

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

The s − t shortest path problem
Combinatorial optimization

Giovanni Righini

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

The s − t shortest path problem

Data:
• a digraph D = (N ,A) with |N | = n nodes and |A| = m arcs;
• a source node s ∈ N and a target node t ∈ N ;
• a cost function c : A 7→ ℜ+.

The (s, t) Shortest Path Problem.
Find a minimum cost (i.e. shortest) path from s to t .

Owing to the non-negativity of arc costs, we do not need to explicitly
forbid cycles and we can use Dijkstra algorithm.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

SPP: primal formulation

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ
−

i

xji −
∑

(i,j)∈δ+i

xij =

−1 i = s
0 ∀i ∈ N\{s, t}
1 i = t

xij ∈ Z+ ∀(i, j) ∈ A.

Observation 1. The constraint matrix is totally unimodular.

Observation 2. The right-hand-sides of the constraints are integers.

Hence, every base solution of the continuous relaxation has integer
coordinates.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

A primal-dual pair

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ
−

i

xji −
∑

(i,j)∈δ+i

xij =

−1 i = s
0 ∀i ∈ N\{s, t}
1 i = t

xij ≥ 0 ∀(i, j) ∈ A.

maximize w =yt − ys

s.t. yj − yi ≤ cij ∀(i, j) ∈ A

yi free ∀i ∈ N .

The dual variable ys can be et to 0; its corresponding primal
constraint is redundant.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Complementary slackness conditions (CSC)

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ
−

i

xji −
∑

(i,j)∈δ+i

xij =

{

0 ∀i ∈ N\{s, t}
1 i = t

xij ≥ 0 ∀(i, j) ∈ A.

maximize w =yt

s.t. yj − yi ≤ cij ∀(i, j) ∈ A

yi free ∀i ∈ N\{s}.

Primal CSCs: xij(cij + yi − yj) = 0.
Basic primal variables correspond to active dual constraints.
Only arcs (i, j) for which yi + cij = yj can carry flow xij .

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Bi-directional algorithm

By symmetry, instead of cost labels d(i) representing shortest
distances from s to i, one can use cost labels representing shortest
distances from i to t.

The same algorithm is executed from t backwards, using reversed
arcs.

Correctness and complexity remain unchanged.

The idea of the bi-directional algorithm is to do both things
simultaneously.

Intuitively, this allows to decrease the number of extensions needed
to find a shortest s − t path.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Data-structures

Two labels are associated with each node, a forward cost label d ′
i and

a backward cost label d ′′
i , meaning the current shortest distance from

s to i and from i to t, respectively.

Correspondingly, a forward predecessor label π′
i and a backward

predecessor label d ′′
i indicate the best predecessor and the best

successor along the shortest path from s to i and from i to t,
respectively.

Initially, d ′
s = d ′′

t = 0 and all the other labels are set to∞.

Open (non-permanent) cost labels are kept in two heaps H ′ and H ′′.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Upper bounds

For each node i in the digraph, the sum of its two labels, d ′
i + d ′′

i ,
represents the cost of an s − t path visiting i.

Therefore it is an upper bound Ui to the optimal value.

We record the best incumbent upper bound: U = mini∈N{d ′
i + d ′′

i }.

When both labels d ′
i and d ′′

i are permanent, then their sum is the cost
of the shortest s − t path visiting i.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Lower bounds

When a label is not permanent, it can still decrease down to the value
of the smallest non-permanent label in its direction, i.e. the label at
the root of the corresponding heap.

We indicate these minimum non-permanent labels by top(H) for each
heap H.

So, top(H ′) and top(H ′′) are lower bounds for the values of
non-permanent forward and backward labels, respectively.

Therefore Li = min{d ′
i , top(H ′)}+min{d ′′

i , top(H ′′)} is a lower bound
for the cost of any s − t path visiting i.

Therefore L = mini∈N {Li} is a lower bound for the optimal value.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

A stronger lower bound

However, we can stop the algorithm when U ≤ top(H ′) + top(H ′′).

By contradiction, assume there is a path P with cost c(P) < U.

Indicate the shortest distance from s to any i ∈ N with dist ′(i) and the
shortest distance from any i ∈ N to t with dist ′′(i).

For all nodes i ∈ N along P,
dist ′(i) + dist ′′(i) = c(P) < U ≤ top(H ′) + top(H ′′).

Then, for all nodes along P, dist ′(i) < top(H ′) ∨ dist ′′(i) < top(H ′′).

Then, all nodes along P have been already permanently labelled in at
least one direction and hence P should have been already
discovered.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Bi-directional Dijkstra algorithm

Initialization
while (top(H ′) + top(H ′′) < U) do

if (top(H ′) ≤ top(H ′′)) then
PropagateFw

else
PropagateBw

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Initialization

for i ∈ N\{s} do
d ′(i)←∞

d ′(s)← 0
for i ∈ N\{t} do

d ′′(i)←∞
d ′′(t)← 0
for i ∈ N do

Insert(i, d ′(i),H ′)
Insert(i, d ′′(i),H ′′)
π′(i)← nil
π′′(i)← nil

U ←∞

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

PropagateFw

k ← ExtractMin(H ′)
for j ∈ δ+(k) do

if d ′(j) > d ′(k) + c(k , j) then
d ′(j)← d ′(k) + c(k , j)
π′(j)← k
if d ′(j) + d ′′(j) < U then

U ← d ′(j) + d ′′(j)

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

PropagateBw

k ← ExtractMin(H ′′)
for j ∈ δ−(k) do

if d ′′(j) > d ′′(k) + c(j, k) then
d ′′(j)← d ′′(k) + c(k , j)
π′′(j)← k
if d ′(j) + d ′′(j) < U then

U ← d ′(j) + d ′′(j)

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

The A∗ algorithm (Hart, Nilsson, Raphael, 1968)

We define a bounding function h : N 7→ ℜ such that:
• h(t) = 0
• h(i) − h(j) ≤ c(i, j) ∀(i, j) ∈ A.

It represents a lower bound for the minimum distance from each node
to node t, i.e. dist(i, t).

A trivial bounding function is h(i) = 0 ∀i ∈ N , which yields Dijkstra
algorithm.

Running A∗ on the original graph is equivalent to running Dijkstra
algorithm on a digraph with modified costs

c̃(i, j) = c(i, j) + h(j) − h(i) ∀(i, j) ∈ A.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Dual constraints

Dual constraints:

yj − yi ≤ cij ∀(i, j) ∈ A

Lower bounding function:
{

h(t) = 0
h(i) − h(j) ≤ cij ∀(i, j) ∈ A

Setting y(i) = 0 ∀i ∈ N , yields a
feasible dual solution.
Setting y(i) = −h(i) ∀i ∈ N , too.

The primal-dual algorithm
corresponding to Dijkstra
algorithm can be slightly modified
to represent A∗ algorithm.

s

j

i

c(i,j)

y(i)

y(j)

t

j

i

c(i,j)

h(i)

h(j)

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Primal-dual algorithm (A∗)

O ← {s}; E ← ∅; Φ← 0; y(s)← -h(s); π(s)← s
while (O 6= ∅) ∧ (t 6∈ E) do

j ← argminv∈O{c(π(v), v)− y(v) + y(π(v))}
θ ← c(π(j), j) − y(j) + y(π(j))
O ← O\{j}; E ← E ∪ {j}; Φ← Φ + θ; y(j)← -h(j) +Φ
for k ∈ O do

y(k)← -h(k) +Φ
for (j, k) ∈ δ+(j) : k 6∈ E do

if k ∈ O then
if y(j) + c(j, k) < y(π(k)) + c(π(k), k) then
π(k)← j

else
O ← O ∪ {k}; y(k)← -h(k) +Φ; π(k)← j

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

The primal-dual algorithm (A∗)

At each iteration θ indicates the minimum slack of the constraints
corresponding to arcs crossing the (E ,O) cut.

The variable Φ indicates the cumulative amount of slack, from the
beginning of the algorithm.

The dual variable y(s) remains fixed at −h(s).
When the algorithm terminates Φ = y(t).
Then, at the end, Φ− y(s) gives the optimal value:
Φ− y(s) = y(t)− y(s) = w .

For each node in E , y(i) − y(s) = dist(s, i).
For each node in O, y(i) = −h(i) + Φ.
For each node in O, y(i)− y(s) = h(s)− h(i) + Φ ≤ dist(s, i).

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Primal-dual algorithm (A∗)

We now exploit three facts:
• y(i) = −h(i) + Φ ∀i ∈ O;
• the predecessor π(i) ∀i ∈ O always exists and is unique;
• predecessors of nodes in O must be in E .

Therefore we rewrite the algorithm, by replacing y(i) with
y(π(i)) + c(π(i), i) for all nodes i ∈ O, with no need to explicitly
update the values of non-permanent dual variables.

Now y(i) appears only for nodes in E .

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Primal-dual algorithm (A∗) (revised)

O ← {s}; E ← ∅; Φ← 0; y(s)← -h(s); π(s)← s
while (O 6= ∅) ∧ (t 6∈ E) do

j ← argminv∈O{c(π(v), v) + h(v)− Φ+ y(π(v))}
θ ← c(π(j), j) + h(j) − Φ+ y(π(j))
O ← O\{j}; E ← E ∪ {j}; Φ← Φ + θ; y(j)← -h(j) +Φ
for (j, k) ∈ δ+(j) : k 6∈ E do

if k ∈ O then
if y(j) + c(j, k) < y(π(k)) + c(π(k), k) then
π(k)← j

else
O ← O ∪ {k}; π(k)← j

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

The label d

Let introduce d(j) such that:

d(j) =
{

dist(s, j) ∀j ∈ E
d(π(j)) + c(π(j), j) ∀j ∈ O

The label d(j) is defined only for nodes in E ∪O, i.e. for nodes with a
predecessor. Their predecessor is guaranteed to be in E .

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

The selection test

We now exploit the relation y(i)− y(s) = dist(s, i) ∀i ∈ E to rewrite
the selection criterion

j ← argminv∈O{c(π(v), v)− y(v) + y(π(v))}

in an equivalent way:

c(π(v), v)− y(v) + y(π(v)) =

c(π(v), v)− (Φ− h(v)) + y(π(v)) =

c(π(v), v) + y(π(v)) + h(v)− Φ =

c(π(v), v) + (y(π(v))− y(s)) + h(v)− Φ + y(s) =

c(π(v), v) + dist(s, π(v)) + h(v)− Φ+ y(s) =

(c(π(v), v) + d(π(v))) + h(v)− Φ+ y(s) =

d(v) + h(v)− (Φ− y(s)).

Since Φ− y(s) does not depend on the nodes, the selection criterion
can rewritten as

j ← argminv∈O{d(v) + h(v)}

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

The A∗ algorithm

O ← {s}; E ← ∅; d(s)← 0
while (O 6= ∅) ∧ (t 6∈ E) do

j ← argminv∈O{d(v) + h(v)}
O ← O\{j}; E ← E ∪ {j}
for k ∈ δ+(j) : k 6∈ E do

if k ∈ O then
if d(k) > d(j) + c(j, k) then

d(k)← d(j) + c(j, k); π(k)← j
else

O ← O ∪ {k}; d(k)← d(j) + c(j, k); π(k)← j

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Selection rule

After defining f (i) = d(i) + h(i), the nodes are scanned in
non-decreasing order of f .

In Dijkstra algorithm, they are scanned in non-decreasing order of d .

If i enters E before j, then f (i) ≤ f (j).

Then, for each i ∈ E we have f (i) ≤ dist(s, t), because
f (j) ≥ f (i) ∀i ∈ E , j 6∈ E and dist(s, t) ≥ maxi∈N {f (i)}.

The “most promising” node is selected, instead of the closest to s.

The properties of h guarantee that its label selected in this way is
permanent.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Dominance

Given two bounding functions h1 and h2, if h1(i) > h2(i) for each
i ∈ N , then E1 ⊆ E2 when t is closed and the algorithm stops.

This means that h1 dominates h2.

The larger is h, the more efficient A∗ is: it needs considering fewer
nodes.

The trivial bounding function h = 0 is dominated by any other.

The ideal bounding function is such that h(i) = dist(i, t).
In such an ideal case, only the nodes in P∗ are inserted in E .

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Finding a bounding function

A bounding function h can be obtained from an associated function H
defined for all pairs of nodes, although they are not connected by
arcs.

Properties of H : (N ×N) 7→ ℜ+:
• H(i, j) ≥ 0 ∀i, j ∈ N
• H(i, i) = 0 ∀i ∈ N
• c(i, j) + H(j, k) ≥ H(i, k) ∀(i, j) ∈ A, k ∈ N

This yields h(i) = H(i, t) ∀i ∈ N .

A typical example is the Euclidean distance, when we compute
shortest paths on street networks.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Strengthening the bounding function

Assume to run Dijkstra algorithm from t backwards and to stop it at a
generic iteration, before making the label of s permanent.

The selected basic arcs form an arborescence T rooted in t, including
nodes with a permanent label (set ET) and nodes with a
non-permanent label (OT).

The following function provides a valid lower bound:

hHT (i) =
{

dist(i, t) ∀i ∈ ET

minj∈OT {H(i, j) + dist(j, t)} ∀i 6∈ ET

Therefore h(i) = H(i, t) ≤ hHT (i) ≤ dist(i, t).
First inequality from the triangle inequality.
Second inequality from the definition above and Bellman’s principle.
So, hHT gives a stronger lower bound than hT , but it takes more time
to evaluate.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Bi-directional A∗

We can define a forward lower bounding function h′ : N 7→ ℜ+ and a
backward lower bounding function h′′ : N 7→ ℜ+ such that:
• h′(i), h′′(i) ≥ 0 ∀i ∈ N
• h′(t) = h′′(s) = 0
• c(i, j) + h′(j) ≥ h′(i) ∀(i, j) ∈ A
• c(i, j) + h′′(i) ≥ h′′(j) ∀(i, j) ∈ A

Setting y = h′′ yields another dual feasible solution, suitable for
bi-directional search.

We need sets O′, O′′, E ′ and E ′′.
We also need dual variables y ′ and y ′′ and primal variables π′ and π′′.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Bi-directional A∗

When a node is reached in both directions, i.e. ∃i ∈ O′ ∩O′′, then a
feasible s − t path is found, visiting i.

Its cost is
Ui = c(π′(i), i) + y ′(π′(i))− y ′(s) + c(i, π′′(i)) + y ′′(π′′(i))− y ′′(t) and
it is a valid upper bound.

We record the best incumbent upper bound U.

y ′(t) − y ′(s) ≤ dist(s, t) ≤ U

y ′′(s)− y ′′(t) ≤ dist(s, t) ≤ U

The search stops when

max{y ′(t) − y ′(s), y ′′(s)− y ′′(t)} = U.

The problem Bi-directional Dijkstra algorithm The A∗ algorithm

Heuristic A∗

Using a bounding function h̃ = ǫh, with ǫ > 1, we lose the optimality
guarantee, because h̃ is not guaranteed to be a valid lower bounding
function.

However, the resulting algorithm gurantees to provide a (heuristic)
solution whose value is not larger than ǫ times the optimum.

In this way, we may design a constant-factor approximation algorithm,
by suitably tuning the trade-off between solution quality and
computing time.

	The problem
	The problem

	Bi-directional Dijkstra algorithm
	Bi-directional Dijkstra algorithm

	The A* algorithm
	The A* algorithm

