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The s — t shortest path problem

Data:

e adigraph D = (N, A);

e acostfunctionc: A— Ry;

e two nodes s and t (origin and destination).
Problem: find a shortest (minimum cost) path from s to t.
Several applications require computation of s — t shortest paths on
very large weighted digraphs (millions of nodes and arcs) in almost
real-time (milliseconds).
However the queries concern

¢ the same digraph

e with different s and t.

The idea is to precompute useful pieces of information that depend
on the digraph, but not on s and t.
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Highw

Potential functions and lower bounds

A potential function 7 : A — R is used to define the reduced costs:
c™(i,j) = c(i,j) = (i) + =(j).
A potential function 7 is feasible iff
c™(i,j) = 0V(i,j) € A.

Property. A shortest s —t path with respectto c™ is a shortest s — t
path with respect to c.

If 7(t) < 0 and = is feasible, then = is a lower bounding function i.e.
m(i) < dist(i,t) Vi € NV,

where dist(i, t) is the shortest path cost fromi to t.
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Property 1

Property 1. If 7 is a feasible potential function, then p = = + K is also
a feasible potential function for any constant K.

Proof.
Reduced costs do not change by adding K: ¢7(i,j) > 0 implies
cP(i,j) > 0 (i) € A.
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Property 2
Property 2. If m; and 7, are feasible potential (lower bounding)

functions, then p = max{m1, 72} is a feasible potential (lower
bounding) function.

Proof.

(i) Feasibility.

f(m(i) = m2(i)) A (m(j) = m2(j)), then p = m; which is feasible.

If (mo(i) < m2(i)) A (m(j) < m2(j)), then p = m, which is feasible.
f(ma(i) = ma(i)) A (ma(j)) < m2(j)), then

cP(i,j) =c(i.j) = m(i) + m2(j) = c(i,j) — ma(i) + m(j) = c™(i,j) =2 0
If (me(1) < 7m2(0)) A (ma(f) = 72()), then

cP(i,j) = c(i,J) = m2(i) + m(i) = c(i,]) — m2(i) + m2(j) = ¢™(i,}) = 0.

(ii) Lower bounding.
m1(t) <0 and m,(t) < 0imply p(t) <0
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Dijkstra and A*

Dijkstra algorithm scans the nodes according to the order of their
labels d(i), representing an upper bound to dist(s, i).

The A* algorithm scans the nodes according to the order of their
labels f(i) = d(i) + = (i), where = (i) is a feasible lower bounding
function: = (i) < dist(i, t).

In both cases, when a node is scanned its label is made permanent
and d(i) = dist(s, ).

Running A* is equivalent to running Dijkstra algorithm on the digraph
weighted with the reduced costs c™.

The effectiveness of A* depends on how tight = is to dist(i, t) for all
nodesi € \.
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Bi-directional A*

In bi-directional A* let 7 and 75 be the two lower bounding functions
used in the forward and backward search, respectively.

J—.
/

The two lower bounding functions are consistent iff (i, j) € A the
forward and backward reduced costs are the same:

c™(i,J) = c(i,J) = m(i) + m() = c(i,j) = ws(i) + 7s(i) = ™ (i, ])-
This is equivalent to m (i) + ms(i) = K for some constant K.

One can use the same lower bounding algorithm (the best available
one) to compute m; and s separately. In this case the two lower
bounding functions are symmetric.
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Symmetric and consistent potentials

Let m and 75 be (tight but not consistent) lower bounding functions:
m(i) < dist(i,t) ms(i) < dist(s,i) Vi eN.

Two options for bi-directional A*;

e Symmetric algorithm. Use m; and 75 independenty in forward
search and backward search.
Pro: one can use the tightest available lower bounds in each
direction.

e Consistent algorithm. Combine m; and 75 to obtain two
consistent potentials.
Pro: optimality is guaranteed as soon as the two searches meet.
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Forward and backward labels

Forward labels ds(i) represent best incumbent distances from s to i.
Backward labels d;(i) represent best incumbent distances from i to t.
The node set N is subdivided into subsets

e E™: nodes with a permanent forward label ds(i) = dist(s, i);

e EPW: nodes with a permanent backward label d; (i) = dist(i, t);

e O™: nodes with a temporary forward label ds(i) > dist(s,i);

e O"": nodes with a temporary backward label d; (i) > dist(i, t);

e other nodes, not yet reached in either direction.
Only O™ and OP" can intersect.

Labels in O™ are sorted according to f(i) = ds(i) + m(i) in a heap F.
Labels in OP¥ are sorted according to b(i) = d;(i) + (i) in a heap B.

A best incumbent upper bound p is possibly updated every time a
new s — t path is found.
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Symmetric bi-directional A*

Pohl (1971), Kwa (1989). Using two independent lower bounds
and 7, run the forward and backward searches, alternating in some

way.
Each time a forward search scans an arc (i,j) s.t. j € EP,
¢ do not give a forward label to j;
e ifds(i) 4+ c(i,j) + di(j) < p, then update p.
Do the same symmetrically during backward search.
Termination. Stop as soon as one of these three conditions hold:
e forward search scans a node i € O™ with f(i) > u;
e backward search scans a node i € O with b(i) > y;

¢ one of the two searches has no nodes with temporary labels:
(O™ =) v (0P = ).
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Consistent bi-directional A*
Ikeda et al. (1994) .
Use the following average potential functions:
e pe(i) = M in forward search,

e ps(i) = =0 in packward search.

eJws
s

UNIVERSITA DEGLI STUDI DI MILANO
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Consistent bi-directional A*

Observation.
A feasible forward lower bounding function is p(i) = ps(t) — ps(i).

Proof.

(i) Feasibility.

—ps = pt is a feasible forward lower bounding function. Adding a
costant ps(t) does not affect the reduced costs: ¢ P > 0 implies
cP > 0.

(ii) Lower bounding.

P(t) = ps(t) —ps(t) = 0.

Observation. ‘ .

A feasible forward lower bounding function is p;(i) = w

A feasible backward lower bounding function is ps(i) = Zl=mltm(s)

They are consistent: pi(i) + ps(i) = (7s(t) + m(s))/2 Vi € N.
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Consistent lower bounds: termination
Stop condition for the bi-directional Dijkstra algorithm.
Top(F) + Top(B) = p.
Stop condition for the bi-directional consistent A* algori thm.
The same, but using the reduced costs:

Top(F) + Top(B) > o+ (ms(t) + m(s))/2.
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Landmarks

Landmarks are a technique to compute lower bounds 7 owing to
pre-computed shortest distances.

Consider a landmark L (typically, a node of the digraph) and let
dist(i, L) and dist(L, i) be the shortest distances fromi € A/ to L and
fromLtoi e NV.

Then, by the triangle inequality,
dist(i, L)—dist(j, L) < dist(i,j) dist(L,j)—dist(L,i) < dist(i,j) Vi,j € N.

This holds for any landmark L. Therefore one can select
mi (i) = max {dist(i, L) — dist(t, L), dist(L,t) — dist(L,i)} (and the
same for 7).

® Pre-compute shortest distances from/to several (e.g. 16)
landmarks (independently of s and t).

e Given an (s,t) pair select some landmarks (e.g. 4) providing the
largest lower bounds on dist(s,t).



Landmarks
0O®@00000

Landmarks selection

Landmark selection techniques to select k landmarks in a given
digraph:
e Random: select k nodes at random in .
¢ Farthest: iteratively select the node that maximizes the minimum
distance from/to all selected landmarks. Variant: consider the
number of arcs, instead of the distance (run BFS instead of
Dijkstra).
¢ Planar (for road networks): find a node ¢ closest to the median of
the graph. Partition the region into k sectors centered at ¢, each
containing approximately the same number of nodes. For each
sector, pick a node farthest away from c (in the sense of the
number of arcs).
e Optimized farthest: repeatedly remove a landmark and replace it
with the farthest one from the remaining set of landmarks.
e Optimized planar: repeatedly remove a landmark and replace it
by the best landmark in a set of candidates. To rate the
candidates, compute a score for each one, based on lower

bounds tightness for some randomly chosen pairs of nodesgusmesuswooiio
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* Avoid. Given a set S of already selected landmarks, compute a
shortest-path tree T, rooted at some node r.
Then, for each v € A/ compute its weight, defined as the
difference between dist(r,v) and the lower bound for dist(r,v)
given by S.
For each v € A/ compute its size s(v), which depends on Ty, the
subtree of T, rooted at v.
If Ty contains a landmark, then s(v) = O; otherwise, s(v) is the
sum of the weights of all vertices in T, .
Let w be the vertex of maximum size. Traverse Ty, starting from
w and always following the child with the largest size, until a leaf
is reached.
Make this leaf a new landmark.
A natural way of selecting r is uniformly at random. Better results
are obtained by selecting r with higher probability from the nodes
that are far from S.
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* Max cover. Define €-(i,j) = c(i,j) — d(L,j) + d(L,i).
IfS-(i,j) = 0, then L covers (i, j).
Define Cost(S) = |{(i,j) € A : min_es{C"(i,j)} > 0}.
Initialize a set C of k candidate landmarks by Avoid.
Iteratively remove each landmark from C with probability 1/2 and
generate more landmarks (using Avoid) until they are k again.
Add all newly generated landmarks to C.
Repeat until either |C| = 4k or Avoid is executed 5k times.
Interpreting each landmark as the set of arcs that it covers, solve
an instance of the maximum cover problem (NP-hard).
Multistart heuristic: each iteration starts with a random subset S
of C with k landmarks and runs a local search procedure.
Return the best solution found after |log, k + 1] iterations.
Local search: iteratively replace a candidate landmark u € S with
v € C\S. Among swaps with positive profit
Cost(S) — Cost(S\{u} U {v}), pick one at random with
probability proportional to the profit. Stop when no improving
swaps exist. Each local search iteration takes O(km) time.
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Active landmarks

Static landmarks. Select h landmarks providing the best lower
bounds of the s — t distance.
Trade-off between:

e number of labelled nodes,

* number of landmarks to be examined for each label extension.
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Active landmarks

Dynamic landmarks. Initially select 2 landmarks L1 and L, providing
the best lower bounds of the s — t distance to L; and from L.

The search reaches a checkpoint when the lower bound for
completing the s — t path from the current node is 90%, 80%, 70%
and so on of the initial s — t lower bound and at least 100 nodes have
been labelled since the last checkpoint.

At a checkpoint at a node v, all landmarks are considered to test
whether some of the inactive landmarks provide a lower bound from
node v that is larger than 1 + ¢ times the current lower bound (e.g.

e = 0.01).

If this is the case, the new landmark is made active (at most 6 active
landmarks are accepted) and the potentials are updated.

When p; and ps are updated because the active landmarks have
been updated, the keys of all labeled vertices are updated and the
heaps are updated. This takes O(|F| + |B|) time.
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Bounding

Consider a forward iteration in which A* scans a permanently labelled
node i (the same holds symmetrically for backward iterations).
Consider one of the outgoing arcs, (i,j). The algorithm should check
whether ds(i) + c(i,j) < ds(j). If so, ds(j) is updated in the forward
priority queue.

Using lower bounds, the algorithm also checks if

ds(i) +c(i,j) + m(j) < ., where  is a feasible forward lower
bounding function. When the test fails, the shortest s — t path through
(i,j) cannot improve upon the current shortest path. Therefore, there
is no need to store an updated value of ds(j).

The lower bound functions m; and 75 used for bounding in either
direction do not need to be consistent.
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Reach

Given a shortest path P*(u,v) fromu € A tov € A/ and given a
nodei € P*(u,v),

r(i,P*(u,v)) = min{dist(u, i), dist(i,v)},

where dist indicates the shortest path distance.

On the whole graph
r(i) = max  {r(i,P*(u,v))}.

a ueN vEN:u#£V

Intuitively, the reach r of a node is a measure of how likely the node is
to belong to long shortest paths.
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The use of reach

Letr(i) be an upper bound: r(i) > r(i).
Letd(i,j) be a lower bound: d(i,j) < dist(i,j).
By definition
i€ P*(s,t) = r(i) > r(i,P*(s,t)) = min{dist(s, i), dist(i, t)}.
Therefore
r(i) < min{d(s,i),d(i,t)} =i & P*(s,t).

This allows to neglect many nodes (with small reach value) while
running Dijkstra algorithm or A*.
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The use of reach

When we consider j as a successor of i in a labeling algorithm
(Dijkstra, A*), we already know dist(s, i).

The following test is done before possibly updating the label of node j
(early pruning):

r(j) < min{dist(s,i) +c(i,j),d(j,t)} implies (i,j) & P*(s,t).

A lower bound d(j, t) can be provided

¢ by the Euclidean distance between j and t, if the nodes are
embedded in a plane;

¢ by the largest permanent label in the reverse direction, if
bi-directional search is used.
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Bi-directional bounding

In bi-directional search, let ¥°* the minimum cost of non-permanent
backward labels (labels in O°").

Consider the iteration in which node i € O™ is selected for being
permanently labelled. If

(i) < min{dist(s, i),7*"},

then we can prune the search at i (bi-directional bound).
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Self-bounding

Alternatively (self-bounding) we can prune node i checking whether
(i) < dist(s,i)

and we stop the search in a direction when

¢ O in that direction is empty,

¢ or the minimum distance label in O is at least half of 1,
where 1 is an upper bound (best incumbent s — t path).

It is advisable to scan the minimum label among the forward and the
backward candidates.

Each node i can be inserted in E™ (EPW) only if
dist(s, i) < (>)dist(i,t).
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Arc sorting

Arc sorting: sort the outstars (in-stars) by non-increasing value of
(estimated) reach of the head (tail) node.

If7(j) < min{dist(s,i),~}, all the arcs after (i,]) in the out-star of i can
be safely skipped.

Hence, arc sorting may allow to neglect some arcs.
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Computing reach exactly

To compute the reach values exactly:
e Set all reaches to cc.
e Compute all-pairs shortest paths.

® For each s —t shortest path:

® Compute the reach of all nodes along the path.
® Possibly update the reach of each node with the new value, if it is
smaller.

Complexity: O(nm), impractical for large graphs (even if sparse).
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Computing reach approximately

Three main ideas are combined:
e partial trees
e jterative node deletion
e shortcuts
Preprocessing works in two phases:
® Main phase:

® shortcut arcs are added;
® partial trees are grown and low reach nodes are deleted;

¢ Refinement phase: upper bounds on reaches are re-evaulated
and possibly strengthened.



Reach
000000008000 00000O00O0O0O000000

Main phase

Main phase:
e Add shortcuts
® For each iteration k
® Select a threshold value ¢
Grow partial trees depending on e

Eliminate nodes with reach less than e
Add shortcuts

The threshold values are computed as ¢, = aeg_1 for some o > 1.

UNIVERSITA DEGLI STUDI DI MILANO
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Canonical paths

Gutman (2004) observed that if more than one shortest path exists
from s to t, only one is included in the partial trees. Therefore all
nodes along alternative shortest paths may not appear in the partial
tree. Therefore they can be misclassified as “low reach nodes” even if
they are “high reach nodes” and they can receive an incorrect upper
bound r(i).

However, this incorrect upper bounding does not prevent a shortest
path algorithm like Dijkstra or A* to find at least one shortest s —t
path.
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Canonical paths

Goldberg et al. (2006) introduced the notion of canonical path, i.e. a
shortest path with the additional property of being unique for each

s —t pair.

A small random perturbation is computed for each arc cost.

The perturbation of a path cost is the sum of the perturbations of its
arcs.

When two or more shortest paths exist between s and t, the
canonical one is the path with minimum perturbed cost.
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Partial trees

For each node i compute a partial shortest path arborescence T<(i)
rooted at i (with Dijkstra algorithm).

At a generic iteration the arborescence T of the labelled nodes
includes an arborescence T of nodes with permanent label.

Stop criterion : for all leaves j of T
e eitherjisaleaf of T,
e ordist(i’,j) > 2e,
where i’ is the node nextto i in the (i,j) shortest path.
Let T<(i) be the partial tree T when the algorithm stops.
Nodes with reach larger than e in T<(i) are marked as “high reach
nodes”.

Repeating this procedure for all roots i € N allows to partition nodes
with reach larger than ¢ from nodes with reach smaller than e.
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Proof

Thesis 1. Nodes with reach less than ¢ cannot be marked from any
root i.

Proof. Their reach in T<(i) cannot be larger than their actual reach in
the digraph.

Thesis 2. All nodes k with r(k) > ¢ are guaranteed to be identified as
“high reach nodes” in at least one partial arborescence T<(i) for some
ieN.

Proof. Ifr(k) > e, then 3 a path P in which k has reach at least e.
Then, 3 a minimal canonical path P’ in P, in which k has reach at
least e.

Let x and y be the first and the last node of P’.
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Proof

Consider T<(x), which contains T*(x).
Owing to the uniqueness of (perturbed) shortest paths, two cases
can occur:

e Case 1: P’ is completely contained in T (x);
e Case 2: P’ is partially contained in T (x).

Case 1. B
In this case k is identified as a “high reach node” in T (x).
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Proof

Case 2.

€

T (x) contains a subpath of P/, starting at x and ending at a leaf z.
By definition of reach, r(k) > e = dist(x,k) > e.

Let x’ be the node next to x along P’.

Since P’ is minimal, dist(x’,k) < e.

Node z cannot be a leaf of T ¢(x), because

e it belongs to T (x) (it has a permanent label) and

e it has got at least one successor (the next node along P’).
Hence z being a leaf of T (x) implies dist(x’,z) > 2e.

dist(k,z) = dist(x’,z) — dist(x’, k)>2¢ — € = e.

Therefore min{dist(x, k), dist(k,z)} > e and k is marked as a “high
reach node” in T (x).
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Long arcs

Assume all arc costs are integer.

Consider the case when an arc (x,y) adjacent to the root x has a
cost equal to Me for some large M.

Then T*(x) will extend up to the successors of y, at a distance at
least 2¢ from y, i.e. at a distance at least (M + 2)e from x.

Therefore the algorithm cannot stop until all nodes within a distance
(M + 2)e have been permanently labelled.

Solution: smaller trees are built, with the drawback that some low
reach nodes can be misclassified as high reach nodes.

This produces weaker upper bounds, but does not affect the
correctness of the s — t shortest path algorithm.
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Smaller trees

Let

e x be the root of the shortest path arborescence T ¢(x);

® k # x anode in T¢(x);

e f(k) the successor of x along the shortest path from x to k.
The set of inner nodes of T<(x) is

[f(x) = {x}U{k € T¢(x) : (k # x) A (dist(f(k),k) < e€)}.
The set of outer nodes of T ¢(x) is its complement.

O°(x) = Te(x)\I°(x).
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Smaller trees

For any outer node w € O¢(x), its distance from 1¢(x) is defined as

min {dist(v,w)}.
vele(x)
The algorithm stops growing the shortest paths arborescence when
¢ all nodes with non-permanent labels are outer nodes, and
e they have distance at least e from [¢(x).

Figure: Shortest path tree T € for e = 5. Figure: Smaller tree T for e = 5. Red:
Red: permanent labels. r(b) = 0. permanent labels. r(b) = 5. ‘

UNIVERSITA DEGLI STUDI DI MILANO
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Arc reaches

Let (u,v) be an arc along an s — t shortest path P*(s, t).
Then r(u,v,P*(s,t)) = min{dist(s, v), dist(u, t)}.
On the whole graph r(u,v) = maxseprten{r(u,v, P*(s,t))}.

Node reaches can be computed from arc reaches:
r(l) = max{max(i’j)eA{r(i,j)}, max(j!i)eA{r(j, |)}}
The reach of an arc can be smaller than the reaches of its endpoints.

Figure: r(a) =r(b) = 90. r(a,b) = 10.
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Penalties

When an arc is identified as a “low reach arc” and its reach is
bounded above by the current ¢, in the next iteration the arc is deleted
and replaced by a penalty, representing upper bounds on the effect of
the deleted arc on the reach of its endpoints.

Let Ax be the set of arcs remaining (not yet upper bounded) at
iteration k.

In-penalties 7~ and out-penalties =+ are defined as follows for all
nodes that are endpoints of deleted (low-reach) arcs:

T (i) = {r(, 0}

(s I)GA+ (1 i) EA
i) = (i)},
T el D)

where AT includes both A and the shortcut arcs added in previous
iterations. The definition of reach is generalized as follows:

r(u,v,P*(s,t)) = min{dist(s,v) + 7~ (v),dist(u,t) + 7 (u)}.
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Penalties

Figure: Red arcs have (low) reach Figure: Low reach arcs replaced by
< 30. penalties when growing partial trees.

UNIVERSITA DEGLI STUDI DI MILANO
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Shortcuts

A node j is by-passable if

e it has only one incoming arc (i,j) and one outgoing arc (j, k)
(one-way by-passable), or

e it has only two incoming arcs (i,j) and (k,j) and only two
outgoing arcs (j, i) and (j, k) (two-ways by-passable).

A line is a path of at least three nodes, where all nodes different from
the endpoints are by-passable.

Lines can be one-way or two-ways.
A by-pass is an arc directly connecting the endpoints of a line.
By-passes can be one-way or two-ways.

Cost and perturbation of shortcut arcs are given by the sum of costs
and perturbation of the by-passed arcs.
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Shortcuts

By-passed nodes are no longer visited in shortest paths containing
their by-passed line.
Therefore shortcuts reduce the reaches of by-passed nodes.
If a line (s,t) has more than two arcs,
e find the node k in it, that minimizes |dist(s, k) — dist(k, t)]
(median node);
e add a shortcut (s,t) (if it is not in the current arc set A™);
e recursively do the same on each subpath (s, k) and (k,t).
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Shortcuts

When a node is by-passed, it is deleted and replaced by a penalty
assigned to its neighbors.

210
=100 T 00
(@) 100105, 100 g)

7, =100 w4 =100

A two-ways line with three arcs. The by-passed line replaced by .

To avoid long shortcuts that would imply large partial trees, the
maximum length of shortcuts is limited to %= at each iteration k.
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Shortcuts

Given a one-way line (u,v,w), when a shortcut (u, w) is added, arc
(u,v) will never be used on any shortest path that goes through u
and w anymore.

Any shortest path traversing (u,v) will end either in v or in some
low-reach area neighboring v.

Therefore, a valid upper bound for the reach of (u,v) is
r(u,v) =cy + 7t (v) (and the same holds for (v, w) symmetrically).

Owing to these upper bounds, one can immediately remove v, (u,Vv)
and (v, w) from the graph and update the appropriate penalties.

A similar procedure can be adopted for two-way lines.
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Refinement phase

The use of penalties makes the upper bounds looser and looser as
the algorithm progresses.

This is more evident on nodes with larger reaches.

Therefore the reaches are re-computed in a more accurate way for
the § nodes with highest reaches, where § = [10/n].

Let Vs the set of such nodes and G the subgraph induced by V5.

A complete shortest path arborescence is computed from each node
in Gy, using penalties to account for missing nodes.
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Parameter tuning

Select k = min{500, | [v/n]/3]} nodes at random.

Grow a partial shortest path arborescence until |n/k | nodes are
permanently labeled.

For each root consider the radius, i.e. the distance of the last label.

Set ¢; to twice the minimum among the k radii.
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Parameter tuning

We also have to choose a multiplier o to compute ¢ = o' ~1e; at each
iteration.
® Running time: the smaller « is, the more iterations will be done;
but if « is large, iterations will take longer (since vertices are
eliminated less frequently).

e Number of shortcuts: if « is relatively small, the algorithm has a
better chance of shortcutting vertices before they are eliminated.

e Upper bounds: the errorin an arc reach estimate at iteration i
depends on the penalties, which in turn depend on the maximum
reaches of arcs eliminated in previous iterations; the larger « is,
the smaller the sum >, _; ¢ compared to «;.

Heuristic rule: keep o = 3 while the number of nodes remains larger
than §. Then reduce itto o = 1.5.
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Combining reaches with A*
In A* each node i has a label k(i) = d(i) + = (i), where d(i) is the
distance from s and = (i) is a lower bound on the distance to t.

In bi-directional A* each node has two labels, f(i) = ds(i) + #'(i)
(forward) and b(i) = d'(i) + =°(i) (backward).

When A* is about to make the forward label of node i permanent, it
checks the reach of i: if

r(i) < min{ds(i), 7' (i)},
then i is pruned.

The stop criterion (lower bound = upper bound) is not affected.
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Highway hierarchies: definitions

In a graph, let the s-rank of a vertex i, rs(i) the position of vertex i in
the list of the vertices permanently labeled by Dijkstra algorithm
running from s (rs(s) = 0).

A suitable tie-breaking rule must be defined to ensure that the s-rank
of each vertex is unique from each s (canonical shortest paths).

For any given vertex s, the distance of the H-closest vertex from s is
denoted by dy(s): dy(s) = dist(s, V), where rs(v) = H.

The H-neighbourhood Ny (s) of s is
N(s) = {i e NV : dist(s,i) < du(s)}.

On digraphs, symmetrical definitions (distances to t) apply.
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Highway hierarchies: definitions

Definition (highway network).  For a given value of the parameter H,
the highway network G; = (V1, ;1) of a graph G is defined as the set
of edges [u, V] € £ that appear in at least one canonical (s —t)
shortest path (s,...,u,v,...,t) with the property that v ¢ Ny(s) and
u ¢ NH(t)

The set V; is the maximal subset of V such that G; contains no
isolated vertices.

Definition ( 2-core). The 2-core of a graph is the maximal subgraph
with minimum degree two. A graph consists of its 2-core and attached
trees, i.e., trees such that their roots belong to the 2-core, but all other
nodes do not.

Definition (line). A line in a graph is a path (ug, us, ..., ux), where the
inner vertices have degree two.



Highway hierarchies
00®000000000000

Highway hierarchies: definitions

Definition (Contracted highway network). From the highway
network G, of a graph G, the contracted highway network G| of G is
obtained by taking the 2-core of G, removing the inner vertices of all
lines and replacing each line by a single edge between its endpoints.

Thus, the highway network G; consists of the contracted highway
network G; and some additional components (trees or lines).

The highway network can be contracted in time O(m + n).

Definition (highway hierarchy).  The highway hierarchy of a graph G
is obtained by applying this contraction iteratively.
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The algorithm

Pre-processing.

For each vertex s € V, dy(s) is computed by growing a shortest path
tree from s with Dijkstra algorithm and stopping it as soon as H nodes
have received a permanent label.

Construction.
We start with an empty set of highway edges E;.

For each vertex s, two operations are executed:
e forward construction of a partial shortest path tree B;
¢ backward evaluation of B.
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Forward construction

A Dijkstra search from s is executed.
During the search, a reached vertex is either active or passive.
The source node s is active.

Each vertex that is reached for the first time (Insert) and each
reached vertex that is updated (DecreaseKey) adopts the same
activation state from its (tentative) predecessor in the shortest path
tree B.

When a vertex p is made permanent using the path (s, us,..., U, p),
then the state of p is set to passive if [Ny (u1) " Ny(p)| < 1(i.e. pis
“far enough” from uy).

When no active vertex is left in the priority queue (set of “open”
vertices), the growth of B stops.
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Backward evaluation: selection of highway edges

All edges [u, v] are added to &; if they lie on paths (s,...,u,v,... t)
in B with the property that v ¢ Ny (s) and u ¢ Ny(t), where t is a leaf
of B.

This can be done in time O(|B|) for each source node s.

To speed up the construction, an active vertex v is declared to be a
maverick if dist(s,v) > f dy(s), where f is a parameter.

When all active vertices are mavericks, the search from passive
vertices is no longer continued.

The pre-processing is accelerated, £, becomes a superset of the
highway network, queries will be slower, but still exact.

The maverick factor f allows to adjust the trade-off between
pre-processing time and query time.
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Hierarchy

The highway hierarchy of G = (V, £) consists of the graphs
Go,G1,G2,...,G., arranged in L + 1 levels.

For each node v € V and each level ¢ such that v € V,, there is a
copy v, of vertex v in level £.

In the same way, there are several copies of an edge [u, v] when both
u and v belong to more than one common level.

Edges between vertices in the same level are horizontal edges.

Additionally, the hierarchy contains an edge [v,, v,.1] for each pair of
vertices vy € Vy and vy 1 € Vyy1 that are copies of the same vertex v
in consecutive levels.

These additional edges are called vertical edges and have zero cost.*
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Hierarchy

For each vertex v, the radius d(v) is computed in all levels: for each
level £ < L, df(v) is the distance from v to the H-closest vertex in G;.

If v does not belong to G, then d(v) is set to oc.
In the last level, dj5(v) is set to oo for all vertices.

Neighborhoods N/, (v) are also computed for all vertices and levels:
NS (v) = {v’ eV, . dist(v,v’) < dj(v)} is the neighbourhood of v in
G-

Remark. The neighourhood of a vertex belonging to a component
(tree or line) contains all the vertices of the corresponding level. The
same holds for to Nj(v), for any v.
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Query

The multi-level query algorithm is a slight modification of bi-directional
Dijkstra algorithm on the hierarchy graph.

The endpoints s and t are s and tp at level 0.

Restriction 1. In each level ¢, no horizontal edge is used that would
leave the neighbourhood N*(v*) of the corresponding entrance point
A
Entrance points in level /:

e vertices s, and ty;

¢ any vertex of the core, permanently labeled from a horizontal
predecessor out of the core;

® any vertex permanently labeled from a vertical predecessor.

A corresponding entrance point for a permanently labeled vertex v is
the last entrance point along the path to v.
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Query

Restriction 2. Components (trees and lines) are never entered using
a horizontal edge.

An edge [u, v] enters a component if either u belongs to the core and
v does not or u belongs to a line and v to an attached tree.

Any edge from an attached tree to a line leaves the attached tree and
therefore it does not rank among the edges that enter a component.

Remark. The endpoint(s) of a component do not belong to the
component but to the core (or to the line in case of the root of a tree
that is attached to a line).

When restriction 1 applies, the search continues on the next level.
Horizontal edges that cannot be used in one direction owing to
restriction 2, can be used in the opposite direction.
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Collapsing the hierarchy in a single level

It is not needed to explicitly represent all levels of the hierarchy.

It is sufficient that at most one copy of each vertex is reached
horizontally: the copy with the smallest label and, in case of ties, the
one on the lowest level.

Therefore it is enough to store the original graph with some additional
pieces of information:
e each edge [u, V] is assigned a maximum level A(u,v), i.e. it
belongs to G, V£ =0,...,A(u,Vv);
e each vertex v is assigned to at most one component ¢c(v);
e each component belongs to the level ¢ of its inner edges;
e the value df(v) is stored only if v € G,.
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Stop criterion

The algorithm cannot stop when a vertex v is permanently labelled
forward and backward: there is no guarantee that all vertices within a
given distance have been already labeled (as in bi-directional Dijkstra
algorithm).

Let & and & be the sets of horizontal edges that have been skipped
during the search from s and t respectively.

When both search scopes meet, the algorithm can stop as soon as
the search from t has finished searching level /s = maxece, {A(€)} and
the search from s has finished searching level /; = maxecg {A(€)}.

A level ¢ is finished when there are no open vertices in it or below. If
the level ¢ is finished, edges e in levels lower than ¢ cannot be used
any longer. Hence, when the search from t has finished searching
level /s, it is guaranteed that no edge e in level ¢ < /s would be used
even if the algorithm could go on.
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Reach and Highway hierarchies

Define c-reach (cardinality reach) of a vertex.

Given v along a shortest s —t path, P*(s, t), grow equal cardinality
balls around s and t until v is included in one of them.
Let Cp-(s,1)(v) the cardinality of the two balls at that point.

C(V) = (57t):\r;r.]gaP)E‘(S,t){cp*(s’t)(v)}'

For a vertex v and a non-negative integer k, let p(v, k) be the radius
of the smallest ball centered at v that contains k vertices.

When searching for a shortest s — t path we do not need to scan v if
p(s,c(v)) < dist(s,v) A p(t,c(v)) < dist(v,t).

This would require keeping n — 1 values of p for each vertex.
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Reach and Highway hierarchies

The partial tree algorithm is used for c-reaches instead of reaches.

Given a threshold H, the algorithm identifies vertices with c-reach
below H (local vertices).

Consider a bi-directional search. During the search from s, once the
search radius advances past p(s, H), one can prune local vertices
(and the same backward).

This idea is applied recursively to the graph with low c-reach vertices
deleted.

This gives a hierarchy of vertices, in which each vertex needs to store
a p value for each level of the hierarchy it belongs to.
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