

Problem formulation Algorithms Implementation and data-structures

The shortest path tree problem
Combinatorial optimization

Giovanni Righini

Problem formulation Algorithms Implementation and data-structures

The Shortest Path Tree Problem

Data:
• a digraph D = (N ,A) with |N | = n nodes and |A| = m arcs;
• a source node s ∈ N ;
• a cost function c : A 7→ ℜ.

Shortest Path Tree Problem.
Find all minimum cost (i.e. shortest) paths from s to all nodes in N .

The problem is called Shortest Path Tree/Arborescence Problem,
because of a property of its solution: the set of all shortest paths
forms a spanning arborescence rooted in s.

Problem formulation Algorithms Implementation and data-structures

The shortest paths arborescence

1

2

3

4

5

6 7

1

1

2

2

1

2

2

4

1

3

1

1

0

1 2

2 4

5

6

Figure: A shortest paths arborescence (s = 1). Costs are black. Flows are
red. Distances are blue.

Problem formulation Algorithms Implementation and data-structures

Bellman’s optimality principle

Bellman’s optimality principle states that every optimal policy is made
by optimal sub-policies.

Translating this statement for the SPP:
every shortest path from s to t ∈ N visiting i ∈ N is made by the
shortest path from s to i and the shortest path from i to t.

As a consequence of this principle, the set of all the shortest paths
from s to N forms a spanning arborescence rooted in s.

But this “principle” is indeed a theorem: it can be proved, instead of
assumed.

We do not assume a priori that we are looking for a spanning
arborescence rooted in s.

Problem formulation Algorithms Implementation and data-structures

The mathematical model: variables

Variables. xij ∈ Z+ ∀(i, j) ∈ A: number of shortest paths that use arc
(i, j).

1

2

3

4

5

6 7

1

1

2

2

1

2

2

4

1

3

1

1

0

1 2

2 4

5

6

Figure: One unit of flow goes from s to each other node. The flow on each
arc equals the number of nodes that are reached through it.

Problem formulation Algorithms Implementation and data-structures

The mathematical model: obj. function

Objective function. Minimize each path from s to t ∀t ∈ N :

minimize
∑

(i,j)∈A

cijxij .

1

2

3

4

5

6 7

1

1

2

2

1

2

2

4

1

3

1

1

0

1 2

2 4

5

6

Figure: The sum of the costs times the flow equals the sum of the distances:
1×2+1×1+2×4+2×3+1×1+2×1 = 0+ 1+ 2+ 2+ 4+ 5+ 6 = 20.

Problem formulation Algorithms Implementation and data-structures

The mathematical model: constraints

Constraints. Flow conservation constraints for each shortest path
from s to t ∈ N :

∑

(j,i)∈δ−i

xji −
∑

(i,j)∈δ+i

xij = 0 ∀i ∈ N\{s, t}

∑

(j,s)∈δ−s

xjs −
∑

(s,j)∈δ+s

xsj = −1

∑

(j,t)∈δ−t

xjt −
∑

(t,j)∈δ+t

xtj = +1

Summing them up for all t ∈ N :

∑

(j,i)∈δ−i

xji −
∑

(i,j)∈δ+i

xij = 1 ∀i ∈ N\{s}

∑

(j,s)∈δ−s

xjs −
∑

(s,j)∈δ+s

xsj = 1− n

Problem formulation Algorithms Implementation and data-structures

SPP: primal formulation (ILP)

P̂) minimize
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ−i

xji −
∑

(i,j)∈δ+i

xij = 1 ∀i ∈ N\{s}

∑

(j,s)∈δ−s

xjs −
∑

(s,j)∈δ+s

xsj = 1− n

xij ∈ Z+ ∀(i, j) ∈ A.

Observation 1. The constraint matrix is totally unimodular.

Observation 2. The right-hand-sides of the constraints are all integer
numbers.

Therefore every base solution of the continuous relaxation of P̂ has
integer coordinates.

Problem formulation Algorithms Implementation and data-structures

Reformulation (relaxation) of the primal problem (LP)

Hence we can relax the integrality restrictions:

P) minimize
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ−i

xji −
∑

(i,j)∈δ+i

xij = 1 ∀i ∈ N\{s}

∑

(j,s)∈δ−s

xjs −
∑

(s,j)∈δ+s

xsj = 1− n

xij ≥ 0 ∀(i, j) ∈ A.

This primal problem P has a dual problem D.
For the primal-dual pair (P,D) the LP duality theorems hold.

Problem formulation Algorithms Implementation and data-structures

SPP: Dual formulation (LP)

P) minimize
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ−i

xji −
∑

(i,j)∈δ+i

xij = 1 ∀i ∈ N\{s}

∑

(j,s)∈δ−s

xjs −
∑

(s,j)∈δ+s

xsj = 1− n

xij ≥ 0 ∀(i, j) ∈ A.

D) maximize
∑

i∈N\{s}

yi + (1− n)ys

s.t. yj − yi ≤ cij ∀(i, j) ∈ A

yi free ∀i ∈ N .

Problem formulation Algorithms Implementation and data-structures

An equivalent dual formulation (LP)

D) maximize
∑

i∈N\{s}

yi+(1− n)ys

s.t. yj − yi ≤ cij ∀(i, j) ∈ A

yi free ∀i ∈ N .

Observation 1. Adding a constant α to each y variable, nothing
changes. Hence we can fix a variable:

ys = 0

Observation 2. There are m inequality constraints, n − 1 original y
variables and m slack variables. The LP tableau of the dual problem
has m rows and n − 1 + m columns. Hence, in each base solution of
D there should be m basic variables and n − 1 non-basic (null)
variables. For the complementary slackness theorem, there should
be n − 1 basic variables in the primal problem.

Problem formulation Algorithms Implementation and data-structures

An equivalent primal formulation (LP)

P) minimize
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ−i

xji −
∑

(i,j)∈δ+i

xij = 1 ∀i ∈ N\{s}

∑

(j,s)∈δ−s

xjs −
∑

(s,j)∈δ+s

xsj = 1− n

xij ≥ 0 ∀(i, j) ∈ A.

Observation 3. There are n equality constraints that are not linearly
independent: summing up all the rows we obtain 0 = 0. Hence we
can delete a constraint: the flow conservation constraint for s.
Observation 4. There are now n − 1 equality constraints and m
variables. The LP tableau of P has n − 1 rows and m columns.
Hence, in each base solution of P there are n − 1 basic variables and
m − (n − 1) non-basic variables.

Problem formulation Algorithms Implementation and data-structures

Complementary slackness conditions (CSC)

P′) minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈δ−i

xji −
∑

(i,j)∈δ+i

xij = 1 ∀i ∈ N\{s}

xij ≥ 0 ∀(i, j) ∈ A.

D′) maximize w =
∑

i∈N\{s}

yi

s.t. yj − yi ≤ cij ∀(i, j) ∈ A

yi free ∀i ∈ N\{s}.

Primal CSCs: xij(cij + yi − yj)= 0
Basic variables in P′ correspond to active constraints in D′.
Only arcs (i, j) for which yi + cij = yj can carry flow xij .

Problem formulation Algorithms Implementation and data-structures

The Ford-Fulkerson algorithm (1962)

A spanning s-arborescence is completely described by a vector of
predecessors, one for each node but s.

for i ∈ N\{s} do
yi ←∞
πi ← nil

ys ← 0
πs ← s
V ← {(s, j) ∈ A}
while V 6= ∅ do
(i, j)← Select(V)
yj ← yi + cij

πj ← i
Update(V)

Data structures:
• a predecessor label, πi ∀i ∈ N ;
• a cost label, yi ∀i ∈ N .
• V = {(i, j) ∈ A} s.t. yj − yi > cij

(violated dual constraints).

Different algorithms with different worst-case time complexity are
obtained from different implementations of the Select function.

Problem formulation Algorithms Implementation and data-structures

Feasibility

After initialization we have neither primal feasibility nor dual feasibility.

Primal viewpoint:
We have πi = nil for all i ∈ N ; hence no flow enters any node.

Dual viewpoint:
We have yj =∞ for all j ∈ N\{s}; hence all constraints yj − ys ≤ csj

are violated.

The algorithm maintains the CSCs and iteratively enforces primal and
dual feasibility.

Problem formulation Algorithms Implementation and data-structures

Dual descent

After each iteration one of the dual values yj is decreased
• from a value such that yj − yi > cij

• to a value such that yj − yi = cij

so that arc (i, j) becomes tight and xij enters the primal basis.

The update affects the other constraints (dual viewpoint) and arcs
(primal viewpoint).

• Case I: before the iteration, yj =∞ and πj = nil.
Then arc (i, j) becomes tight and nothing else changes.
Flow can now reach j from i (node j has been appended to the
arborescence).
• Case II: before the iteration, yj 6=∞ and πj = k .

Then, j was already in the arborescence and was receiving flow
from some node k along a tight arc (k , j), i.e. yj − yk = ckj . After
the iteration, arc (k , j) is no longer tight, i.e. yj − yk < ckj and
cannot carry flow any more.
Node j now receives flow from i and not from k .

Problem formulation Algorithms Implementation and data-structures

Case I

1

2

3

6

5

4

7

1

1

2

5

2 1

1

0

1

2

2

�

1

3

5

6

7

1

1

2

3 1

1

0

1

2

2

5

�

6

1

�
2 4

� �

Figure: Arc (5,6) becomes tight and y6 takes a finite value.

Problem formulation Algorithms Implementation and data-structures

Case II

1

2

3

4

5

6

7

1

1

2

5

1 2

5 1

1
3

1
1

0

1

2

2

6

7

8

1

2

3

4

5

6

7

1

1

2

2

1
2

2 4

1
3

1
1

0

1

2

2

4

7

8

5

2

Figure: Arc (7, 6) replaces arc (5,6). Arcs (6, 2) and (6,4) become infeasible
again.

Problem formulation Algorithms Implementation and data-structures

A mechanical analogy

Assume we have n balls to be linked together by a set of m strings of
given lengths. Let ball s to be fixed at the ceiling and let yi be the
distance of ball i from the ceiling (ys = 0).

Initially all balls but s are put on the floor, very far from the ceiling
(yi =∞), and they are not connected to the ceiling (πi = nil).

Iteratively take a string (i, j) and append ball j to ball i. Select one for
which the distance between the balls exceeds the length of the string
(so you will never select i on the floor).
In doing this you can either link a ball j that was on the floor to a ball i
hanging from above (Case I) or pull up a ball j already hanging from
the ceiling by connecting it to a ball i over it (Case II).

When all strings have been used (all dual constraints have been
enforced), there are n − 1 tight strings (the spanning arborescence).

This analogy holds for the case in which cij ≥ 0 ∀(i, j) ∈ A.

Problem formulation Algorithms Implementation and data-structures

Termination

The algorithm always achieves primal and dual feasibility, but two
special cases may occur.

Infeasibility. If there is a node t ∈ N not reachable from s, the
algorithm does not find any arc (i, t) ∈ A corresponding to a violated
dual constraint. Hence yt remains equal to∞; no arc entering t
becomes tight; no flow can reach t : the primal problem is infeasible
and the dual problem is unbounded.

Unboundedness. If there is a negative-cost cycle reachable from s,
the algorithm keeps finding a violated dual constraint corresponding
to one of the arcs in the cycle. Hence the algorithm enters a
never-ending loop in which the y values of the nodes in the cycle are
decreased to −∞ and it never finds a feasible dual solution: the dual
problem is infeasible and the primal problem is unbounded.

The two things can also happen independently: both problems are
infeasible.

Problem formulation Algorithms Implementation and data-structures

Bellman-Ford algorithm (1956,1958)

for i = 1, . . . , n do
y [i]← c(s, i)
π[i]← s

for k = 1, . . . , n− 1 do
for (i, j) ∈ A do

if (y [i] + c(i, j) < y [j]) then
π[j]← i
y [j]← y [i] + c(i, j)

The time complexity is O(nm) because it requires O(n) iterations,
each one with complexity O(m).

Problem formulation Algorithms Implementation and data-structures

Moore algorithm (1959)

for i = 1, . . . , n do
y [i]← c(s, i)
π[i]← s

Q ← {s}
while Q 6= ∅ do

Extract(Q, i)
for (i, j) ∈ δ+(i) do

if (y [i] + c(i, j) < y [j]) then
y [j]← y [i] + c(i, j)
π[j]← i
if j 6∈ Q then

Insert(Q, j)

The worst-case time complexity is still O(nm) but in practice it runs
faster than Bellman-Ford, because many operations are skipped.

Problem formulation Algorithms Implementation and data-structures

Moore algorithm (1959)

The performance of Moore’s algorithm (also called SPFA, for Shortest
Path Faster Algorithm) depends on how Q is implemented.
• Nodes are not ordered in Q.

Extract and Insert take O(1); the complexity remains O(mn).
No queue is needed; just a binary flag for each node.
• Nodes are sorted according to their value of y .

A priority queue is used: Insert and Extract take O(log n), they
are executed at most n − 1 times for each node: they contribute
O(n2 log n) to the complexity.
• An approximate order is given to the nodes, using a list.

Extract always extracts the head of the list in O(1).
Three Insert policies have been tried in practice:

• FIFO: always inserts j at the end of the list (queue) in O(1).
• Small Label First : if y(j) < y(First(Q)), then j is inserted as the

first element of Q, otherwise as the last one, in O(1).
• Large Label Last : let q be the average of the values in Q (it can be

updated in O(1) after each operation on Q); all elements larger
than q are moved at the end of Q in O(n).

Problem formulation Algorithms Implementation and data-structures

Dijkstra’s algorithm (1959)

T ← ∅
for i ∈ N do

y(i)← c(s, i)
π(i)← s
f (i)← (i = s)

for k = 1, . . . , n− 1 do
i∗ ← argmini∈N :¬f (i){y(i)}
T ← T ∪ {(π(i∗), i∗)}
f (i∗)← true
for i ∈ N do

if (¬f (i)) ∧ (y(i∗) + c(i∗, i) < y(i)) then
π(i)← i∗

y(i)← y(i∗) + c(i∗, i)

The time complexity is O(n2) (improvable). It requires c ≥ 0.

Problem formulation Algorithms Implementation and data-structures

Dijkstra algorithm (dual ascent)

When c ≥ 0, Dijkstra algorithm can be revisited as a dual ascent
algorithm.

Assume to represent the graph as a set of stars (lists of outgoing
arcs).

We introduce two node sets:
• O: set of nodes for which a path from s has been found, but the

labels π and y are not permanent:

y(i) ≤ d(s, i) π(i) 6= nil ∀i ∈ O

• E : set of nodes with permanent labels:

y(i) = d(s, i) y(i) = y(π(i)) + c(π(i), i) ∀i ∈ E

where d(s, i) is the cost of a shortest path from s to i ∀i ∈ N.

Problem formulation Algorithms Implementation and data-structures

Dijkstra algorithm (dual ascent)

All dual variables y are initialized at 0.
This corresponds to a feasible dual solution.

All primal variables π are not permanent.
This corresponds to an infeasible primal solution.

The algorithm iteratively selects a node whose corresponding y and π
are made permanent.

The selected node is used to update y and π for other nodes, keeping
dual feasibility and keeping C.S.C. satisfied.

The values of y are non-decreasing (dual ascent procedure).

The algorithm terminates when all labels are permanent (or when t
enters E if we are computing an s − t shortest path).

Problem formulation Algorithms Implementation and data-structures

Dijkstra algorithm (dual ascent)

O ← {s}; E ← ∅; w ← 0; y(s)← 0; π(s)← s
while (O 6= ∅)∧(t 6∈ E) do

j ← argminv∈O{c(π(v), v)− y(v) + y(π(v))}
θ ← c(π(j), j)− y(j) + y(π(j))
O ← O\{j}; E ← E ∪ {j}; w ← w + θ; y(j)← w
for k ∈ O do

y(k)← w
for (j, k) ∈ δ+(j) : k 6∈ E do

if k ∈ O then
if y(j) + c(j, k) < y(π(k)) + c(π(k), k) then
π(k)← j

else
O ← O ∪ {k}; y(k)← w ; π(k)← j

Problem formulation Algorithms Implementation and data-structures

Correctness

Dual feasibility is guaranteed after every iteration.

The rule for selecting the next node to insert in E is equivalent to find
an arc from i ∈ E to j ∈ O corresponding to a dual constraint with
minimum slack, i.e. minimum reduced cost.

Such a dual constraint becomes active (the corresponding arc
becomes tight).

The other dual constraints, not corresponding to arcs in the (E ,O)
cut, are not affected by the increase of the dual variables y(i) ∀i ∈ O.

For each node i in E , y(i)− y(s) = d(s, i), and y(i) = d(s, i) ∀i ∈ E
because y(s) remains fixed to 0.

Problem formulation Algorithms Implementation and data-structures

Dijkstra algorithm

The computational complexity of the array implementation of Dijkstra
algorithm is O(n2).

However, it can be improved in case of sparse graphs, using suitable
data-structures, such as heaps.

Problem formulation Algorithms Implementation and data-structures

Initialization

H ← ∅
for i ∈ N do
π(i)← nil
if i = s then

y(i)← 0
else

y(i)← +∞
BuildHeap(H)

H is a min-heap of nodes, partially sorted according to their
associated y value.

Problem formulation Algorithms Implementation and data-structures

Dijkstra algorithm

Inizialization
while H 6= ∅ do

ExtractMin(H, i, v)
for (i, j) ∈ δ+(i) do

if v + c(i, j) < y(j) then
DecreaseKey(j, v + c(i, j),H)
y(j)← v + c(i, j)
π(j)← i

Here δ+(i) indicates the set of arcs outgoing from i, while π and y are
the primal and dual variables.

Problem formulation Algorithms Implementation and data-structures

Complexity

• BuildHeap is called once and has O(n) complexity.
• DecreaseKey is called O(m) times (each arc is used only once).
• ExtractMin is called O(n) times (the heap includes only n nodes).

The latter two sub-routines have complexity O(log n) if the values of
non-permanent labels are stored in a binary heap.

Therefore the overall complexity of Dijkstra algorithm implemented in
this way is O(m log n).

Problem formulation Algorithms Implementation and data-structures

d-heaps

Dijkstra algorithm with a d-heap:
• each MoveDn requirs O(logd n) executions of Swap.
• the selection of the min cost successor node requires O(d).

In Dijkstra algorithm this occurs up to O(logd n) times for each call of
ExtractMin and ExtractMin is called O(n) times.

• BuildHeap is called once and its complexity is O(n) (same as
binary heaps).
• DecreaseKey is called O(m) times and its complexity is

O(logd n).
• ExtractMin is called O(n) times and its complexity is O(d logd n).

Complexity: O(nd logd n + m logd n).

Problem formulation Algorithms Implementation and data-structures

d-heaps

The resulting complexity O(nd logd n + m logd n) depends on d .

Best choice: d = ⌊m/n⌋, yielding complexity
O(m logm/n n) = O(m logn n

logn
m
n
) = O(m 1

logn m−1).

Assuming m = Ω(nǫ) for any fixed ǫ > 1, the complexity is
O(m 1

ǫ−1) = O(m).

The complexity is linear in m for very mild hypothesis on the density
of the digraph.

Problem formulation Algorithms Implementation and data-structures

Fibonacci heaps

Using a Fibonacci heap instead of a binary heap:
• BuildHeap is called once and its complexity is O(n).
• DecreaseKey is called O(m) times and its complexity is O(1).
• ExtractMin is called O(n) times and its complexity is O(log n).

Therefore the overall complexity of Dijkstra algorithm in this
implementation is O(m + n log n).

Problem formulation Algorithms Implementation and data-structures

Data-dependent data-structures

Bucket: array of sets that uses the key values as indices.

It requires two assumptions:
• all values are integer;
• all values are bounded by a known constant C.

In Dijkstra algorithm all the values of non-permanent labels are in the
range [0, . . . , nC], where C = max(i,j)∈A{cij}.

Problem formulation Algorithms Implementation and data-structures

Operations

Initialize.
Initialize an array of nC + 1 empty buckets, indexed by 0, 1, . . . , nC.
Set an index MinValue to 0.
Complexity: O(nC).

Insert(x).
Insert x into Bucket[key(x)].
Complexity: O(1).

Problem formulation Algorithms Implementation and data-structures

Operations

DecreaseKey(x , v).
Extract x from Bucket[key(x)] and insert it into Bucket[v].
Complexity: O(1).

ExtractMin.
Increase MinValue iteratively until a non-empty bucket is found in
position p.
Remove an element from Bucket[p].
Complexity: O(nC).
Amortized complexity for all ExtractMin operations is O(C) (i.e. O(1)),
because n − 1 iterations are done and MinValue never decreases.

Problem formulation Algorithms Implementation and data-structures

Buckets

Dijkstra algorithm using buckets (Dial implementation):
• Insert is called O(n) times and its complexity is O(1).
• DecreaseKey is called O(m) times and its complexity is O(1).
• ExtractMin is called O(n) times and its amortized complexity is

O(C).

Complexity: O(m + nC).
This implementation has pseudo-polynomial complexity.

Problem formulation Algorithms Implementation and data-structures

Radix heap

A radix heap is made by 1 + ⌊log2 (C)⌋ buckets.
Bucket k = 0 contains 1 key value;
each bucket k ≥ 1 contains 2k−1 key values, from 2k−1 to 2k − 1.
An array λ[k] indicates the minimum key value in each bucket k .

Initialization.
Allocate the array in O(log2 (C)).
Set λ[0] = 1; set λ[k] = 2k−1 in O(1) ∀k ≥ 1.
Set MinValue to 0 in O(1).
Complexity: O(log2 (C)).

Insert(x) (initially).
Insert element x with key(x) = v in bucket k = 1 + ⌊log2 (v)⌋.
Complexity: O(1) for each inserted element.

Problem formulation Algorithms Implementation and data-structures

Radix heap

DecreaseKey(x , v).
Test each bucket k ′ from k down to 1 until λ[k ′] ≤ v is found in
O(log2 (C)).
Extract x from its bucket k and insert it into bucket k ′ in O(1).
Complexity: O(log2 (C)) (amortized).

ExtractMin.
Starting at MinValue, scan the heap until a non-empty bucket k is
found.
If k ≥ 2, replace bucket k by k buckets of size 1, 1, 2, 4, . . . , 2k−2.
Set λ[0] = λ[k] and λ[k ′] = λ[0] + 2k ′−1 ∀k ′ = 1, . . . , k − 1 in
O(log2 (C)).
For each element of bucket k , find its new bucket k ′ < k in
O(log2 (C)) and insert it.
Complexity: O(log2 (C)) (amortized).

Whenever an element is moved by DecreaseKey or ExtractMin, it
always goes down the list of log2 (C) buckets.

Problem formulation Algorithms Implementation and data-structures

Radix heap

Dijkstra algorithm with a radix heap:
• Insert is initially called O(n) times and its complexity is O(1).
• DecreaseKey is called O(m) times and its complexity is O(1) for

each execution plus the time to move the elements which takes
O(n log2 (C)) overall.
• ExtractMin is called O(n) times and its amortized complexity is

O(log2 (C)).

Complexity: O(m + n log2 (C)).

This implementation has polynomial complexity in the input size.

Problem formulation Algorithms Implementation and data-structures

Dijkstra algorithm implementations

Data structure Insert DecreaseKey ExtractMin Total complexity
Basic O(1) O(1) O(n) O(n2)

Binary heap O(log n) O(log n) O(log n) O(m log n)
d-heap O(logd n) O(logd n) O(d logd n) O(m logm/n n)
Buckets O(1) O(1) O(nC)T O(m + nC)

Radix heap O(n log (C))T O(n log (C))T O(n log (C))T O(m + n log (C))
Fib. heap O(m)T O(m)T O(n log n)T O(m + n log n)

Improved priority queue: O(m log log C).
Radix + Fibonacci heaps: O(m +

√

log C).

	Problem formulation
	Problem formulation

	Algorithms
	Algorithms

	Implementation and data-structures
	Implementation and data-structures

