

Selection Partial sorting Incremental sorting Kruskal algorithm

Implementations of Kruskal algorithm
Combinatorial optimization

Giovanni Righini

Selection Partial sorting Incremental sorting Kruskal algorithm

Median-of-medians

Median selection problem: find the median in a given set (unsorted
list L) of n values.

Median-of-medians algorithm.
• Split L in subsets of 5 elements each: Si ∀i = 1, . . . , n/5.
• Find the median xi for each Si .
• Find the median M of the xi values.
• Partition L into three lists:

• L1 with values smaller than M;
• L2 with values equal to M;
• L3 with values larger than M.

• Discard L1 or L3 depending on the sought element k .
• Recursively call the procedure on the remaning part of L.

Selection Partial sorting Incremental sorting Kruskal algorithm

// Procedure Select(L, u, v , k).
if (v − u + 1 ≤ 10) then

Sort(L, u, v)
return L[u − 1 + k]

else
s ← ⌈(v − u + 1)/5⌉
for i = 1, . . . , s do

S(i)← {u + 5(i − 1), . . . ,min{u + 5i − 1, v}}
x(i)← Median − of− 5(S(i))

M ← Median({x(1), . . . , x(s)})
Partition(L,M, L1, L2, L3)
if (k ≤ |L1|) then

Select(L1, u, u + |L1| − 1, k)
else

if (k > |L1|+ |L2|) then
Select(L3, v − |L3|+ 1, v , k − |L1| − |L2|)

else
return M

Selection Partial sorting Incremental sorting Kruskal algorithm

Complexity

Median of 5: at most 6 pair-wise comparisons.

Median of a set S of s elements: call Select(S, ⌈s/2⌉).

Max. size s of S is n/5.

By definition, at least half of the medians xi (i.e. at least n/10) are
≤ M (≥ M).

For each of them, 3 values in Si are ≤ M (≥ M).

Then, |L1| ≥ 3n/10 (|L3| ≥ 3n/10).

Hence |L3| ≤ 7n/10 (|L1| ≤ 7n/10).

Selection Partial sorting Incremental sorting Kruskal algorithm

Complexity

T (n): n. of comparisons to find the median of n elements.

Finding all medians xi takes at most 6n/5 comparisons.
Finding M takes T (n/5).
Partitioning L takes n − 1 comparisons.
Finding the median of the remaining list takes at most T (7n/10).

Therefore

T (n) ≤
6n
5

+ T
(n

5

)

+ n + T
(

7n
10

)

.

Hence

T (n) ≤
11n
5

∞
∑

k=0

(

1
5
+

7
10

)k

.

Since
1
5
+

7
10

=
9
10

< 1, the geometric series converges to a

constant.

Therefore T (n) is O(n) (it can be reduced to 2.95 n).

Selection Partial sorting Incremental sorting Kruskal algorithm

Selection problem

Selection problem: find the k th smallest value in a given set
(unsorted list N) of n values.

Select algorithm (Blum et al., 1973).
• Split N in n/c subsets of c elements each and sort each of them.
• Find the d th smallest element (the representative) in each subset.
• Find the bth smallest element, M, in the set of representatives.
• Partition the n/c subsets into three parts:

• Left: b − 1 subsets with representatives ≤ M;
• Center: the subset containing M;
• Right: n/c − b subsets with representatives ≥ M.

• L: entries in the left and center columns on rows from 1 to d .
• G: entries in the right and center columns on rows from d to c.
• Compare each element with M.
• Discard either L or G and repeat, until k − 1 smallest entries or

n − k largest entries have been discarded.

Selection Partial sorting Incremental sorting Kruskal algorithm

Selection problem

Selection Partial sorting Incremental sorting Kruskal algorithm

Complexity

h(c): n. of comparisons needed to sort c elements.

Ford and Johnson (1959): h(c) =
∑c

j=1⌈log2 (
3
4 j)⌉.

T (n): n. of comparisons needed to find the k th smallest element in a
set of n.

• Sorting n
c subsets of c elements each: n

c h(c).
• Finding M among the representatives: T (n

c).
• Comparing each element with M: n.
• Solving the remaining problem: T (n −min{|L|, |G|}).

T (n) =
n
c

h(c) + T (n/c) + n + T (n−min{|L|, |G|}).

Selection Partial sorting Incremental sorting Kruskal algorithm

Complexity

|L| = bd |G| =
(n

c
− b + 1

)

(c − d + 1)

By selecting b = n/42, c = 21, d = 11:

|L| =
11
42

n |G| =
(n

21
−

n
42

+ 1
)

11 =
11
42

n + 11.

h(21) = 66.

Therefore

T (n) ≤
66
21

n + T
(n

21

)

+ n + T
(

31
42

n
)

.

Base of the induction: for small enough n, h(n) is linear (e.g. for
n < 105, h(c) < 19n).

T (n) ≤
29
7

n
∞
∑

k=0

(

1
21

+
31
42

)k

=
29
7

n
1

1− 11
14

=
29
7

n
14
3

=
58
3

n.

Hence T (n) is O(n).

Selection Partial sorting Incremental sorting Kruskal algorithm

Partial sorting problem

Partial sorting problem: find and sort the k th smallest values in a
given set N of m values.

SelectionSort algorithm.
• For i = 1, . . . , k ,

• scan the list from N[i] and find the smallest value;
• swap the smallest element with N[i].

Time complexity: O(km). Space complexity: O(m).

Using a (big) binary heap (C++ STL’s partial sort function):
• Build a binary heap with the m elements.
• For k times, extract the root and rearrange the heap.

Complexity: O(m + k logm). Space complexity: O(m).

Selection Partial sorting Incremental sorting Kruskal algorithm

Partial sorting problem

Using a (small) binary heap:
• Build a binary max-heap with the first k elements of N.
• For i = k + 1, . . . ,m times, if N[i] is smaller than the current root

of the heap, then replace the root and update the heap.
• Sort the elements of the heap.

Complexity: O((k + m) log k). Space complexity: O(k).
Valid alternative if k << m or N is processed on-line.

QuickSelSort algorithm, combining Select and QuickSort.
• find the k th smallest element in N with Select (the pivot);
• scan the list and retain the elements smaller than the pivot (if

needed);
• sort the selected elements.

Complexity: O(m + k log k). Space complexity: O(m).

Selection Partial sorting Incremental sorting Kruskal algorithm

Partial QuickSort (Martinez, 2004)

Input for each recursive call of PartialQuickSort(N, i, j, k):
• an array N;
• an interval [i, . . . , j], with i ≤ j;
• a number k of smallest elements to sort, with i ≤ k .

Base of the recursion: i = j.

Recursive step:
• select a pivot in position p ∈ [i, . . . , j];
• partition [i, . . . , j] as in QuickSort; let p′ be the final position of the

pivot;
• recursively call PartialQuickSort(N, i, p′ − 1, k);
• if k > p′, then recursively call PartialQuickSort(N, p′ + 1, j, k).

Selection Partial sorting Incremental sorting Kruskal algorithm

Partial QuickSort

// Procedure PartialQuickSort(N, i, j, k)
if (i < j) then

p ← Pivot(N, i, j)
p′ ← Partition(N, i, j, p)
PartialQuickSort(N, i, p′ − 1, k)
if (p′ < k) then

PartialQuickSort(N, p′ + 1, j, k)

Selection Partial sorting Incremental sorting Kruskal algorithm

Incremental sorting problem (Paredes and Navarro, 2006)

Incremental sorting problem: on-line version of the Partial sorting
problem (k is not given).

Given set N of m numbers, output the elements of N from the
smallest one to the largest one, so that the process can be stopped
after k elements have been output, for any k (not given in input).

Iterate Select.
• For i = 1, . . . , k , select the smallest unselected element in N.

Time complexity: O(km). Space complexity: O(m).

Using a (big) binary heap:
• Build a binary heap with the m elements.
• Iteratively, extract the root and rearrange the heap.

Complexity: O(m + k logm). Space complexity: O(m).

These naive methods are dominated by PartialQuickSort.

Selection Partial sorting Incremental sorting Kruskal algorithm

Incremental Quick Select

Algorithm IncrementalQuickSelect (Paredes and Navarro, 2006).

At each iteration, the algorithm finds the smallest element among
those not yet selected.

The algorithm exploits the same recursion of QuickSort, but it can
stop for each value of k .

As in iterative implementations of QuickSort, it keeps a stack of pivots
already set at their correct positions in previous iterations.

Selection Partial sorting Incremental sorting Kruskal algorithm

Incremental Quick Select

Figure: Positions are numbered from 0 to 15.

Selection Partial sorting Incremental sorting Kruskal algorithm

Incremental Quick Select

1: // Procedure IQS(N,S, k)
2: if Top(S) = k then
3: Pop(S)
4: return N[k]
5: p ← Pivot(N, k ,Top(S)− 1)
6: p′ ← Partition(N, k ,Top(S)− 1, p)
7: Push(S, p′)
8: return IQS(N,S, k)

Worst-case complexity: O(m2).
Average-case complexity: O(m + k log k).

Selection Partial sorting Incremental sorting Kruskal algorithm

Comparing MST algorithms

Computational complexity:
• Fibonacci heaps (Fredman and Tarjan, 1987, Gabow et al. 1986)

for Prim algorithm: O(m + n log n).
• Union-Find for Kruskal algorithm: O(m log n) for sorting and

O(m + n log n) for the MST.

A randomized algorithm by Karger (1993) runs in linear expected
time.

In practice:
• Kruskal: effective when the edge weights are drawn from a small

range of integers or when the graph is sparse;
• Prim: effective in all the other cases, especially when the graph

is dense.
Experimental comparisons (Moret and Shapiro, 1991, Bazlamaçcı
and Hindi, 2001):
• Prim algorithm implemented with a binary heap (O(m logn)) is

faster than Kruskal.
• Both algorithms are faster than the more recent ones.

Selection Partial sorting Incremental sorting Kruskal algorithm

Implementing Kruskal algorithm

Naive implementation: first the edge list is sorted; then it is scanned
to compute a MST.

“On demand sorting”: keep the edges partially sorted in a binary
heap, constructed by QuickSort when needed, i.e. when all
previously sorted edges have been examined.

QuickSortKruskal (QSK): no binary heap is constructed. Kruskal
algorithm is executed from within QuickSort: the two steps of sorting
and selecting the edges of the MST proceed in parallel.

Selection Partial sorting Incremental sorting Kruskal algorithm

Quick Sort Kruskal

QSK: the recursive procedure is run on the leftmost part first and on
the rightmost part later, for each interval to be sorted.

Base of the recursion: interval with a single element.

Every time QuickSort completes the sorting of the leftmost part of an
interval, the pivot element is considered for insertion in the MST as in
Kruskal algorithm, before sorting the rightmost part of the interval.

• edges are sorted only when needed;
• no additional data-structure and initialization.

QSK is especially effective when the input graph is given as an edge
list.

Selection Partial sorting Incremental sorting Kruskal algorithm

Quick Sort Kruskal

// QuickSortKruskal. IN: E . OUT: T .
InitUnionFind
T ← ∅
count ← 0
QuickSortK(1,m)

E : input list of edges.
T : list of selected edges.
count : cardinality of T .

Selection Partial sorting Incremental sorting Kruskal algorithm

// Procedure QuickSortK(p, q)
e+ ← q
if p < q then

e− ← p
while e− ≤ e+ do

while E [e+].cost > E [p].cost do
e+ ← e+ − 1

while (e− ≤ e+) ∧ (E [e−].cost ≤ E [p].cost) do
e− ← e− + 1

if e− < e+ then
Swap(e−, e+); e− ← e− + 1; e+ ← e+ − 1

Swap(p, e+)
if e+ > p then

QuickSortK(p, e+ − 1)
if count < n − 1 then

TestEdge(e+)
if (count < n − 1) ∧ (e+ < q) then

QuickSortK(e+ + 1, q)

Selection Partial sorting Incremental sorting Kruskal algorithm

Quick Sort Kruskal

The pivot element in position e+ is tested by TestEdge(e+)

• after sorting the edges with cost smaller than the pivot
(QuickSortK (p, e+ − 1))
• before sorting the edges with cost larger than the pivot

(QuickSortK (e+ + 1, q)).

// Procedure TestEdge(e)
i ← E [e].i
j ← E [e].j
if head [i] 6= head [j] then

count ← count + 1
T ← T ∪ {[i, j]}
if card [head [i]] ≥ card [head [j]] then

Append(head [j], head [i])
else

Append(head [i], head [j])

Selection Partial sorting Incremental sorting Kruskal algorithm

The Star Quick Sort Kruskal algorithm

Input graph: set of stars.

Naive solution 1: produce a sorted list of edges by merging the
subsets and then sorting the resulting list or heap.

Naive solution 2: produce a sorted list of edges by separately sorting
each star and then merging them into a unique sorted list or heap.

In StarQuickSortKruskal (SQSK) stars are not merged.

A sorted list is produced on demand by QuickSort from the edges of
each star; the first not-yet-examined edge in each list is the candidate
edge for its vertex.

All candidate edges are partially sorted in a binary heap.

Iteratively:
• the best candidate e is selected;
• QuickSort is re-activated to find the next candidate for the

endpoints of e;
• the heap is rearranged.

Selection Partial sorting Incremental sorting Kruskal algorithm

The Star Quick Sort Kruskal algorithm

Main idea: save a potentially large fraction of the computing time that
would be spent to (partially) sort each vertex star in a binary heap or
a in sorted list, since only a very small fraction of the edges in each
star is likely to be considered by Kruskal algorithm.

The candidate edge in each star is the last edge of the sorted part of
the star; all the edges with a cost larger than the candidate remain
unsorted.

Pro: the sorting step does not work on a (typically large) set of
edges, but on several (much smaller) subsets.

Drawback: the selection of each edge requires some non-trivial
steps.

Since sorting requires super-linear computing time, it is intuitively
convenient to (partially) sort n subsets of cardinality m/n rather than
a unique set of cardinality m, especially when the input is given as a
set of vertex stars.

Selection Partial sorting Incremental sorting Kruskal algorithm

SQSK: iterative Quick Sort

Since in SQSK QuickSort must be executed step-by-step only
on-demand, an iterative implementation is needed.

A step of QuickSort is executed by QSstep(v) on Star(v) every time
v is the endpoint of the selected edge.

The effect of QSstep is to define at least one more sorted element in
Star(v).

Stack(v): a stack associated with the star of each vertex v .

The stack contains the intervals in which the star has been
partitioned by QuickSort.

Every time the current interval [p, . . . , q] is divided into a left interval
[p, . . . , k − 1] and a right interval [k + 1, . . . , q] by a pivot element k ,
• the right interval [k + 1, . . . , q] is put into the stack,
• the pivot element k is put in its final position between the two

intervals,
• the left interval [p, . . . , k − 1] becomes the new current range.

Selection Partial sorting Incremental sorting Kruskal algorithm

SQSK: iterative QuickSort

h(v): position of last sorted element in Star(v).

If h(v) + 1 coincides with the leftmost element of the interval on top of
Stack(v), then the new candidate edge is already available: increase
h(v) and stop.

Otherwise:
• extract [p, q] to be sorted from Stack(v);
• select a pivot element k in [p, q];
• temporarily put the pivot in the first position;
• separate all elements smaller than or equal to the pivot (left) from

the others (right);
• put the pivot back between the two sub-intervals;
• store the right interval [k + 1, q] in Stack(v), unless its cardinality

is less than 2;
• repeat on the left interval [p, k − 1], until its cardinality is less

than 2.
After this step at least one more edge has been sorted and h(v) can
be increased by 1, indicating the next candidate in Star(v).

Selection Partial sorting Incremental sorting Kruskal algorithm

// Procedure QSstep(v)
if (Stack(v) 6= nil) ∧ (h(v) + 1 = Top(v).p) then
[p, q]← Pop(v)
while p < q do

k ← Pivot(v , p, q)
Swap(v , k , p); e+ ← q; e− ← p + 1
while e− ≤ e+ do

while Star(v)[e+].cost > Star(v)[p].cost do
e+ ← e+ − 1

while (e− ≤ e+) ∧ (Star(v)[e−].cost ≤ Star(v)[p].cost) do
e− ← e− + 1

if e− < e+ then
Swap(v , e−, e+); e− ← e− + 1; e+ ← e+ − 1

if (e+ 6= p) then
Swap(v , p, e+)

if e+ + 1 < q then
Push(v , e+ + 1, q)

q ← e+ − 1
h(v)← h(v) + 1

Selection Partial sorting Incremental sorting Kruskal algorithm

SQSK: initialization

// Procedure InitSQSK
for i = 1, . . . , n do

Stack(i)← ∅
Push(i, [1, |Star(i)|])
h(i)← 0
QSstep(i)

BuildHeap(Heap)
T ← ∅
count ← 0
InitUnionFind

Selection Partial sorting Incremental sorting Kruskal algorithm

SQSK: iteration

// Procedure SQSK. IN: Star . OUT: T .
InitSQSK
while count < n − 1 do

i ← Heap[1]
j ← Star(i)[1].vertex
w ← Star(i)[1].cost
QSstep(i)
(QSstep(j))
IncreaseKey(i)
(IncreaseKey(j))
if head [i] 6= head [j] then

T ← T ∪ {[i, j]}
count ← count + 1
UpdateUnionFind(i, j)

Parenthesized instructions are needed if there are duplicates (each
edge belongs to two stars).

Selection Partial sorting Incremental sorting Kruskal algorithm

The pivot selection

The selection of the pivot is crucial role for the performance of all
algorithms (like QSstep) that need to partition intervals recursively.

QuickSort.
Purpose: completely sort a set of values.
Pivot selection: try to achieve a balanced partition.

SQSK.
Purpose: quickly compute the next candidate edge when required.
Pivot selection: go for an unbalanced partition.

Most part of each star is likely to be useless: the initial left interval
should better be much smaller than the initial right interval.

Selection Partial sorting Incremental sorting Kruskal algorithm

The pivot selection

Heuristic rule: select r elements at random with uniform probability
distribution in [p, . . . , q] and take the min cost one as the pivot
element.

The larger r , the more unbalanced the resulting partition is likely to
be.

Rule of thumb: set r to min{(q − p + 1)/100, r}.

Set r to a larger value in InitSQSK and to smaller values otherwise.

There is room for heuristics, especially self-adaptive heuristics.

Selection Partial sorting Incremental sorting Kruskal algorithm

Experimental results

QSK: an iteration of Kruskal algorithm is done sometimes during the
execution of QuickSort.
SQSK: an iteration of QuickSort is done sometimes during the
execution of Kruskal algorithm.

QSK is designed to work on a list of edges.
SQSK is designed to work on a set of vertex stars.

Both QSK and SQSK can be faster than Prim algorithm.

Besides size and density, the computing time is also affected by the
clustering degree of the input graph:
Non-clustered: SQSK wins.
Clustered: Prim wins.

	Selection
	Selection

	Partial sorting
	Partial sorting

	Incremental sorting
	Incremental sorting

	Kruskal algorithm
	QSK
	SQSK

