

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

The minimum cost spanning tree problem
Combinatorial optimization

Giovanni Righini

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Definitions - 1

A graph G = (V , E) is a tree if and only if it is connected and acyclic.
• Connectivity: for each cut, at least one edge belongs to the tree.
• Acyclicity: for each cycle, at least one edge does not belong to

the tree.

Given a G = (V , E) a subset F ⊆ E is:
• a forest if it does not contain cycles;
• a connector if (V ,F) is connected;
• a spanning tree if (V ,F) is a tree;
• a maximal forest if there is no forest containing it.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Definitions - 2

A graph G = (V , E) has a spanning tree if and only if it is connected.

Given a connected graph G = (V , E), F is a spanning tree if and only
if:
• F is a maximal forest;
• F is a minimal connector;
• F is a forest with |F| = |V| − 1 edges;
• F is a connector with |F| = |V| − 1 edges.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Definitions - 3

Given a graph G = (V , E) with k connected components, every
maximal forest in it has |V| − k edges.

It forms a spanning tree in each connected component of G.

Every maximal forest is also a maximum cardinality forest.

Analogously, every connector contains a minimum cardinality
connector.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

The Minimum Spanning Tree Problem

Let G = (V , E) be a connected graph.

Let c : E → ℜ a cost function.

We define ∀F ⊆ E :

c(F) =
∑

e∈F

ce

Problem (Minimum Spanning Tree Problem). Find a spanning tree
of minimum cost in G.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Properties of spanning trees (1)

Property 1. A spanning tree of a graph G = (V , E) has |V| − 1 edges.

Owing to Property 1, we can assume ce ≥ 0 for all edges e ∈ E .

If not, we can add a “large enough” constant to all edge costs. This
does not change the ranking of the feasible solutions, because all
feasible solutions contain the same number of edges.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Properties of spanning trees

Property 2. If T is a spanning tree containing edge e, then T\{e} is
a forest made of two connected components, separated by a unique
cut C(T , e).

Property 3. If T is a spanning tree and u and v are two vertices of
the graph, T contains a unique path P(T , u, v) between them.

Definition. F is a good forest iff it belongs to a minimum cost
spanning tree.

Theorem. Given a good forest F and given an edge e 6∈ F , F ∪ {e}
is a good forest iff there is a cut C disjoint from F such that e is an
edge with minimum cost in C.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Proof

Necessity. Let T ∗ be a minimum cost spanning tree containing
F ∪ {e}. Then both F and F ∪ {e} are good forests.
Let C(T ∗, e) be the cut disjoint from T ∗\{e}. Then C(T ∗, e) is also
disjoint from F .
Consider any f ∈ C(T ∗, e): T ′ = T ∗\{e} ∪ {f} is a spanning tree.
Since T ∗ is optimal, then c(T ∗) ≤ c(T ′) and then c(e) ≤ c(f).
Then, e is an edge of minimum cost in C(T ∗, e).

e

f

C

T* F
e

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Sufficiency. Let T ∗ be a min cost spanning tree containing F ; then F
is good. Consider a cut C disjoint from F and e of min cost in C.
If e ∈ T ∗ then F ∪ {e} is good.
If e = [u, v] 6∈ T ∗, then let P(T ∗, u, v) be the path in T ∗ between u
and v : P(T ∗, u, v) contains at least one edge f ∈ C. Then,
T ′ = T ∗\{f} ∪ {e} is a spanning tree.
Since c(e) ≤ c(f), then c(T ′) ≤ c(T ∗) and T ′ is a min cost spanning
tree.
Since F ∪ {e} is contained in T ′, it is good.

f

e

C

T* F

P

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Algorithms

Almost all MSTP algorithms exploit the previous theorem: start with
an empty (good) forest F and extend it iteratively with an edge
satisfying the theorem requirement, i.e. an edge of minimum cost in a
cut C disjoint from F .

Different algorithms are obtained by different choices of C. The two
most common algorithms are:
• Jarnik (1930), Kruskal (1956), Prim (1957), Dijkstra (1959): C is

the cut that separates the connected component including a
predefined vertex;
• Kruskal (1956), Loberman e Weinberger (1957), Prim (1957): C

is the cut that separates the two connected components including
the endpoints of the minimum cost edge e in a sorted list.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Prim algorithm: data-structures

Data-structures of Prim algorithm:
• T : current forest (edge set)
• z: cost of T
• flag[v]: binary flag indicating whether vertex v is spanned by T
• r : special vertex, arbitrarily chosen
• cost[v]: minimum cost among the edges connecting v with

vertices in T
• pred [v]: the other endpoint of an edge of minimum cost between

v and T

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Prim algorithm: initialization

// Procedure Init
T ← ∅
z ← 0
for v = 1, . . . , n do

flag[v]← 0
flag[r]← 1
for v = 1, . . . , n do

cost[v]← c[r , v]
pred [v]← r

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Prim algorithm

// Prim algorithm
Init
for k = 1, . . . , n− 1 do

mincost ←∞
for v = 1, . . . , n do

if (flag[v] = 0) ∧ (cost[v] < mincost) then
v ← v
mincost ← cost[v]

T ← T ∪ {[pred [v], v]}
z ← z + mincost
flag[v]← 1
for v = 1, . . . , n do

if (flag[v] = 0) ∧ (c[v , v] < cost[v]) then
pred [v]← v
cost[v]← c[v , v]

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Prim algorithm

The complexity is O(n2).

With 2-heaps it is possible to obtain O(m log n).

With Fibonacci heaps it is possible to obtain O(m + n logn).

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Kruskal algorithm (1956)

// Kruskal algorithm
T ← ∅; z ← 0
E ← Sort(E)
for v = 1, . . . , n do

List[v]← {v}; head [v]← v ; card [v]← 1
while (|T | < n − 1) do
[u, v]← argmine∈E{ce}; E ← E\{[u, v]}
if (head [u] 6= head [v]) then

T ← T ∪ {[u, v]}; z ← z + c[u, v]
if (card [v] > card [u]) then

Swap(u, v)
L[u]← L[u] ∪ L[v]; card [u]← card [u] + card [v]
for i ∈ L[v] do

head [i] ← head [u]

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Kruskal algorithm: complexity

Sorting the edges requires O(m log n).

The edges can be partitioned into n subsets of cardinality
ki ∀i = 1, . . . , n by arbitrary selecting one of their endpoints.

The following properties hold:
• ki ≤ n ∀i = 1, . . . , n
•
∑n

i=1 ki = m

Each subset can be sorted in O(ki log ki).

Hence the overall complexity is O(
∑n

i=1 ki log ki).

For the first property above,
∑n

i=1 ki log ki ≤
∑n

i=1 ki log n.

For the second property above,
∑n

i=1 ki log n = m log n.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Kruskal algorithm: complexity

Once n sorted lists have been produced, they can be merged in a
unique sorted list in O(m log n).

In O(n) a binary heap containing the (partially sorted) heads of the n
lists is built.

For m times the root is extracted from the heap and the heap is
rearranged in O(log n): this takes O(m log n).

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Kruskal algorithm: complexity

After sorting, the complexity is O(m + n log n) and it can be obtained
with linked lists.

A list L is associated with each component of the current forest.
For each vertex v ∈ V , head(v) is the head of the list Lv containing v .
Initially head(v):=v and Lv :={v} for all vertices.

At each iteration:
• test whether the next edge e = [u, v] in the list would close a

cycle or not;
• if not, update the data-structure.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Kruskal algorithm: complexity

The test is: head(u) = head(v)?
It is executed in O(1) at most m times.
Hence it requires O(m) overall.

When extending the current forest with e = [u, v]:
• detectable the shortest list among Lu and Lv (in O(1)) with a

cardinality counter associated with each list;
• append it to the longest one (in O(1));
• update the cardinality of the longest list (in O(1));
• update the head for all vertices in the shortest list.

Property. No vertex can belong to the shortest list more than log n
times, because the size of the shortest list at least doubles every time
its head is updated.

Therefore the head update operation requires at most O(log n) for
each vertex, i.e. O(n logn) overall.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Boruvka algorithm (1926)

It requires that all edge costs are different from each other and it
allows for a parallel implementation.

// Boruvka algorithm
F ← ∅
while (|F| < n − 1) do
F ′ ← ∅
for K ∈ Components(F) do
F ′ ← F ′ ∪ {argmine∈δ(K){ce}}
F ← F ∪F ′

Let e1, e2, . . . , ek the edges inserted into F ′ at a generic iteration with
ce1 < ce2 < . . . < cek .
For each i = 1, . . . , k , ei is the minimum cost edge leaving
F ∪ {e1, e2, . . . , ei−1}, because none of {e1, e2, . . . , ei−1} leaves the
i th component.
Then F is a good forest as if the edges were inserted sequentially.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual greedy algorithm

It deletes edges from a connector instead of inserting them into a
forest.

Definition. A connector is good if it contains at least one minimum
cost spanning tree.

Theorem. Given a good connector K and an edge e ∈ K , K\{e} is a
good connector iff K contains a cycle C such that e is the maximum
cost edge in C.

Kruskal (1956): sort the edges and starting from the connector
K = E , iteratively delete the maximum cost edge which is not a bridge
(i.e. without disconnecting the graph).

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

More algorithms

Dijkstra algorithm (1960):
Arbitrarily sort the edges and iteratively insert them into a forest
(initially empty).
When an insertion forms a cycle C, delete the maximum cost edge in
C.

Kalaba algorithm (1960):
The same, but starting from an arbitrary spanning tree.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

A mathematical programming model

min z =
∑

e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ⊂ V (1)

xe ∈ {0, 1} ∀e ∈ E

A cut δ(S) is the subset of edges with one endpoint in S.

Constraints 1 impose connectivity. Acyclicity comes for free from cost
minimization.

Integrality conditions are not redundant.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Another mathematical programming model

min z =
∑

e∈E

cexe

s.t.
∑

e∈E

xe = n − 1 (2)

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V (3)

xe ∈ {0, 1} ∀e ∈ E

E(S) is the edge subset of the subgraph induced by S.

Constraints (3) impose acyclicity instead of connectivity. Hence we
also need constraint (2) to impose connectivity.

Integrality conditions are redundant.
The maximum value xe can take is 1, because of the acyclicity
constraint with |S| = 2;

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

The dual model

min z =
∑

e∈E

cexe

s.t.
∑

e∈E

xe = n − 1

−
∑

e∈E(S)

xe ≥ −(|S| − 1) ∀S ⊂ V

xe ≥ 0 ∀e ∈ E

This linear program has a dual:

max w =−
∑

S⊂V

(|S| − 1)yS + (n − 1)yV

s.t. −
∑

S⊂V :e∈E(S)

yS + yV ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ⊂ V

yV free

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Complementary slackness conditions

Primal C.S.C.:

xe(ce +
∑

S⊂V :e∈E(S)

yS − yV) = 0 ∀e ∈ E .

Dual C.S.C.:
yV (

∑

e∈E

xe − (n − 1)) = 0.

yS(|S| − 1−
∑

e∈E(S)

xe) = 0 ∀S ⊂ V .

The initial primal solution xe = 0 ∀e ∈ E is primal infeasible (and
super-optimal): the cardinality constraint is violated.
The initial dual solution yS = yV = 0 ∀S ⊂ V is dual feasible (and
sub-optimal).

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Primal-dual algorithm

Primal-dual interpretation of Kruskal algorithm:
• Dual iteration.

Acyclicity constraints are always kept satisfied.
The only violated primal constraint is

∑
e∈E xe = n − 1.

The corresponding dual variable yV is increased (dual ascent),
until a dual constraint becomes active; it corresponds to a primal
variable xe.
• Primal iteration.

The primal variable xe enters the basis and the infeasibility of the
cardinality constraint decreases.
Some acyclicity constraints become active: hence some dual
variables can enter the dual basis.
In turn, this allows to increase yV further.

The CSC yV (
∑

e∈E xe − (n − 1)) = 0 corresponds to a violated
equality constraint in the primal problem.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Kruskal algorithm: an example

1 2 3

4 5 6

29 13

25 31
17

22 20

35 10

k = 0.
x = 0.
z = 0.

2 3 5 6 1 4

yV = 0.
w = 0.
Dual C.S.C.:
yV (k − (n − 1)) = 0(0− 5) = 0.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: dual iteration 1

1 2 3

4 5 6

29(19) 13(3)

25(15)
31(21)

17(7)
22(12)

20(10)

35(25) 10(0)

k = 0.
x = 0.
z = 0.

2 3 5 6 1 4

yV = 10.
w = 10× 5 = 50.
Dual C.S.C.:
yV (k − (n−1)) = 10(0−5) = −50.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: primal iteration 1

1 2 3

4 5 6

29(19) 13(3)

25(15)
31(21)

17(7)
22(12)

20(10)

35(25) 10(0)

k = 1.
x56 = 1.
z = 10.

2 3 5 6 1 4

5,6y56 = 0

10 10

yV = 10.
w = −0× 1 + 10× 5 = 50.
Dual C.S.C.:
yV (k − (n−1)) = 10(1−5) = −40.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: dual iteration 2

1 2 3

4 5 6

29(16) 13(0)

25(12)
31(18)

17(4)
22(9)

20(7)

35(22) 10(0)

k = 1.
x56 = 1.
z = 10.

2 3 5 6 1 4

5,6y56 = 3

10 10

yV = 13.
w = −3× 1 + 13× 5 = 62.
Dual C.S.C.:
yV (k − (n−1)) = 13(1−5) = −52.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: primal iteration 2

1 2 3

4 5 6

29(16) 13(0)

25(12)
31(18)

17(4)
22(9)

20(7)

35(22) 10(0)

k = 2.
x56 = x23 = 1.
z = 23.

2 3 5 6 1 4

2,3y23 = 0 5,6y56 = 3

13 13 10 10

yV = 13.
w = −3× 1− 0× 1+

+13× 5 = 62.
Dual C.S.C.:
yV (k − (n−1)) = 13(2−5) = −39.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: dual iteration 3

1 2 3

4 5 6

29(12) 13(0)

25(8)
31(14)

17(0)
22(5)

20(3)

35(18) 10(0)

k = 2.
x56 = x23 = 1.
z = 23.

2 3 5 6 1 4

2,3y23 = 4 5,6y56 = 7

13 13 10 10

yV = 17.
w = −7× 1− 4× 1+

+17× 5 = 74.
Dual C.S.C.:
yV (k − (n−1)) = 17(2−5) = −51.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An observation

1 2 3

4 5 6

29(12) 13(0)

25(8)
31(14)

17(0)
22(5)

20(3)

35(18) 10(0)

k = 3.
x56 = x23 = x25 = 1.
z = 40.

Several primal constraints are now
active: several dual variables can
enter the basis:

{2, 5} : x25 = 1

{2, 3, 5} : x23 + x25 = 2

{2, 5, 6} : x25 + x56 = 2

{2, 3, 5, 6} : x23 + x25 + x56 = 3

Which dual variable should we
choose to enter the basis?

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An observation

Active dual constraints:

[2, 5] : y25 + y235 + y256 + y2356 + c25 = yV

[2, 3] : y23 + y235 + y2356 + c23 = yV

[5, 6] : y56 + y256 + y2356 + c56 = yV

For each unit increase of yV (providing value 5 in the dual objective),
we can keep the dual constraints active with a unit increase of:
• y56 and y23 and y25: the cost is 1+1+1=3;
• y56 and y235: the cost is 1+2=3;
• y23 and y256: the cost is 1+2=3;
• y2356: the cost is 3.

From the viewpoint of the dual active constraints and the dual
objective function, all these possibilities are equivalent.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An observation

But from the viewpoint of non-active dual constraints, they are not: if
we choose y2356 to enter the basis, no dual constraint corresponding
to any other edge in {2, 3, 5, 6} will become active.

Edges reduced costs are:

ce = ce +
∑

S⊂V :e∈E(S)

yS − yV .

Reduced costs of all edges “covered” by basic dual variables do not
decrease anymore.

The dual variable y2356 dominates the others; its corresponding primal
constraint

∑
e∈E({2,3,5,6}) xe ≤ 3 dominates those corresponding to

the others: i.e., if we do not select more edges in S = {2, 3, 5, 6}, we
cannot select more edges in any subset of S.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: primal iteration 3

1 2 3

4 5 6

29(12) 13(0)

25(8)
31(14)

17(0)
22(5)

20(3)

35(18) 10(0)

k = 3.
x56 = x23 = x25 = 1.
z = 40.

2 3 5 6 1 4

2,3y23 = 4 5,6y56 = 7

2,3,5,6y2356 = 0

13 13 10 10

17
17

yV = 17.
w = −7× 1− 4× 1+

+17× 5 = 74.
Dual C.S.C.:
yV (k − (n−1)) = 17(3−5) = −34.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: dual iteration 4

1 2 3

4 5 6

29(4) 13(0)

25(0)
31(6)

17(0)
22(5)

20(3)

35(10) 10(0)

k = 3.
x56 = x23 = x25 = 1.
z = 40.

2 3 5 6 1 4

2,3y23 = 4 5,6y56 = 7

2,3,5,6y2356 = 8

13 13 10 10

17
17

yV = 25.
w = −7× 1− 4× 1− 8× 3+

+25× 5 = 90.
Dual C.S.C.:
yV (k − (n−1)) = 25(3−5) = −50.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: primal iteration 4

1 2 3

4 5 6

29(4) 13(0)

25(0)
31(6)

17(0)
22(5)

20(3)

35(10) 10(0)

k = 4.
x56 = x23 = x25 = x14 = 1.
z = 65.

2 3 5 6 1 4

2,3y23 = 4 5,6y56 = 7

2,3,5,6y2356 = 8

1,4y14 = 0

13 13 10 10

17
17

25 25

yV = 25.
w = −7× 1− 4× 1− 8× 3+
−0× 1 + 25× 5 = 90.

Dual C.S.C.:
yV (k − (n−1)) = 25(4−5) = −25.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: dual iteration 5

1 2 3

4 5 6

29(0) 13(0)

25(0)
31(2)

17(0)
22(5)

20(3)

35(6) 10(0)

k = 4.
x56 = x23 = x25 = x14 = 1.
z = 65.

2 3 5 6 1 4

2,3y23 = 4 5,6y56 = 7

2,3,5,6y2356 = 12

1,4y14 = 4

13 13 10 10

17
17

25 25

yV = 29.
w = −7× 1− 4× 1− 12× 3+
−4× 1 + 29× 5 = 94.

Dual C.S.C.:
yV (k − (n−1)) = 29(4−5) = −29.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

An example: primal iteration 5

1 2 3

4 5 6

29(0) 13(0)

25(0)
31(2)

17(0)
22(5)

20(3)

35(6) 10(0)

k = 5 (feasible!).
x23 = x56 = x25 = x14 = x12 = 1.
z = 94.

2 3 5 6 1 4

2,3y23 = 4 5,6y56 = 7

2,3,5,6y2356 = 12

1,4y14 = 4

1,2,3,4,5,6−yV = −29

13 13 10 10

17
17

25 25

29

29

yV = 29.
w = −7× 1− 4× 1− 12× 3+
−4× 1 + 29× 5 = 94.

Dual C.S.C.:
yV (k − (n − 1)) = 29(5− 5) = 0.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual optimal solution

Dual feasibility requires∑
S⊂V :e∈E(S) yS + ce ≥ yV ∀e ∈ E .

For each node subset S, the value
that the corresponding dual
variable yS takes is equal to the
difference between the minimum
edge cost in the cut δ(S) and the
maximum edge cost in the
minimum spanning tree of the
induced subgraph E(S).

2 3 5 6 1 4

2,3y23 = 4 5,6y56 = 7

2,3,5,6y2356 = 12

1,4y14 = 4

1,2,3,4,5,6−yV = −29

13 13 10 10

17
17

25 25

29

29

yV = 29.
w = −7× 1− 4× 1− 12× 3+
−4× 1 + 29× 5 = 94.

Dual C.S.C.:
yV (k − (n − 1)) = 29(5− 5) = 0.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Primal optimal solution

1 2 3

4 5 6

29(0) 13(0)

25(0)
31(2)

17(0)
22(5)

20(3)

35(6) 10(0)

k = 5.
x23 = x56 = x25 = x14 = x12 = 1.
z = 94.

The reduced cost of each edge is
the difference between its cost and
the largest cost along the (unique)
path between its endpoints in the
spanning tree.

Edges with positive reduced cost
do not belong to the minimum cost
spanning tree, because there is a
cycle in which they have the
largest cost.

Owing to the dual ascent
procedure (monotonic increase of
yV), edges are chosen in
non-decreasing order according to
their costs.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

The algorithm and the data-structures

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 1 2
3 3 1 3
4 4 1 4
5 5 1 5
6 6 1 6

Edge Cost x
5,6 10 0
2,3 13 0
2,5 17 0
3,6 20 0
2,6 22 0
1,4 25 0
1,2 29 0
1,5 31 0
4,5 35 0

z=0 k=0

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual iteration 1

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 1 2
3 3 1 3
4 4 1 4
5 5 1 5
6 6 1 6

Edge Cost x
5,6 10
2,3 13
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=0 k=0

Edge [5, 6] accepted.
List 6 is appended to list 5.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Primal iteration 1

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 1 2
3 3 1 3
4 4 1 4
5 5 2 5 6
6 5 0

Edge Cost x
5,6 10 1
2,3 13
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=10 k=1

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual iteration 2

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 1 2
3 3 1 3
4 4 1 4
5 5 2 5 6
6 5 0

Edge Cost x
5,6 10 1
2,3 13
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=10 k=1

Edge [2, 3] is accepted.
List 3 is appended to list 2.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Primal iteration 2

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 2 2 3
3 2 0
4 4 1 4
5 5 2 5 6
6 5 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=23 k=2

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual iteration 3

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 2 2 3
3 2 0
4 4 1 4
5 5 2 5 6
6 5 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=23 k=2

Edge [2, 5] is accepted.
List 5 is appended to list 2.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Primal iteration 3

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 4 2 3 5 6
3 2 0
4 4 1 4
5 2 0
6 2 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=40 k=3

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual iteration 4 (part 1)

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 4 2 3 5 6
3 2 0
4 4 1 4
5 2 0
6 2 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=40 k=3

Edge [3, 6] is rejected.
Both its endpoints belong to list 2.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual iteration 4 (part 2)

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 4 2 3 5 6
3 2 0
4 4 1 4
5 2 0
6 2 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=40 k=3

Edge [2, 6] is rejected.
Both its endpoints belong to list 2.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual iteration 4 (part 3)

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 1 1
2 2 4 2 3 5 6
3 2 0
4 4 1 4
5 2 0
6 2 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22 0
1,4 25
1,2 29
1,5 31
4,5 35

z=40 k=3

Edge [1, 4] is accepted.
List 4 is appended to list 1.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Primal iteration 4

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 2 1 4
2 2 4 2 3 5 6
3 2 0
4 1 0
5 2 0
6 2 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22 0
1,4 25 1
1,2 29
1,5 31
4,5 35

z=65 k=4

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Dual iteration 5

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 1 2 1 4
2 2 4 2 3 5 6
3 2 0
4 1 0
5 2 0
6 2 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22 0
1,4 25 1
1,2 29
1,5 31
4,5 35

z=65 k=4

Edge [1, 2] is accepted.
List 1 is appended to list 2.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

Primal iteration 5

1 2 3

4 5 6

29 13

25
31

17 22 20

35 10

Vertex Head Card. List
1 2 0
2 2 6 2 3 5 6 1 4
3 2 0
4 2 0
5 2 0
6 2 0

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22 0
1,4 25 1
1,2 29 1
1,5 31
4,5 35

z∗=94 k=5

The algorithm terminates: k = 5.
All nodes belong to the same list.

	The problem
	The problem

	The algorithms
	The algorithms

	Primal-dual algorithms
	Mathematical programming models
	Example: Kruskal algorithm

	Algorithm and data-structures
	Algorithm and data-structures

