The $s-t$ shortest path problem
 Combinatorial optimization

Giovanni Righini

The s - t shortest path problem

Data:

- a digraph $\mathcal{D}=(\mathcal{N}, \mathcal{A})$ with $|\mathcal{N}|=n$ nodes and $|\mathcal{A}|=m$ arcs;
- a source node $s \in \mathcal{N}$ and a target node $t \in \mathcal{N}$;
- a cost function $c: \mathcal{A} \mapsto \Re_{+}$.

The (s, t) Shortest Path Problem.
Find a minimum cost (i.e. shortest) path from s to t.
Owing to the non-negativity of arc costs, we do not need to explicitly forbid cycles and we can use Dijkstra algorithm.

SPP: primal formulation

$$
\begin{aligned}
\operatorname{minimize} z & =\sum_{(i, j) \in \mathcal{A}} c_{i j} x_{i j} \\
\text { s.t. } & \sum_{(j, i) \in \delta_{i}^{-}} x_{j i}-\sum_{(i, j) \in \delta_{i}^{+}} x_{i j}= \begin{cases}-1 & i=s \\
0 & \forall i \in \mathcal{M} \backslash\{s, t\} \\
1 & i=t\end{cases} \\
& x_{i j} \in \mathcal{Z}_{+} \quad \forall(i, j) \in \mathcal{A} .
\end{aligned}
$$

Observation 1. The constraint matrix is totally unimodular.

Observation 2. The right-hand-sides of the constraints are integers.
Hence, every base solution of the continuous relaxation has integer coordinates.

A primal-dual pair

$$
\begin{aligned}
\operatorname{minimize} z= & \sum_{(i, j) \in \mathcal{A}} c_{i j} x_{i j} \\
\text { s.t. } & \sum_{(j, i) \in \delta_{i}^{-}} x_{j i}-\sum_{(i, j) \in \delta_{i}^{+}} x_{i j}= \begin{cases}-1 & i=s \\
0 & \forall i \in \mathcal{N} \backslash\{s, t\} \\
1 & i=t\end{cases} \\
& x_{i j} \geq 0 \quad \forall(i, j) \in \mathcal{A}
\end{aligned}
$$

maximize $w=y_{t}-y_{s}$

$$
\begin{array}{cl}
\text { s.t. } y_{j}-y_{i} \leq c_{i j} & \forall(i, j) \in \mathcal{A} \\
y_{i} \text { free } & \forall i \in \mathcal{N} .
\end{array}
$$

The dual variable y_{s} can be et to 0 ; its corresponding primal constraint is redundant.

Complementary slackness conditions (CSC)

$$
\begin{aligned}
\operatorname{minimize} & z= \\
\text { s.t. } & \sum_{(i, j) \in \mathcal{A}} c_{i j} x_{i j} \\
& x_{j i}-\sum_{(i, i) \in \delta_{i}^{-}} x_{i j}= \begin{cases}0 & \forall i \in \mathcal{N} \backslash\{s, t\} \\
1 & i=t\end{cases} \\
& x_{i j} \geq 0 \quad \forall(i, j) \in \mathcal{A} .
\end{aligned}
$$

maximize $w=y_{t}$

$$
\begin{array}{cl}
\text { s.t. } y_{j}-y_{i} \leq c_{i j} & \forall(i, j) \in \mathcal{A} \\
y_{i} \text { free } & \forall i \in \mathcal{N} \backslash\{s\} .
\end{array}
$$

Primal CSCs: $x_{i j}\left(c_{i j}+y_{i}-y_{j}\right)=0$.
Basic primal variables correspond to active dual constraints. Only arcs (i, j) for which $y_{i}+c_{i j}=y_{j}$ can carry flow $x_{i j}$.

Bi-directional algorithm

By symmetry, instead of cost labels $d(i)$ representing shortest distances from s to i, one can use cost labels representing shortest distances from i to t.

The same algorithm is executed from t backwards, using reversed arcs.

Correctness and complexity remain unchanged.
The idea of the bi-directional algorithm is to do both things simultaneously.
Intuitively, this allows to decrease the number of extensions needed to find a shortest $s-t$ path.

Data-structures

Two labels are associated with each node, a forward cost label d_{i}^{\prime} and a backward cost label $d_{i}^{\prime \prime}$, meaning the current shortest distance from s to i and from i to t, respectively.

Correspondingly, a forward predecessor label π_{i}^{\prime} and a backward predecessor label $d_{i}^{\prime \prime}$ indicate the best predecessor and the best successor along the shortest path from s to i and from i to t, respectively.

Initially, $d_{s}^{\prime}=d_{t}^{\prime \prime}=0$ and all the other labels are set to ∞.
Open (non-permanent) cost labels are kept in two heaps H^{\prime} and $H^{\prime \prime}$.

Upper bounds

For each node i in the digraph, the sum of its two labels, $d_{i}^{\prime}+d_{i}^{\prime \prime}$, represents the cost of an $s-t$ path visiting i.

Therefore it is an upper bound U_{i} to the optimal value.
We record the best incumbent upper bound: $U=\min _{i \in \mathcal{N}}\left\{d_{i}^{\prime}+d_{i}^{\prime \prime}\right\}$.
When both labels $d_{i}^{\prime \prime}$ and $d_{i}^{\prime \prime}$ are permanent, then their sum is the cost of the shortest $s-t$ path visiting i.

Lower bounds

When a label is not permanent, it can still decrease down to the value of the smallest non-permanent label in its direction, i.e. the label at the root of the corresponding heap.

We indicate these minimum non-permanent labels by $\operatorname{top}(H)$ for each heap H.

So, $\operatorname{top}\left(H^{\prime}\right)$ and $\operatorname{top}\left(H^{\prime \prime}\right)$ are lower bounds for the values of non-permanent forward and backward labels, respectively.

Therefore $L_{i}=\min \left\{d_{i}^{\prime}, \operatorname{top}\left(H^{\prime}\right)\right\}+\min \left\{d_{i}^{\prime \prime}, \operatorname{top}\left(H^{\prime \prime}\right)\right\}$ is a lower bound for the cost of any $s-t$ path visiting i.

Therefore $L=\min _{i \in \mathcal{N}}\left\{L_{i}\right\}$ is a lower bound for the optimal value.

A stronger lower bound

However, we can stop the algorithm when $U \leq \operatorname{top}\left(H^{\prime}\right)+\operatorname{top}\left(H^{\prime \prime}\right)$.
By contradiction, assume there is a path P with $\operatorname{cost} c(P)<U$.
Indicate the shortest distance from s to any $i \in \mathcal{N}$ with $\operatorname{dist}^{\prime}(i)$ and the shortest distance from any $i \in \mathcal{N}$ to t with $\operatorname{dist}^{\prime \prime}(i)$.

For all nodes $i \in \mathcal{N}$ along P, $\operatorname{dist}^{\prime}(i)+\operatorname{dist}^{\prime \prime}(i)=c(P)<U \leq \operatorname{top}\left(H^{\prime}\right)+\operatorname{top}\left(H^{\prime \prime}\right)$.

Then, for all nodes along $P, \operatorname{dist}^{\prime}(i)<\operatorname{top}\left(H^{\prime}\right) \vee \operatorname{dist}^{\prime \prime}(i)<\operatorname{top}\left(H^{\prime \prime}\right)$.
Then, all nodes along P have been already permanently labelled in at least one direction and hence P should have been already discovered.

Bi-directional Dijkstra algorithm

Initialization
while $\left(\operatorname{top}\left(H^{\prime}\right)+\operatorname{top}\left(H^{\prime \prime}\right)<U\right)$ do
if $\left(\operatorname{top}\left(H^{\prime}\right) \leq \operatorname{top}\left(H^{\prime \prime}\right)\right)$ then PropagateFw
else
PropagateBw

Initialization

$$
\begin{aligned}
& \text { for } i \in \mathcal{N} \backslash\{s\} \text { do } \\
& d^{\prime}(i) \leftarrow \infty \\
& d^{\prime}(s) \leftarrow 0 \\
& \text { for } i \in \mathcal{N} \backslash\{t\} \text { do } \\
& d^{\prime \prime}(i) \leftarrow \infty \\
& d^{\prime \prime}(t) \leftarrow 0 \\
& \text { for } i \in \mathcal{N} \text { do } \\
& \text { Insert }\left(i, d^{\prime}(i), H^{\prime}\right) \\
& \text { Insert }\left(i, d^{\prime \prime}(i), H^{\prime \prime}\right) \\
& \pi^{\prime}(i) \leftarrow \text { nil } \\
& \pi^{\prime \prime}(i) \leftarrow \text { nil } \\
& U \leftarrow \infty
\end{aligned}
$$

PropagateFw

```
\(k \leftarrow \operatorname{ExtractMin}\left(H^{\prime}\right)\)
for \(j \in \delta^{+}(k)\) do
    if \(d^{\prime}(j)>d^{\prime}(k)+c(k, j)\) then
        \(d^{\prime}(j) \leftarrow d^{\prime}(k)+c(k, j)\)
        \(\pi^{\prime}(j) \leftarrow k\)
        if \(d^{\prime}(j)+d^{\prime \prime}(j)<U\) then
            \(U \leftarrow d^{\prime}(j)+d^{\prime \prime}(j)\)
```


PropagateBw

```
\(k \leftarrow \operatorname{ExtractMin}\left(H^{\prime \prime}\right)\)
    for \(j \in \delta^{-}(k)\) do
    if \(d^{\prime \prime}(j)>d^{\prime \prime}(k)+c(j, k)\) then
        \(d^{\prime \prime}(j) \leftarrow d^{\prime \prime}(k)+c(k, j)\)
        \(\pi^{\prime \prime}(j) \leftarrow k\)
        if \(d^{\prime}(j)+d^{\prime \prime}(j)<U\) then
            \(U \leftarrow d^{\prime}(j)+d^{\prime \prime}(j)\)
```


The A^{*} algorithm (Hart, Nilsson, Raphael, 1968)

We define a bounding function $h: \mathcal{N} \mapsto \Re$ such that:

- $h(t)=0$
- $h(i)-h(j) \leq c(i, j) \forall(i, j) \in \mathcal{A}$.

It represents a lower bound for the minimum distance from each node to node t, i.e. $\operatorname{dist}(i, t)$.

A trivial bounding function is $h(i)=0 \forall i \in \mathcal{N}$, which yields Dijkstra algorithm.

Running A^{*} on the original graph is equivalent to running Dijkstra algorithm on a digraph with modified costs

$$
\tilde{c}(i, j)=c(i, j)+h(j)-h(i) \quad \forall(i, j) \in \mathcal{A} .
$$

Dual constraints

Dual constraints:

$$
y_{j}-y_{i} \leq c_{i j} \quad \forall(i, j) \in \mathcal{A}
$$

Lower bounding function:

$$
\left\{\begin{array}{l}
h(t)=0 \\
h(i)-h(j) \leq c_{i j} \forall(i, j) \in \mathcal{A}
\end{array}\right.
$$

Setting $y(i)=0 \forall i \in \mathcal{N}$, yields a feasible dual solution.
Setting $y(i)=-h(i) \quad \forall i \in \mathcal{N}$, too.
The primal-dual algorithm corresponding to Dijkstra
 algorithm can be slightly modified to represent A^{*} algorithm.

Primal-dual algorithm (A^{*})

$O \leftarrow\{s\} ; \quad E \leftarrow \emptyset ; \quad \Phi \leftarrow 0 ; \quad y(s) \leftarrow \mathbf{- h}(\mathbf{s}) ; \quad \pi(s) \leftarrow s$
while $(O \neq \emptyset) \wedge(t \notin E)$ do
$j \leftarrow \operatorname{argmin}_{v \in O}\{c(\pi(v), v)-y(v)+y(\pi(v))\}$
$\theta \leftarrow c(\pi(j), j)-y(j)+y(\pi(j))$
$O \leftarrow O \backslash\{j\} ; \quad E \leftarrow E \cup\{j\} ; \quad \Phi \leftarrow \Phi+\theta ; \quad y(j) \leftarrow \mathbf{- h}(\mathbf{j})+\Phi$
for $k \in O$ do

$$
y(k) \leftarrow \mathbf{- h}(\mathbf{k})+\Phi
$$

for $(j, k) \in \delta^{+}(j): k \notin E$ do
if $k \in O$ then

$$
\begin{aligned}
& \text { if } y(j)+c(j, k)<y(\pi(k))+c(\pi(k), k) \text { then } \\
& \pi(k) \leftarrow j
\end{aligned}
$$

else

$$
O \leftarrow O \cup\{k\} ; \quad y(k) \leftarrow \mathbf{- h}(\mathbf{k})+\Phi ; \quad \pi(k) \leftarrow j
$$

The primal-dual algorithm $\left(A^{*}\right)$

At each iteration θ indicates the minimum slack of the constraints corresponding to arcs crossing the (E, O) cut.

The variable Φ indicates the cumulative amount of slack, from the beginning of the algorithm.

The dual variable $y(s)$ remains fixed at $-h(s)$.
When the algorithm terminates $\Phi=y(t)$.
Then, at the end, $\Phi-y(s)$ gives the optimal value:
$\Phi-y(s)=y(t)-y(s)=w$.
For each node in $E, y(i)-y(s)=\operatorname{dist}(s, i)$.
For each node in $O, y(i)=-h(i)+\Phi$.
For each node in $O, y(i)-y(s)=h(s)-h(i)+\Phi \leq \operatorname{dist}(s, i)$.

Primal-dual algorithm (A^{*})

We now exploit three facts:

- $y(i)=-h(i)+\Phi \quad \forall i \in O$;
- the predecessor $\pi(i) \forall i \in O$ always exists and is unique;
- predecessors of nodes in O must be in E.

Therefore we rewrite the algorithm, by replacing $y(i)$ with $y(\pi(i))+c(\pi(i), i)$ for all nodes $i \in O$, with no need to explicitly update the values of non-permanent dual variables.

Now $y(i)$ appears only for nodes in E.

Primal-dual algorithm (A^{*}) (revised)

$O \leftarrow\{s\} ; \quad E \leftarrow \emptyset ; \quad \Phi \leftarrow 0 ; \quad y(s) \leftarrow \mathbf{- h}(\mathbf{s}) ; \quad \pi(s) \leftarrow s$
while $(O \neq \emptyset) \wedge(t \notin E)$ do
$j \leftarrow \operatorname{argmin}_{v \in O}\{c(\pi(v), v)+h(v)-\Phi+y(\pi(v))\}$
$\theta \leftarrow c(\pi(j), j)+h(j)-\Phi+y(\pi(j))$
$O \leftarrow O \backslash j\} ; \quad E \leftarrow E \cup\{j\} ; \quad \Phi \leftarrow \Phi+\theta ; \quad y(j) \leftarrow \mathbf{- h}(\mathbf{j})+\Phi$
for $(j, k) \in \delta^{+}(j): k \notin E$ do
if $k \in O$ then
if $y(j)+c(j, k)<y(\pi(k))+c(\pi(k), k)$ then

$$
\pi(k) \leftarrow j
$$

else
$O \leftarrow O \cup\{k\} ; \quad \pi(k) \leftarrow j$

The label d

Let introduce $d(j)$ such that:

$$
d(j)= \begin{cases}\operatorname{dist}(s, j) & \forall j \in E \\ d(\pi(j))+c(\pi(j), j) & \forall j \in O\end{cases}
$$

The label $d(j)$ is defined only for nodes in $E \cup O$, i.e. for nodes with a predecessor. Their predecessor is guaranteed to be in E.

The selection test

We now exploit the relation $y(i)-y(s)=\operatorname{dist}(s, i) \forall i \in E$ to rewrite the selection criterion

$$
j \leftarrow \operatorname{argmin}_{v \in O}\{c(\pi(v), v)-y(v)+y(\pi(v))\}
$$

in an equivalent way:

$$
\begin{aligned}
& c(\pi(v), v)-y(v)+y(\pi(v))= \\
& c(\pi(v), v)-(\Phi-h(v))+y(\pi(v))= \\
& c(\pi(v), v)+y(\pi(v))+h(v)-\Phi= \\
& c(\pi(v), v)+(y(\pi(v))-y(s))+h(v)-\Phi+y(s)= \\
& c(\pi(v), v)+\operatorname{dist}(s, \pi(v))+h(v)-\Phi+y(s)= \\
& (c(\pi(v), v)+d(\pi(v)))+h(v)-\Phi+y(s)= \\
& d(v)+h(v)-(\Phi-y(s)) .
\end{aligned}
$$

Since $\Phi-y(s)$ does not depend on the nodes, the selection criterion can rewritten as

$$
j \leftarrow \operatorname{argmin}_{v \in O}\{d(v)+h(v)\}
$$

The A^{*} algorithm

$O \leftarrow\{s\} ; \quad E \leftarrow \emptyset ; \quad d(s) \leftarrow 0$
while $(O \neq \emptyset) \wedge(t \notin E)$ do
$j \leftarrow \operatorname{argmin}_{v \in O}\{d(v)+h(v)\}$
$O \leftarrow O \backslash\{j\} ; \quad E \leftarrow E \cup\{j\}$
for $k \in \delta^{+}(j): k \notin E$ do
if $k \in O$ then
if $d(k)>d(j)+c(j, k)$ then $d(k) \leftarrow d(j)+c(j, k) ; \pi(k) \leftarrow j$
else

$$
O \leftarrow O \cup\{k\} ; \quad d(k) \leftarrow d(j)+c(j, k) ; \quad \pi(k) \leftarrow j
$$

Selection rule

After defining $f(i)=d(i)+h(i)$, the nodes are scanned in non-decreasing order of f.

In Dijkstra algorithm, they are scanned in non-decreasing order of d.
If i enters E before j, then $f(i) \leq f(j)$.
Then, for each $i \in E$ we have $f(i) \leq \operatorname{dist}(s, t)$, because $f(j) \geq f(i) \forall i \in E, j \notin E$ and $\operatorname{dist}(s, t) \geq \max _{i \in \mathcal{N}}\{f(i)\}$.

The "most promising" node is selected, instead of the closest to s.
The properties of h guarantee that its label selected in this way is permanent.

Dominance

Given two bounding functions h_{1} and h_{2}, if $h_{1}(i)>h_{2}(i)$ for each $i \in \mathcal{N}$, then $E_{1} \subseteq E_{2}$ when t is closed and the algorithm stops.

This means that h_{1} dominates h_{2}.
The larger is h, the more efficient A^{*} is: it needs considering fewer nodes.

The trivial bounding function $h=0$ is dominated by any other.
The ideal bounding function is such that $h(i)=\operatorname{dist}(i, t)$. In such an ideal case, only the nodes in P^{*} are inserted in E.

Finding a bounding function

A bounding function h can be obtained from an associated function H defined for all pairs of nodes, although they are not connected by arcs.

Properties of $H:(\mathcal{N} \times \mathcal{N}) \mapsto \Re_{+}$:

- $H(i, j) \geq 0 \quad \forall i, j \in \mathcal{N}$
- $H(i, i)=0 \forall i \in \mathcal{N}$
- $c(i, j)+H(j, k) \geq H(i, k) \quad \forall(i, j) \in \mathcal{A}, k \in \mathcal{N}$

This yields $h(i)=H(i, t) \quad \forall i \in \mathcal{N}$.
A typical example is the Euclidean distance, when we compute shortest paths on street networks.

Strengthening the bounding function

Assume to run Dijkstra algorithm from t backwards and to stop it at a generic iteration, before making the label of s permanent.

The selected basic arcs form an arborescence T rooted in t, including nodes with a permanent label (set E^{T}) and nodes with a non-permanent label $\left(O^{T}\right)$.

The following function provides a valid lower bound:

$$
h^{H T}(i)= \begin{cases}\operatorname{dist}(i, t) & \forall i \in E^{T} \\ \min _{j \in O^{T}}\{H(i, j)+\operatorname{dist}(j, t)\} & \forall i \notin E^{T}\end{cases}
$$

Therefore $h(i)=H(i, t) \leq h^{H T}(i) \leq \operatorname{dist}(i, t)$.
First inequality from the triangle inequality.
Second inequality from the definition above and Bellman's principle. So, $h^{H T}$ gives a stronger lower bound than h^{T}, but it takes more time to evaluate.

Bi-directional A^{*}

We can define a forward lower bounding function $h^{\prime}: \mathcal{N} \mapsto \Re_{+}$and a backward lower bounding function $h^{\prime \prime}: \mathcal{N} \mapsto \Re_{+}$such that:

- $h^{\prime}(i), h^{\prime \prime}(i) \geq 0 \quad \forall i \in N$
- $h^{\prime}(t)=h^{\prime \prime}(s)=0$
- $c(i, j)+h^{\prime}(j) \geq h^{\prime}(i) \quad \forall(i, j) \in \mathcal{A}$
- $c(i, j)+h^{\prime \prime}(i) \geq h^{\prime \prime}(j) \forall(i, j) \in \mathcal{A}$

Setting $y=h^{\prime \prime}$ yields another dual feasible solution, suitable for bi-directional search.

We need sets $O^{\prime}, O^{\prime \prime}, E^{\prime}$ and $E^{\prime \prime}$.
We also need dual variables y^{\prime} and $y^{\prime \prime}$ and primal variables π^{\prime} and $\pi^{\prime \prime}$.

Bi-directional A^{*}

When a node is reached in both directions, i.e. $\exists i \in O^{\prime} \cap O^{\prime \prime}$, then a feasible $s-t$ path is found, visiting i.

Its cost is
$U_{i}=c\left(\pi^{\prime}(i), i\right)+y^{\prime}\left(\pi^{\prime}(i)\right)-y^{\prime}(s)+c\left(i, \pi^{\prime \prime}(i)\right)+y^{\prime \prime}\left(\pi^{\prime \prime}(i)\right)-y^{\prime \prime}(t)$ and it is a valid upper bound.

We record the best incumbent upper bound U.

$$
\begin{aligned}
& y^{\prime}(t)-y^{\prime}(s) \leq \operatorname{dist}(s, t) \leq U \\
& y^{\prime \prime}(s)-y^{\prime \prime}(t) \leq \operatorname{dist}(s, t) \leq U
\end{aligned}
$$

The search stops when

$$
\max \left\{y^{\prime}(t)-y^{\prime}(s), y^{\prime \prime}(s)-y^{\prime \prime}(t)\right\}=U
$$

Heuristic A^{*}

Using a bounding function $\tilde{h}=\epsilon h$, with $\epsilon>1$, we lose the optimality guarantee, because \tilde{h} is not guaranteed to be a valid lower bounding function.

However, the resulting algorithm gurantees to provide a (heuristic) solution whose value is not larger than ϵ times the optimum.

In this way, we may design a constant-factor approximation algorithm, by suitably tuning the trade-off between solution quality and computing time.

