes in long stages is O(nmK ).

Selecting K = n/
√

m we can bound the total number of
non-saturating pushes with O(n2

√
m), which is the computational

complexity of the whole algorithm, since non-saturating pushes are
the bottleneck.



Highest label preflow push algorithm: data-structure

To select a node with highest distance label, we keep an array L of
linked lists, such that each list L[k ] contains the active nodes with
distance label k .

A variable λ contains an upper bound on the highest value of k for
which L[k ] 6= ∅.

At each iteration the search starts from λ and goes down until a
non-empty list is found.
Then any node is taken from it.

When a distance label increases owing to a Relabel operation, λ is
set to the new value of the distance label.

The total increase is bounded by 2n2; so the total decrease is
bounded by n + 2n2, i.e O(n2).



Excess scaling preflow push algorithm

A different way of selecting active nodes in a preflow push algorithm
is excess scaling.

The idea is to select an active node with a relatively high value of
excess, so that the maximum excess is monotone non-increasing.

The idea is analogous to that of capacity scaling in maxflow
algorithms based on augmenting paths.



Excess scaling preflow push algorithm

Let ∆ be an upper bound to emax = maxi∈I{ei}.

For each node i ∈ I we say that if ei ≥ ∆/2, then it is a large excess;
otherwise it is a small excess.

The excess scaling algorithm
• pushes flow from nodes with large excess.
• does never raise the excess of any node above ∆.



Excess scaling preflow push algorithm

The selection rule is: select an active node with a large excess and a
minimum distance.

The amount of flow to push along arc (i, j) is set as follows:

δ = min{ei , rij ,∆− ej}

The execution of the algorithm is divided into phases and ∆ is halved
from each phase to the next.

Initially ∆ = 2⌈log2 U⌉; this implies U ≤ ∆ ≤ 2U.

When emax ≤ ∆/2 a new phase is started.



Excess scaling preflow push algorithm: properties

Property 1. Each non-saturating push sends at least ∆/2 units of
flow.

For any non-saturating push along arc (i, j), di = 1 + dj .

Since i has a minimum distance among nodes with large excess,
ei ≥ ∆/2 and ej < ∆/2.

Since the push is non-saturating, it sends δ = min{ei ,∆− ej} units of
flow.

Therefore δ ≥ ∆/2.

Property 2. No excess ever exceeds ∆.

The new excess of node j after the push is

ej +min{ei ,∆− ej} ≤ ej + (∆− ej ) = ∆.



Excess scaling preflow push algorithm: complexity

To establish the complexity of the algorithm we use a potential
function

Θ =
∑

i∈N

eidi

∆
.

The value of Θ at the beginning of each ∆-scaling phase is bounded
by 2n2, because ei ≤ ∆ and di ≤ 2n for each node i.

We study separately what happens in case of Push and Relabel.



Excess scaling preflow push algorithm: complexity

Case I (Relabel).

When node i is relabeled, its distance label di is increased by ǫ ≥ 1.

Therefore Θ is increased by ei ǫ/∆ which is bounded by ǫ because
ei ≤ ∆.

Since the overall increase of di is bounded by 2n for each node i, the
total increase of Θ is bounded by 2n2.

Hence it is also bounded by 2n2 in each single ∆-scaling phase.



Excess scaling preflow push algorithm: complexity

Case II (Push).

A non-saturating push along arc (i, j) sends at least ∆/2 units of flow
from i to j, with di = dj + 1.

Therefore Θ decreases by at least 1/2 unit.

Since the initial value of Θ at the beginning of a phase is bounded by
2n2 and its increase during a phase is also bounded by 2n2, the
number of non-saturating pushes during a phase is bounded by 8n2.

Since the number of scaling phases is 1 + ⌈logU⌉, the algorithm
performs O(n2 log2 U) non-saturating pushes.

All the other operations require O(nm) time.

Therefore the complexity of the algorithm is O(nm + n2 log2 U).



Excess scaling preflow push algorithm: data-structure

The search for the active node we use:
• an array L of linked lists s.t. L[k ] = {i ∈ N : ei > ∆/2 ∧ di = k};
• a variable λ, indicating a lower bound for the smallest index k for

which L[k ] is not empty.

At every node selection, we start from L[λ] and we scan L until a
non-empty list is found.
The maximum decrease of λ is bounded by the number of pushes,
because each push makes λ either to remain unchanged or to
decrease by 1 unit.
The maximum increase of λ is n for each phase and there are
O(logU) phases.
Hence the effort needed to scan L is bounded by the number of
pushes plus O(n logU).
Hence it is not a bottleneck.


