The all-pairs shortest path problem

 Combinatorial optimizationGiovanni Righini

University of Milan

All-pairs shortest paths

By a repeated execution (n times) of the Bellman-Ford algorithm, it is possible to compute shortest paths from any node to any other node in a weighted digraph $D=(\mathcal{N}, \mathcal{A})$. However the complexity is $O\left(n^{2} m\right)$.

The same result can be obtained more efficiently with an algorithm due to Kleene (1956), Roy (1959), McNaughton e Yamada (1960), Warshall (1962), Floyd (1962), known as Floyd-Warshall algorithm.

The Floyd-Warshall algorithm is a dynamic programming algorithm.

Floyd-Warshall algorithm (1962)

Consider an arbitrary ordering of the nodes $v_{1}, v_{2}, \ldots, v_{n}$.
For each pair of nodes $s \in \mathcal{N}$ and $t \in \mathcal{N}$ and for each $k=0,1, \ldots, n$ we define $d_{k}(s, t)$, as the cost of the optimal path from s to t using only intermediate nodes in $\left\{v_{1}, \ldots, v_{k}\right\}$.

Initially, with $k=0$, we have $d_{0}(s, t)=c_{s t}$ for each $\operatorname{arc}(s, t) \in \mathcal{A}$ and $d_{0}(s, t)=\infty$ for each pair $(s, t) \notin \mathcal{A}$.

The following recursive property holds:

$$
d_{k}(s, t)=\min \left\{d_{k-1}(s, t), d_{k-1}\left(s, v_{k}\right)+d_{k-1}\left(v_{k}, t\right)\right\} \quad \forall k=1,2, \ldots, n .
$$

A matrix π of optimal predecessors is also computed and it is used to reconstruct the shortest paths, recursively: we update $\pi[s, t]:=k$ whenever $d_{k-1}\left(s, v_{k}\right)+d_{k-1}\left(v_{k}, t\right)<d_{k-1}(s, t)$.

Floyd-Warshall algorithm (1962)

Algorithm 1 Floyd-Warshall algorithm
for $u=1, \ldots, n$ do

$$
\text { for } v=1, \ldots, n \text { do }
$$

if $u=v$ then
$d[0, u, v] \leftarrow 0$
else

$$
\begin{aligned}
& d[0, u, v] \leftarrow c_{u v} \\
& \pi[u, v] \leftarrow 0
\end{aligned}
$$

for $k=1, \ldots, n$ do
for $u=1, \ldots, n$ do
for $v=1, \ldots, n$ do
if $d[k-1, u, k]+d[k-1, k, v]<d[k-1, u, v]$ then
$d[k, u, v] \leftarrow d[k-1, u, k]+d[k-1, k, v]$ $\pi[u, v] \leftarrow k$
else

$$
d[k, u, v] \leftarrow d[k-1, u, v]
$$

The computational complexity is $O\left(n^{3}\right)$.

Negative circuits

If the digraph contains negative cost circuits, then the Floyd-Warshall algorithm detects at least one of them and stops.

A negative cost circuit corresponds to a negative entry on the main diagonal (at any iteration).

Therefore the Floyd-Warshall algorithm can be used as a pre-processing sub-routine, to check whether a given digraph contains negative cost circuits or not.

Johnson algorithm

We now consider the case in which

- the digraph is strongly connected;
- there are no negative cost circuits;
- arc costs can be negative.

We can run:

- Bellman-Ford n times, once from each node: $O\left(n^{2} m\right)$.
- Floyd-Warshall: $O\left(n^{3}\right)$.
- Dijkstra n times, once from each node, if all arc costs are non-negative: $O\left(n m+n^{2} \log n\right)$.

Johnson algorithm (1977) allows for $O\left(n m+n^{2} \log n\right)$ complexity even when arc costs can be negative.

Johnson algorithm

Johnson algorithm runs in three steps:

- run Bellman-Ford from a node s to all the other nodes;
- define modified arc costs such that:
- the new costs are non-negative;
- the rank of paths does not change (shortest paths remain shortest paths);
- negative cost circuits are not introduced;
- the new cost is computed in $O(m)$ (i.e. $O(1)$ for each arc);
- run Dijkstra from the other $n-1$ nodes.

Johnson algorithm

Consider a potential function $p: \mathcal{N} \mapsto \Re$ and a new cost function

$$
\bar{c}_{i j}=c_{i j}-p_{i}+p_{j} \forall(i, j) \in \mathcal{A} .
$$

Effects on paths:

$$
\begin{aligned}
\bar{c}(P(1, k)) & =\bar{c}_{12}+\bar{c}_{23}+\ldots+\bar{c}_{k-1, k}= \\
& =c_{12}-p_{1}+p_{2}+c_{23}-p_{2}+p_{3}+\ldots+c_{k-1, k}-p_{k-1}+p_{k}= \\
& =c(P(1, k))-p_{1}+p_{k} .
\end{aligned}
$$

For each pair of nodes $(1, k)$ all path costs are modified by the same amount $p_{k}-p_{1}$: in particular, the shortest paths between the two nodes remain the same.

Effects on circuits:

$$
\begin{aligned}
\bar{c}(C) & =\bar{c}_{12}+\bar{c}_{23}+\ldots+\bar{c}_{k 1}= \\
& =c_{12}-p_{1}+p_{2}+c_{23}-p_{2}+p_{3}+\ldots+c_{k 1}-p_{k}+p_{1}= \\
& =c(C) .
\end{aligned}
$$

For each circuit C, the cost does not change: in particular, no negative cost circuits are introduced.

Johnson algorithm

The potential function we use is

$$
p_{i}=-\operatorname{dist}(s, i) \forall i \in \mathcal{N},
$$

where $\operatorname{dist}(s, i)$ is the shortest path cost from s to i, computed with Bellman-Ford algorithm.

With this choice, the modified arc costs are the reduced costs.

$$
\bar{c}_{i j}=c_{i j}-p_{i}+p_{j}=c_{i j}+\operatorname{dist}(s, i)-\operatorname{dist}(s, j) .
$$

These reduced costs are all non-negative. The optimality conditions for shortest path (feasibility conditions for the dual problem) are:

$$
\operatorname{dist}(s, j)-\operatorname{dist}(s, i) \leq c_{i j} \forall(i, j) \in \mathcal{A}
$$

from which

$$
\bar{c}_{i j} \geq 0 \quad \forall(i, j) \in \mathcal{A} .
$$

