The problem Bi-directional Dijkstra algorithm The A™ algorithm
0000 000000000 0000000000000 000

The s —t shortest path problem

Combinatorial optimization

Giovanni Righini

UNIVERSITA DEGLI STUDI DI MILANO

The problem
@000

The s — t shortest path problem

Data:
e adigraph D = (N, A) with [N| = n nodes and |.A| = m arcs;
e a source node s € A/ and a target node t € \;
® acostfunctionc: A— R;.

The (s,t) Shortest Path Problem.
Find a minimum cost (i.e. shortest) path from s to t.

Owing to the non-negativity of arc costs, we do not need to explicitly
forbid cycles and we can use Dijkstra algorithm.

The problem
0@00

SPP: primal formulation

minimize z = Z Ci i

(i))eA
-1 i=s
Z Xji — Z Xijj = 0 Vi EN\{S,t}
(.i)es (i.i)es’ 1 i=t

xj € Z4 V(i,]) € A

Observation 1. The constraint matrix is totally unimodular.
Observation 2. The right-hand-sides of the constraints are integers.

Hence, every base solution of the continuous relaxation has integer
coordinates.

The problem Bi-directional Dijkstra algorithm The A™ algorithm
[e]e]]o) 000000000 0000000000000 000

A primal-dual pair

minimize z = Z CiXi

(i,j)eA
-1 i=s
st. > x— Y =40 VieMist}
(.hes” (i.jest 1 i=t
xj >0 V(i,j) € A
maximize w =Y; — ys
s.ty; —Yi <G v(i,j) e A
y; free VieN.

The dual variable ys can be et to 0; its corresponding primal
constraint is redundant. D

UNIVERSITA DEGLI STUDI DI MILANO

The problem Bi-directional Dijkstra algorithm The A™ algorithm
oooe 000000000 0000000000000 000

Complementary slackness conditions (CSC)

minimize z = > ¢jX

(i.h)eA
0 VieMN\{s,t}
(j.i)es, (ij)est

xj >0 V(i,j) € A

maximize w =Y
s.ty; —Yi <G v(i,j) e A
y; free Vi e N\{s}.

Primal CSCs: x;(cj +vyi — ;) =0.
Basic primal variables correspond to active dual constraints.
Only arcs (i,) for which y; 4 ¢ = y; can carry flow x;;. ek

UNIVERSITA DEGLI STUDI DI MILANO

Bi-directional Dijkstra algorithm
®00000000

Bi-directional algorithm

By symmetry, instead of cost labels d (i) representing shortest
distances from s to i, one can use cost labels representing shortest
distances fromi to t.

The same algorithm is executed from t backwards, using reversed
arcs.

Correctness and complexity remain unchanged.

The idea of the bi-directional algorithm is to do both things
simultaneously.

Intuitively, this allows to decrease the number of extensions needed
to find a shortest s — t path.

Bi-directional Dijkstra algorithm
O®@0000000

Data-structures

Two labels are associated with each node, a forward cost label d/ and
a backward cost label d;”, meaning the current shortest distance from
stoiand fromi tot, respectively.

Correspondingly, a forward predecessor label 7/ and a backward
predecessor label d/ indicate the best predecessor and the best
successor along the shortest path from s to i and fromi to t,
respectively.

Initially, d; = d/’ = 0 and all the other labels are set to cc.

Open (non-permanent) cost labels are kept in two heaps H and H”.

Bi-directional Dijkstra algorithm
00®000000

Upper bounds

For each node i in the digraph, the sum of its two labels, d/ + d;”,
represents the cost of an s — t path visiting i.

Therefore it is an upper bound U; to the optimal value.
We record the best incumbent upper bound: U = minjca-{d/ +d}.

When both labels d/ and d/” are permanent, then their sum is the cost
of the shortest s — t path visiting i.

Bi-directional Dijkstra algorithm
000@00000

Lower bounds

When a label is not permanent, it can still decrease down to the value
of the smallest non-permanent label in its direction, i.e. the label at
the root of the corresponding heap.

We indicate these minimum non-permanent labels by top(H) for each
heap H.

So, top(H’) and top(H") are lower bounds for the values of
non-permanent forward and backward labels, respectively.

Therefore Lj = min{d/, top(H")} + min{d”,top(H")} is a lower bound
for the cost of any s — t path visiting i.

Therefore L = minjca-{L;} is a lower bound for the optimal value.

Bi-directional Dijkstra algorithm
000080000

A stronger lower bound

However, we can stop the algorithm when U < top(H’) + top(H").
By contradiction, assume there is a path P with cost c(P) < U.

Indicate the shortest distance from s to any i € A with dist’(i) and the
shortest distance from any i € N to t with dist”(i).

For all nodes i € N along P,
dist’(i) + dist”(i) = ¢(P) < U < top(H') + top(H").

Then, for all nodes along P, dist’(i) < top(H’) Vv dist”(i) < top(H").

Then, all nodes along P have been already permanently labelled in at
least one direction and hence P should have been already
discovered.

Bi-directional Dijkstra algorithm
0O0000e000

Bi-directional Dijkstra algorithm

Initialization
while (top(H") +top(H"”) < U) do
if (top(H") < top(H")) then
PropagateFw
else
PropagateBw

Bi-directional Dijkstra algorithm
0O00000e00

Initialization

fori e M\{s} do
d’(i) « o0

d’'(s)« 0

fori e M\{t} do
d”(i) « oo

d’(t)«+ 0

fori e N do
Insert(i,d’(i), H’
Insert(i,d”(i),H")

7'(i) « nil

77”(i) + nil

U<+

Bi-directional Dijkstra algorithm
0000000 e0

PropagateFw

k + ExtractMin(H")
forj e 5+(k) do

if d’(j) > () +c(k,j) then
d’g; d’(k) +c(k,j)
7 (]
if d’(j) +d”(j) < U then

d/
U «d'(j) +d”(j)

Bi-directional Dijkstra algorithm
0O0000000e

PropagateBw

k + ExtractMin(H")
forj e d(k)do
if d”(') > d”(k) c(j,k) then
470) < 0709 +olbe)
|f d’(j) +d”() < U then
U «d’(j) +d"(j)

The A* algorithm
9000000000000 000

The A* algorithm (Hart, Nilsson, Raphael, 1968)

We define a bounding function h : N +— % such that:

e h(t)=0

* h(i) = h(j) < c(i.j) v(i,j) € A
It represents a lower bound for the minimum distance from each node
to node t, i.e. dist(i, t).

A trivial bounding function is h(i) = 0 Vi € A/, which yields Dijkstra
algorithm.

Running A* on the original graph is equivalent to running Dijkstra
algorithm on a digraph with modified costs

c(i,j) = c(i,j) + h() —h(i) ¥(i,j) € A.

Dual constraints

Dual constraints:
yi—Vyi<cj V(i,j)e A
Lower bounding function:

{ h(t)=0
h(i) —h(j) <cj V(i,j) € A

Setting y (i) = 0 Vi € NV, yields a
feasible dual solution.

Setting y(i) = —h(i) Vi € N, too.

The primal-dual algorithm
corresponding to Dijkstra
algorithm can be slightly modified
to represent A* algorithm.

The A* algorithm
0000000000000 000

c(ij)

The A* algorithm
0000000000000 000

Primal-dual algorithm (A*)

O« {s}; E«0; &+ 0; y(s)« -h(s); w(s)«+ s
while (O # 0) A (t ZE) do
j «argmin, q{c(m(v),v) —y(v) +y(m(v))}
0+ c(n(i).i) - y(i) + y(x())
O+ O\{j}; E<-~EU{j}; ¢+ d+06;, y(j)«<-h({)+¢
fork € O do
y(k) + -h(k) + ¢
for (j,k) € 67(j) : k £ E do
if k € O then
ity () +c(i.k) < y(r(k)) +c(n(k). k) then
(k) <]
else

O+ OU{k}; y(k)«-h(k)+®; 7(k)+]

The A* algorithm
0008000000000 000

The primal-dual algorithm (A*)

At each iteration 6 indicates the minimum slack of the constraints
corresponding to arcs crossing the (E, O) cut.

The variable ¢ indicates the cumulative amount of slack, from the
beginning of the algorithm.

The dual variable y(s) remains fixed at —h(s).
When the algorithm terminates ¢ = y(t).
Then, at the end, ® — y(s) gives the optimal value:

 —y(s) = y(t) - y(s) = w.

For each node in E, y(i) — y(s) = dist(s,).
For each node in O, y(i) = —h(i) + ¢.
For each node in O, y(i) — y(s) = h(s) — h(i) + ® < dist(s,i).

The A* algorithm
0000@00000000000

Primal-dual algorithm (A*)

We now exploit three facts:
e y(i)=—-h(i)+® VieO;
e the predecessor 7(i) Vi € O always exists and is unique;
e predecessors of nodes in O must be in E.

Therefore we rewrite the algorithm, by replacing y (i) with
y (7 (i)) + c(n(i),i) for all nodes i € O, with no need to explicitly
update the values of non-permanent dual variables.

Now y (i) appears only for nodes in E.

The A* algorithm
00000@0000000000

Primal-dual algorithm (A*) (revised)

O« {s}; E«0; &+ 0; y(s)« -h(s); w(s)«+ s
while (O # 0) A (t ZE) do
j < argmin, q{c(m(v),v)+h(v) — > +y(m(v))}
0 «c(n(j),j) + h(i) — ® +y(x())
O+ O\{j}; E<-~EU{j}; o+ +0;, y(j)«<-h()+¢
for (j,k) € 67(j) : k € E do
if kK € O then
it y(j) +c(j,k) < y(x(k)) +c(x(k).k) then
(k)]
else
O+~ OU{k};, (k)]

The A* algorithm
000000 @000000000

The label d

Let introduce d(j) such that:

[dist(s,]) VjeE
d(’{ d(r()) + c(x(i).j) ¥i<cO

The label d(j) is defined only for nodes in E U O, i.e. for nodes with a
predecessor. Their predecessor is guaranteed to be in E.

The A* algorithm
0000000 e00000000

The selection test

We now exploit the relation y (i) — y(s) = dist(s,i) Vi € E to rewrite
the selection criterion

j < argmin, o {c(m(v),v) —y(v) +y(x(v))}
in an equivalent way:

c(m(v),v) =y (v) +y(n(v)) =
c(m(v),v) = (¢ =h(v)) +y(n(v)) =
c(m(v),v)+y(n(v))+h(v) —d =
c(m(v),v) + (y(m(v)) —y(s)) + h(v) = +y(s) =
c(m(v),v) +dist(s,n7(v)) + h(v) - ¢ +y(s) =

d(v) +h(v) — (®—y(s)).
Since ¢ — y(s) does not depend on the nodes, the selection criterion
can rewritten as

j < argmin,o{d(v) +h(v)}

The A* algorithm

The A* algorithm
00000000 e0000000

O+ {s}; E«+0; d(s)+«
while (O #0)A(t ¢E)d
J < argmin,co(d(v) + h(v)}
O« O\{j}; E + EU{j}
fork e 6%(j) : k £E do
if kK € O then
if d(k) >d(j) +c(j,k) then
d(K) d(j) +c(,k); n(k)]
else

O+ OuU{k}; d(k)«d(j)+c(,k);

The A* algorithm
0000000008000 000

Selection rule

After defining f(i) = d(i) + h(i), the nodes are scanned in
non-decreasing order of f.

In Dijkstra algorithm, they are scanned in non-decreasing order of d.
If i enters E before j, then f(i) < f(j).

Then, for each i € E we have f(i) < dist(s, t), because
f(j) > f(i) Vi €E,j ¢ E and dist(s,t) > max,eN{f()}

The “most promising” node is selected, instead of the closest to s.

The properties of h guarantee that its label selected in this way is
permanent.

The A* algorithm
0000000000 e00000

Dominance

Given two bounding functions h; and hy, if hy(i) > hy(i) for each
i € NV, then E; C E; when t is closed and the algorithm stops.

This means that h; dominates h,.

The larger is h, the more efficient A* is: it needs considering fewer
nodes.

The trivial bounding function h = 0 is dominated by any other.

The ideal bounding function is such that h(i) = dist(i, t).
In such an ideal case, only the nodes in P* are inserted in E.

The A* algorithm
00000000000 e0000

Finding a bounding function

A bounding function h can be obtained from an associated function H
defined for all pairs of nodes, although they are not connected by
arcs.

Properties of H : (M x N) — R

®* H(i,j) >0 Vi,je NV

e H(i,i)=0 VieN

e c(i,j) +H(,k) > H(i,k) V(i,j) e Ak e N
This yields h(i) = H(i,t) Vi e .

A typical example is the Euclidean distance, when we compute
shortest paths on street networks.

The A* algorithm
000000000000 e000

Strengthening the bounding function

Assume to run Dijkstra algorithm from t backwards and to stop it at a
generic iteration, before making the label of s permanent.

The selected basic arcs form an arborescence T rooted in t, including
nodes with a permanent label (set ET) and nodes with a
non-permanent label (OT).

The following function provides a valid lower bound:

HT dist(i,t) VieET
() = { mingeor {H(i,J) + dist(,t)} i ¢ ET

Therefore h(i) = H(i,t) < h"T(i) < dist(i,).

First inequality from the triangle inequality.

Second inequality from the definition above and Bellman'’s principle.
So, hHT gives a stronger lower bound than h', but it takes more t|me
to evaluate.

The A* algorithm
0000000000000 e00

Bi-directional A*

We can define a forward lower bounding function b’ : ' +— %, and a
backward lower bounding function h” : N’ — % such that:

e h'(i),h”(i) >0 VieN

e h'(t)=h"(s)=0

e c(i.j) +h'() > h(i) ¥(ij) e A

° c(i,j) +h"(i) = h"(j) v(i,j) € A
Setting y = h” yields another dual feasible solution, suitable for
bi-directional search.

We need sets O/, O”,E’ and E”.
We also need dual variables y’ and y” and primal variables =’ and ="

The A* algorithm
0000000000000 0e0

Bi-directional A*

When a node is reached in both directions, i.e. J3i € O’ N O”, then a
feasible s — t path is found, visiting i.

Its cost is

Ui = c(x'(i),i) +y'(7'(1)) —y'(s) +c(i,="(i)) + y”(="(i)) — y"(t) and
it is a valid upper bound.

We record the best incumbent upper bound U.
y'(t) —y'(s) < dist(s,t) < U
y”(s) —y”(t) < dist(s,t) < U

The search stops when

max{y'(t) —y'(s),y"(s) - y"()} = U.

The A* algorithm
0000000000000 00e

Heuristic A*

Using a bounding function h = eh, with € > 1, we lose the optimality
guarantee, because h is not guaranteed to be a valid lower bounding
function.

However, the resulting algorithm gurantees to provide a (heuristic)
solution whose value is not larger than e times the optimum.

In this way, we may design a constant-factor approximation algorithm,
by suitably tuning the trade-off between solution quality and
computing time.

	The problem
	The problem

	Bi-directional Dijkstra algorithm
	Bi-directional Dijkstra algorithm

	The A* algorithm
	The A* algorithm

