The all-pairs shortest path problem
Combinatorial optimization

Giovanni Righini

University of Milan

UNIVERSITA DEGLI STUDI DI MILANO



All-pairs shortest paths

By a repeated execution (n times) of the Bellman-Ford algorithm, it is
possible to compute shortest paths from any node to any other node
in a weighted digraph D = (N, A). However the complexity is
O(n?m).

The same result can be obtained more efficiently with an algorithm
due to Kleene (1956), Roy (1959), McNaughton e Yamada (1960),
Warshall (1962), Floyd (1962), known as Floyd-Warshall algorithm.

The Floyd-Warshall algorithm is a dynamic programming algorithm.



Floyd-Warshall algorithm (1962)

Consider an arbitrary ordering of the nodes vi,vs, ..., Vvp.

For each pair of nodes s € A andt € N and foreachk =0,1,...,n
we define d (s, t), as the cost of the optimal path from s to t using
only intermediate nodes in {v1,...,Vvi}.

Initially, with k = 0, we have dqo(s,t) = cs for each arc (s,t) € A and
do(s,t) = oo for each pair (s,t) ¢ A.

The following recursive property holds:
dg(s,t) = min{dk_1(s,t),dx—1(S,Vk) + dx—1(Vk,t)} Yk =1,2,...,n.

A matrix 7 of optimal predecessors is also computed and it is used to
reconstruct the shortest paths, recursively: we update r[s,t] :=k
whenever dy_1(S, Vk) + dk—1(Vk,t) < dx_1(s,t).



Floyd-Warshall algorithm (1962)

Algorithm 1 Floyd-Warshall algorithm

foru=1,...,ndo
forv=1,...,ndo
if u=v then
d[Oo,u,v]«+ 0
else
d[0,u,Vv] < Cu
mfu,v] + 0
fork =1,...,ndo
foru=1,...,ndo
forv=1,...,ndo
ifdlk —1,u,k]+d[k — 1,k,v] < d[k — 1,u,v] then
dlk,u,v] +d[k —1,u,k] +d[k —1,k,V]
mlu,v] <k
else
dlk,u,v] +d[k —1,u,v]

The computational complexity is O(n?).



Negative circuits

If the digraph contains negative cost circuits, then the Floyd-Warshall
algorithm detects at least one of them and stops.

A negative cost circuit corresponds to a negative entry on the main
diagonal (at any iteration).

Therefore the Floyd-Warshall algorithm can be used as a
pre-processing sub-routine, to check whether a given digraph
contains negative cost circuits or not.



Johnson algorithm

We now consider the case in which
e the digraph is strongly connected:;
¢ there are no negative cost circuits;
® arc costs can be negative.

We can run:
e Bellman-Ford n times, once from each node: O(n’m).
e Floyd-Warshall: O(n?).
¢ Dijkstra n times, once from each node, if all arc costs are
non-negative: O(nm + n?logn).

Johnson algorithm (1977) allows for O(nm + n? log n) complexity even
when arc costs can be negative.



Johnson algorithm

Johnson algorithm runs in three steps:
¢ run Bellman-Ford from a node s to all the other nodes;

e define modified arc costs such that:

® the new costs are non-negative;

® the rank of paths does not change (shortest paths remain shortest
paths);

® negative cost circuits are not introduced;

® the new cost is computed in O(m) (i.e. O(1) for each arc);

¢ run Dijkstra from the other n — 1 nodes.



Johnson algorithm

Consider a potential function p : A/ — R and a new cost function

Cj=cj—p +p Y(i,j) e A
Effects on paths:
C(P(1,k)) =Ci2+Coz+... +Ck_1x =
=Ci2 —P1+P2+Ca3—P2+P3+...+Ck—1k —Pk—1+Pk =
=c(P(1,k)) — p1 + pxk-

For each pair of nodes (1, k) all path costs are modified by the same
amount px — pz1: in particular, the shortest paths between the two
nodes remain the same.

Effects on circuits:

C(C)=Ci2+Co3+...+Ck1 =
=Ci2 —P1+P2+C3—P2+Ps+...+Ck1—Px+P1=
=c(C).

For each circuit C, the cost does not change: in particular, no
negative cost circuits are introduced.



Johnson algorithm

The potential function we use is
pi = —dist(s,i) Vi € NV,

where dist(s, i) is the shortest path cost from s to i, computed with
Bellman-Ford algorithm.

With this choice, the modified arc costs are the reduced costs.
Cij=Cj—pi +pj=Cj+ dist(s,i) — dist(s,]j).

These reduced costs are all non-negative. The optimality conditions
for shortest path (feasibility conditions for the dual problem) are:

dist(s,j) — dist(s,i) < cj V(i,j)e A

from which
Tj >0 ¥(i,j) € A.



