Bi-directional Dijkstra algorithm

The A* algorithm

The *s* – *t* shortest path problem Combinatorial optimization

Giovanni Righini

The s - t shortest path problem

Data:

- a digraph $\mathcal{D} = (\mathcal{N}, \mathcal{A})$ with $|\mathcal{N}| = n$ nodes and $|\mathcal{A}| = m$ arcs;
- a source node $s \in \mathcal{N}$ and a target node $t \in \mathcal{N}$;
- a cost function $c : A \mapsto \Re_+$.

The (s, t) Shortest Path Problem.

Find a minimum cost (i.e. shortest) path from s to t.

Owing to the non-negativity of arc costs, we do not need to explicitly forbid cycles and we can use Dijkstra algorithm.

Bi-directional Dijkstra algorithm

SPP: primal formulation

$$\begin{array}{l} \text{minimize } z = \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij} \\ \text{s.t.} \ \sum_{(j,i)\in\delta_i^-} x_{ji} - \sum_{(i,j)\in\delta_i^+} x_{ij} = \begin{cases} -1 & i = s \\ 0 & \forall i \in \mathcal{N} \setminus \{s,t\} \\ 1 & i = t \end{cases} \\ x_{ij} \in \mathcal{Z}_+ \ \forall (i,j) \in \mathcal{A}. \end{cases}$$

Observation 1. The constraint matrix is totally unimodular.

Observation 2. The right-hand-sides of the constraints are integers.

Hence, every base solution of the continuous relaxation has integer coordinates.

Bi-directional Dijkstra algorithm

The A* algorithm

A primal-dual pair

$$\begin{array}{l} \text{minimize } \boldsymbol{z} = \sum_{(i,j) \in \mathcal{A}} \boldsymbol{c}_{ij} \boldsymbol{x}_{ij} \\ \text{s.t.} \; \sum_{(j,i) \in \delta_i^-} \boldsymbol{x}_{ji} - \sum_{(i,j) \in \delta_i^+} \boldsymbol{x}_{ij} = \begin{cases} -1 & i = \mathbf{s} \\ 0 & \forall i \in \mathcal{N} \setminus \{\mathbf{s}, t\} \\ 1 & i = t \end{cases} \\ \boldsymbol{x}_{ij} \geq 0 \; \forall (i,j) \in \mathcal{A}. \end{cases}$$

$$\begin{array}{ll} \text{maximize } w = y_t - y_s \\ \text{s.t. } y_j - y_i \leq c_{ij} & \forall (i,j) \in \mathcal{A} \\ y_i \text{ free } & \forall i \in \mathcal{N}. \end{array}$$

The dual variable y_s can be et to 0; its corresponding primal constraint is redundant.

The A* algorithm

Complementary slackness conditions (CSC)

$$\begin{array}{l} \text{minimize } z = \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij} \\ \text{s.t.} \ \sum_{(j,i)\in\delta_i^-} x_{ji} - \sum_{(i,j)\in\delta_i^+} x_{ij} = \left\{ \begin{array}{ll} 0 & \forall i\in\mathcal{N}\backslash\{s,t\} \\ 1 & i=t \end{array} \right. \\ x_{ij} \geq 0 \ \forall (i,j)\in\mathcal{A}. \end{array} \right. \end{array}$$

$$\begin{array}{ll} \text{maximize } w = y_t \\ \text{s.t. } y_j - y_i \leq c_{ij} & \forall (i,j) \in \mathcal{A} \\ y_i \text{ free } & \forall i \in \mathcal{N} \backslash \{s\}. \end{array}$$

Primal CSCs: $x_{ij}(c_{ij} + y_i - y_j) = 0$. Basic primal variables correspond to active dual constraints. Only arcs (i, j) for which $y_i + c_{ij} = y_j$ can carry flow x_{ij} .

Bi-directional algorithm

By symmetry, instead of cost labels d(i) representing shortest distances from *s* to *i*, one can use cost labels representing shortest distances from *i* to *t*.

The same algorithm is executed from *t* backwards, using reversed arcs.

Correctness and complexity remain unchanged.

The idea of the bi-directional algorithm is to do both things simultaneously.

Intuitively, this allows to decrease the number of extensions needed to find a shortest s - t path.

Bi-directional Dijkstra algorithm

The A* algorithm

Data-structures

Two labels are associated with each node, a forward cost label d'_i and a backward cost label d''_i , meaning the current shortest distance from *s* to *i* and from *i* to *t*, respectively.

Correspondingly, a forward predecessor label π'_i and a backward predecessor label d''_i indicate the best predecessor and the best successor along the shortest path from *s* to *i* and from *i* to *t*, respectively.

Initially, $d'_s = d''_t = 0$ and all the other labels are set to ∞ .

Open (non-permanent) cost labels are kept in two heaps H' and H''.

Upper bounds

For each node *i* in the digraph, the sum of its two labels, $d'_i + d''_i$, represents the cost of an s - t path visiting *i*.

Therefore it is an upper bound U_i to the optimal value.

We record the best incumbent upper bound: $U = \min_{i \in \mathcal{N}} \{ \mathbf{d}'_i + \mathbf{d}''_i \}$.

When both labels d'_i and d''_i are permanent, then their sum is the cost of the shortest s - t path visiting *i*.

Lower bounds

When a label is not permanent, it can still decrease down to the value of the smallest non-permanent label in its direction, i.e. the label at the root of the corresponding heap.

We indicate these minimum non-permanent labels by top(H) for each heap H.

So, top(H') and top(H'') are lower bounds for the values of non-permanent forward and backward labels, respectively.

Therefore $L_i = \min\{d'_i, top(H')\} + \min\{d''_i, top(H'')\}$ is a lower bound for the cost of any s - t path visiting *i*.

Therefore $L = \min_{i \in \mathcal{N}} \{L_i\}$ is a lower bound for the optimal value.

A stronger lower bound

However, we can stop the algorithm when $U \leq top(H') + top(H'')$.

By contradiction, assume there is a path *P* with cost c(P) < U.

Indicate the shortest distance from *s* to any $i \in \mathcal{N}$ with dist'(i) and the shortest distance from any $i \in \mathcal{N}$ to *t* with dist''(i).

For all nodes $i \in \mathcal{N}$ along P, dist'(i) + dist''(i) = $c(P) < U \le top(H') + top(H'')$.

Then, for all nodes along *P*, $dist'(i) < top(H') \lor dist''(i) < top(H'')$.

Then, all nodes along *P* have been already permanently labelled in at least one direction and hence *P* should have been already discovered.

Bi-directional Dijkstra algorithm

The A* algorithm

Bi-directional Dijkstra algorithm

Initialization while (top(H') + top(H'') < U) do if $(top(H') \le top(H''))$ then PropagateFw else PropagateBw

Bi-directional Dijkstra algorithm

The A* algorithm

Initialization

for
$$i \in \mathcal{N} \setminus \{s\}$$
 do
 $d'(i) \leftarrow \infty$
 $d'(s) \leftarrow 0$
for $i \in \mathcal{N} \setminus \{t\}$ do
 $d''(i) \leftarrow \infty$
 $d''(i) \leftarrow 0$
for $i \in \mathcal{N}$ do
Insert $(i, d'(i), H')$
Insert $(i, d''(i), H'')$
 $\pi'(i) \leftarrow nil$
 $\pi''(i) \leftarrow nil$
 $U \leftarrow \infty$

Bi-directional Dijkstra algorithm

The A* algorithm

PropagateFw

$$k \leftarrow \mathsf{ExtractMin}(H')$$

for $j \in \delta^+(k)$ do
if $d'(j) > d'(k) + c(k, j)$ then
 $d'(j) \leftarrow d'(k) + c(k, j)$
 $\pi'(j) \leftarrow k$
if $d'(j) + d''(j) < U$ then
 $U \leftarrow d'(j) + d''(j)$

Bi-directional Dijkstra algorithm

The A* algorithm

PropagateBw

$$k \leftarrow \text{ExtractMin}(H'')$$

for $j \in \delta^-(k)$ do
if $d''(j) > d''(k) + c(j, k)$ then
 $d''(j) \leftarrow d''(k) + c(k, j)$
 $\pi''(j) \leftarrow k$
if $d'(j) + d''(j) < U$ then
 $U \leftarrow d'(j) + d''(j)$

The A* algorithm (Hart, Nilsson, Raphael, 1968)

We define a *bounding function* $h : \mathcal{N} \mapsto \Re$ such that:

- h(t) = 0
- $h(i) h(j) \le c(i,j) \quad \forall (i,j) \in \mathcal{A}.$

It represents a *lower bound* for the minimum distance from each node to node t, i.e. dist(i, t).

A trivial bounding function is $h(i) = 0 \quad \forall i \in \mathcal{N}$, which yields Dijkstra algorithm.

Running A^* on the original graph is equivalent to running Dijkstra algorithm on a digraph with modified costs

$$\tilde{c}(i,j) = c(i,j) + h(j) - h(i) \quad \forall (i,j) \in \mathcal{A}.$$

The A* algorithm

Dual constraints

Dual constraints:

$$y_j - y_i \leq c_{ij} \quad \forall (i,j) \in A$$

Lower bounding function:

$$\left\{ \begin{array}{l} h(t) = 0 \\ h(i) - h(j) \leq c_{ij} \ \forall (i,j) \in \mathcal{A} \end{array} \right.$$

Setting $y(i) = 0 \quad \forall i \in \mathcal{N}$, yields a feasible dual solution. Setting $y(i) = -h(i) \quad \forall i \in \mathcal{N}$, too.

The primal-dual algorithm corresponding to Dijkstra algorithm can be slightly modified to represent *A*^{*} algorithm.

Bi-directional Dijkstra algorithm

The A* algorithm

Primal-dual algorithm (A*)

$$\begin{array}{l} \mathsf{O} \leftarrow \{\mathbf{s}\}; \ E \leftarrow \emptyset; \ \Phi \leftarrow 0; \ \mathbf{y}(\mathbf{s}) \leftarrow -\mathbf{h}(\mathbf{s}); \ \pi(\mathbf{s}) \leftarrow \mathbf{s} \\ \text{while } (\mathsf{O} \neq \emptyset) \land (t \notin E) \text{ do} \\ j \leftarrow \operatorname{argmin}_{v \in \mathsf{O}} \{c(\pi(v), v) - y(v) + y(\pi(v))\} \\ \theta \leftarrow c(\pi(j), j) - y(j) + y(\pi(j)) \\ \mathsf{O} \leftarrow \mathsf{O} \backslash \{j\}; \ E \leftarrow E \cup \{j\}; \ \Phi \leftarrow \Phi + \theta; \ y(j) \leftarrow -\mathbf{h}(j) + \Phi \\ \text{for } k \in \mathsf{O} \text{ do} \\ \mathbf{y}(k) \leftarrow -\mathbf{h}(\mathbf{k}) + \Phi \\ \text{for } (j, k) \in \delta^+(j) : k \notin E \text{ do} \\ \text{ if } k \in \mathsf{O} \text{ then} \\ \text{ if } y(j) + c(j, k) < y(\pi(k)) + c(\pi(k), k) \text{ then} \\ \pi(k) \leftarrow j \\ \text{else} \\ \mathsf{O} \leftarrow \mathsf{O} \cup \{k\}; \ \mathbf{y}(k) \leftarrow -\mathbf{h}(\mathbf{k}) + \Phi; \ \pi(k) \leftarrow j \end{array}$$

The primal-dual algorithm (A^*)

At each iteration θ indicates the minimum slack of the constraints corresponding to arcs crossing the (*E*, *O*) cut.

The variable Φ indicates the cumulative amount of slack, from the beginning of the algorithm.

The dual variable y(s) remains fixed at -h(s). When the algorithm terminates $\Phi = y(t)$. Then, at the end, $\Phi - y(s)$ gives the optimal value: $\Phi - y(s) = y(t) - y(s) = w$.

For each node in *E*, y(i) - y(s) = dist(s, i). For each node in *O*, $y(i) = -h(i) + \Phi$. For each node in *O*, $y(i) - y(s) = h(s) - h(i) + \Phi \le dist(s, i)$.

Primal-dual algorithm (A*)

We now exploit three facts:

- $y(i) = -h(i) + \Phi \quad \forall i \in O;$
- the predecessor $\pi(i) \quad \forall i \in O$ always exists and is unique;
- predecessors of nodes in O must be in E.

Therefore we rewrite the algorithm, by replacing y(i) with $y(\pi(i)) + c(\pi(i), i)$ for all nodes $i \in O$, with no need to explicitly update the values of non-permanent dual variables.

Now y(i) appears only for nodes in E.

Bi-directional Dijkstra algorithm

Primal-dual algorithm (A^*) (revised)

$$\begin{array}{l} \mathsf{O} \leftarrow \{s\}; \ E \leftarrow \emptyset; \ \Phi \leftarrow 0; \ y(s) \leftarrow -\mathbf{h}(s); \ \pi(s) \leftarrow s \\ \text{while } (\mathsf{O} \neq \emptyset) \land (t \not\in \mathsf{E}) \ \text{do} \\ j \leftarrow \operatorname{argmin}_{v \in \mathsf{O}} \{c(\pi(v), v) + h(v) - \Phi + y(\pi(v))\} \\ \theta \leftarrow c(\pi(j), j) + h(j) - \Phi + y(\pi(j)) \\ \mathsf{O} \leftarrow \mathsf{O} \setminus \{j\}; \ E \leftarrow E \cup \{j\}; \ \Phi \leftarrow \Phi + \theta; \ y(j) \leftarrow -\mathbf{h}(j) + \Phi \\ \text{for } (j, k) \in \delta^+(j) : k \notin \mathsf{E} \ \text{do} \\ \text{if } k \in \mathsf{O} \ \text{then} \\ \text{if } y(j) + c(j, k) < y(\pi(k)) + c(\pi(k), k) \ \text{then} \\ \pi(k) \leftarrow j \\ \text{else} \\ \mathsf{O} \leftarrow \mathsf{O} \cup \{k\}; \ \pi(k) \leftarrow j \end{array}$$

The A* algorithm

The label d

Let introduce d(j) such that:

$$m{d}(j) = \left\{ egin{array}{cc} {\it dist}(s,j) & orall j \in E \ {\it d}(\pi(j)) + m{c}(\pi(j),j) & orall j \in O \end{array}
ight.$$

The label d(j) is defined only for nodes in $E \cup O$, i.e. for nodes with a predecessor. Their predecessor is guaranteed to be in *E*.

The selection test

We now exploit the relation $y(i) - y(s) = dist(s, i) \quad \forall i \in E$ to rewrite the selection criterion

$$j \leftarrow \operatorname{argmin}_{v \in O} \{ c(\pi(v), v) - y(v) + y(\pi(v)) \}$$

in an equivalent way:

$$\begin{aligned} c(\pi(v), v) - y(v) + y(\pi(v)) &= \\ c(\pi(v), v) - (\Phi - h(v)) + y(\pi(v)) &= \\ c(\pi(v), v) + y(\pi(v)) + h(v) - \Phi &= \\ c(\pi(v), v) + (y(\pi(v)) - y(s)) + h(v) - \Phi + y(s) &= \\ c(\pi(v), v) + dist(s, \pi(v)) + h(v) - \Phi + y(s) &= \\ (c(\pi(v), v) + d(\pi(v))) + h(v) - \Phi + y(s) &= \\ d(v) + h(v) - (\Phi - y(s)). \end{aligned}$$

Since $\Phi - y(s)$ does not depend on the nodes, the selection criterion can rewritten as

$$f \leftarrow \operatorname{argmin}_{v \in O} \{ d(v) + h(v) \}$$

Bi-directional Dijkstra algorithm

The A* algorithm

$$\begin{array}{l} O \leftarrow \{s\}; \ E \leftarrow \emptyset; \ d(s) \leftarrow 0\\ \text{while } (O \neq \emptyset) \land (t \notin E) \text{ do}\\ j \leftarrow \operatorname{argmin}_{v \in O} \{d(v) + h(v)\}\\ O \leftarrow O \setminus \{j\}; \ E \leftarrow E \cup \{j\}\\ \text{for } k \in \delta^+(j) : k \notin E \text{ do}\\ \text{ if } k \in O \text{ then}\\ \text{ if } d(k) > d(j) + c(j,k) \text{ then}\\ d(k) \leftarrow d(j) + c(j,k); \ \pi(k) \leftarrow j\\ \text{ else}\\ O \leftarrow O \cup \{k\}; \ d(k) \leftarrow d(j) + c(j,k); \ \pi(k) \leftarrow j \end{array}$$

The A* algorithm

Selection rule

After defining f(i) = d(i) + h(i), the nodes are scanned in non-decreasing order of *f*.

In Dijkstra algorithm, they are scanned in non-decreasing order of *d*.

If *i* enters *E* before *j*, then $f(i) \leq f(j)$.

Then, for each $i \in E$ we have $f(i) \leq dist(s, t)$, because $f(j) \geq f(i) \quad \forall i \in E, j \notin E$ and $dist(s, t) \geq \max_{i \in \mathcal{N}} \{f(i)\}$.

The "most promising" node is selected, instead of the closest to s.

The properties of *h* guarantee that its label selected in this way is permanent.

Dominance

The A* algorithm

Given two bounding functions h_1 and h_2 , if $h_1(i) > h_2(i)$ for each $i \in \mathcal{N}$, then $E_1 \subseteq E_2$ when *t* is closed and the algorithm stops.

This means that h_1 dominates h_2 .

The larger is h, the more efficient A^* is: it needs considering fewer nodes.

The trivial bounding function h = 0 is dominated by any other.

The ideal bounding function is such that h(i) = dist(i, t). In such an ideal case, only the nodes in P^* are inserted in E.

The A* algorithm

Finding a bounding function

A bounding function h can be obtained from an associated function H defined for all pairs of nodes, although they are not connected by arcs.

Properties of $H : (\mathcal{N} \times \mathcal{N}) \mapsto \Re_+$:

- $H(i,j) \geq 0 \quad \forall i,j \in \mathcal{N}$
- $H(i,i) = 0 \quad \forall i \in \mathcal{N}$
- $c(i,j) + H(j,k) \ge H(i,k) \quad \forall (i,j) \in \mathcal{A}, k \in \mathcal{N}$

This yields $h(i) = H(i, t) \quad \forall i \in \mathcal{N}.$

A typical example is the Euclidean distance, when we compute shortest paths on street networks.

Strengthening the bounding function

Assume to run Dijkstra algorithm from *t* backwards and to stop it at a generic iteration, before making the label of *s* permanent.

The selected basic arcs form an arborescence T rooted in t, including nodes with a permanent label (set E^{T}) and nodes with a non-permanent label (O^{T}).

The following function provides a valid lower bound:

$$h^{HT}(i) = \begin{cases} dist(i,t) & \forall i \in E^T \\ \min_{j \in O^T} \{H(i,j) + dist(j,t)\} & \forall i \notin E^T \end{cases}$$

Therefore $h(i) = H(i, t) \le h^{HT}(i) \le dist(i, t)$. First inequality from the triangle inequality. Second inequality from the definition above and Bellman's principle. So, h^{HT} gives a stronger lower bound than h^{T} , but it takes more time to evaluate.

Bi-directional Dijkstra algorithm

The A* algorithm

Bi-directional A*

We can define a forward lower bounding function $h' : \mathcal{N} \mapsto \Re_+$ and a backward lower bounding function $h'' : \mathcal{N} \mapsto \Re_+$ such that:

- $h'(i), h''(i) \ge 0 \quad \forall i \in N$
- h'(t) = h''(s) = 0
- $c(i,j) + h'(j) \ge h'(i) \ \forall (i,j) \in \mathcal{A}$
- $c(i,j) + h''(i) \ge h''(j) \quad \forall (i,j) \in \mathcal{A}$

Setting y = h'' yields another dual feasible solution, suitable for bi-directional search.

We need sets O', O'', E' and E''. We also need dual variables y' and y'' and primal variables π' and π'' .

Bi-directional A*

When a node is reached in both directions, i.e. $\exists i \in O' \cap O''$, then a feasible s - t path is found, visiting *i*.

Its cost is $U_i = c(\pi'(i), i) + y'(\pi'(i)) - y'(s) + c(i, \pi''(i)) + y''(\pi''(i)) - y''(t)$ and it is a valid upper bound.

We record the best incumbent upper bound U.

$$y'(t) - y'(s) \le dist(s, t) \le U$$

 $y''(s) - y''(t) \le dist(s, t) \le U$

The search stops when

$$\max\{y'(t) - y'(s), y''(s) - y''(t)\} = U.$$

The A* algorithm

Heuristic A*

Using a bounding function $\tilde{h} = \epsilon h$, with $\epsilon > 1$, we lose the optimality guarantee, because \tilde{h} is not guaranteed to be a valid lower bounding function.

However, the resulting algorithm gurantees to provide a (heuristic) solution whose value is not larger than ϵ times the optimum.

In this way, we may design a constant-factor approximation algorithm, by suitably tuning the trade-off between solution quality and computing time.

