
The all-pairs shortest path problem
Combinatorial optimization

Giovanni Righini

University of Milan

 



All-pairs shortest paths

By a repeated execution (n times) of the Bellman-Ford algorithm, it is
possible to compute shortest paths from any node to any other node
in a weighted digraph D = (N ,A). However the complexity is
O(n2m).

The same result can be obtained more efficiently with an algorithm
due to Kleene (1956), Roy (1959), McNaughton e Yamada (1960),
Warshall (1962), Floyd (1962), known as Floyd-Warshall algorithm.

The Floyd-Warshall algorithm is a dynamic programming algorithm.



Floyd-Warshall algorithm (1962)

Consider an arbitrary ordering of the nodes v1, v2, . . . , vn.

For each pair of nodes s ∈ N and t ∈ N and for each k = 0, 1, . . . , n
we define dk (s, t), as the cost of the optimal path from s to t using
only intermediate nodes in {v1, . . . , vk}.

Initially, with k = 0, we have d0(s, t) = cst for each arc (s, t) ∈ A and
d0(s, t) =∞ for each pair (s, t) 6∈ A.

The following recursive property holds:

dk (s, t) = min{dk−1(s, t), dk−1(s, vk ) + dk−1(vk , t)} ∀k = 1, 2, . . . , n.

A matrix π of optimal predecessors is also computed and it is used to
reconstruct the shortest paths, recursively: we update π[s, t] := k
whenever dk−1(s, vk ) + dk−1(vk , t) < dk−1(s, t).



Floyd-Warshall algorithm (1962)

Algorithm 1 Floyd-Warshall algorithm
for u = 1, . . . , n do

for v = 1, . . . , n do
if u = v then

d [0, u, v ]← 0
else

d [0, u, v ]← cuv

π[u, v ]← 0
for k = 1, . . . , n do

for u = 1, . . . , n do
for v = 1, . . . , n do

if d [k − 1, u, k ] + d [k − 1, k , v ] < d [k − 1, u, v ] then
d [k , u, v ]← d [k − 1, u, k ] + d [k − 1, k , v ]
π[u, v ]← k

else
d [k , u, v ]← d [k − 1, u, v ]

The computational complexity is O(n3).



Negative circuits

If the digraph contains negative cost circuits, then the Floyd-Warshall
algorithm detects at least one of them and stops.

A negative cost circuit corresponds to a negative entry on the main
diagonal (at any iteration).

Therefore the Floyd-Warshall algorithm can be used as a
pre-processing sub-routine, to check whether a given digraph
contains negative cost circuits or not.



Johnson algorithm

We now consider the case in which
• the digraph is strongly connected;
• there are no negative cost circuits;
• arc costs can be negative.

We can run:
• Bellman-Ford n times, once from each node: O(n2m).
• Floyd-Warshall: O(n3).
• Dijkstra n times, once from each node, if all arc costs are

non-negative: O(nm + n2 log n).

Johnson algorithm (1977) allows for O(nm + n2 log n) complexity even
when arc costs can be negative.



Johnson algorithm

Johnson algorithm runs in three steps:
• run Bellman-Ford from a node s to all the other nodes;
• define modified arc costs such that:

• the new costs are non-negative;
• the rank of paths does not change (shortest paths remain shortest

paths);
• negative cost circuits are not introduced;
• the new cost is computed in O(m) (i.e. O(1) for each arc);

• run Dijkstra from the other n − 1 nodes.



Johnson algorithm

Consider a potential function p : N 7→ ℜ and a new cost function

c ij = cij − pi + pj ∀(i, j) ∈ A.

Effects on paths:

c(P(1, k)) = c12 + c23 + . . .+ ck−1,k =

= c12 − p1 + p2 + c23 − p2 + p3 + . . .+ ck−1,k − pk−1 + pk =

= c(P(1, k))− p1 + pk .

For each pair of nodes (1, k) all path costs are modified by the same
amount pk − p1: in particular, the shortest paths between the two
nodes remain the same.

Effects on circuits:

c(C) = c12 + c23 + . . .+ ck1 =

= c12 − p1 + p2 + c23 − p2 + p3 + . . .+ ck1 − pk + p1 =

= c(C).

For each circuit C, the cost does not change: in particular, no
negative cost circuits are introduced.



Johnson algorithm

The potential function we use is

pi = −dist(s, i) ∀i ∈ N ,

where dist(s, i) is the shortest path cost from s to i, computed with
Bellman-Ford algorithm.

With this choice, the modified arc costs are the reduced costs.

c ij = cij − pi + pj = cij + dist(s, i) − dist(s, j).

These reduced costs are all non-negative. The optimality conditions
for shortest path (feasibility conditions for the dual problem) are:

dist(s, j) − dist(s, i) ≤ cij ∀(i, j) ∈ A

from which
c ij ≥ 0 ∀(i, j) ∈ A.


