
Breadth-first search Depth-first search Connected components

Graph search algorithms
Combinatorial optimization

Giovanni Righini
Università degli Studi di Milano

Breadth-first search Depth-first search Connected components

Breadth-first search

Given:

• a graph G = (V , E)

• a vertex s ∈ V ,

we indicate with Vk the set of all vertices that

• are reachable from s along a path made of k edges;

• and not reachable from s along any path with less than k edges.

Recursive definition:

• V0 = {s}

• Vk+1 = {v ∈ V\
⋃k

i=0 Vi : ∃u ∈ Vk ∧ ∃[u, v] ∈ E}.

Analogous definitions hold for digraphs.

Breadth-first search Depth-first search Connected components

Breadth-first search

To compute Vk+1 it is enough to scan the set of all edges (arcs)
incident to (leaving) the vertices (nodes) in Vk e to insert these
vertices (nodes) into Vk+1, if they have not been reached before. A
binary flag associated with each vertex (node) is enough to check
this.

The complexity of this algorithm is O(m), because each edge (arc) is
scanned at most twice (once).

This BFS algorithm determines the shortest path from s to any other
vertex (node) of the (di-)graph in the special case of unit weight
edges (arcs).

Breadth-first search Depth-first search Connected components

Pseudo-code

Breadth-First Search (Berge 1958, Moore 1959):

begin
for v :=1 to n do flag[v]:=0; flag[s]:=1;
k := 0; Vk := {s};
while Vk 6= ∅ do
Vk+1 := ∅;
for u ∈ Vk do

for [u, v] ∈ δ(u) do
if (flag[v]=0) then
Vk+1 := Vk+1 ∪ {v};
flag[v] := 1;

k := k + 1;
end.

The vertices (nodes) not reached when the algorithm terminates do
not belong to the same connected component of s.

Breadth-first search Depth-first search Connected components

Connected components

Corollary (Shirey, 1969). The connected components of G = (V , E)
can be computed in linear time.

Breadth-first search Depth-first search Connected components

Depth-First Search (Tarry 1895)

Given:

• a digraph D = (N ,A)

• a node s ∈ N ,

we define Scan(s) the following recursive procedure:

for (s, v) ∈ δ+(s) do
for (u, v) ∈ δ−(v) : u 6= s do

Delete (u, v);
Scan(v);

If all nodes in N are reachable from s, the arcs not deleted by
Scan(s) form an arborescence rooted in s and spanning them.

Breadth-first search Depth-first search Connected components

Depth-First Search

To implement the Delete operation we can associate a binary flag
“existing (1)/deleted (0)” with each arc.

Pseudo-code of DFS(root):

for (i, j) ∈ A do
Flag[(i, j)] ← 1

Scan(root)

Pseudo-code of Scan(i):

for (i, j) ∈ δ+(i) do
if Flag(i, j) = 1 then

for (k , j) ∈ δ−(j) do
if k 6= i then

Flag[(i, j)] ← 0
Scan(j)

Breadth-first search Depth-first search Connected components

Depth-First Search

A slightly different implementation of DFS requires a binary flag for
each node, meaning “visited (1)/not visited (0)”.

Pseudo-code of DFS(root):

for i = 1, . . . , n do
Flag[i]← 0

Scan(root)

Pseudo-code of Scan(i):

Flag[i]← 1
for (i, j) ∈ δ+(i) do

if Flag[j] = 0 then
Scan(j)

Breadth-first search Depth-first search Connected components

Complexity

If the graph is represented as an adjacency matrix, then DFS takes
O(n2), because all cells of the matrix need to be tested or modified,
including those that do not correspond to existing arcs.

If the graph is represented with out-stars and in-stars, then its
complexity can be reduced to O(m).

To achieve this with the first version, it is necessary that
• either a single record is used to represent each arc and it is

linked in bi-dimensional linked list (rows = in-stars; columns =
out-stars)

• or there is a pair of pointers between the two records
corresponding to the same arc (in the in-star of the head and in
the out-star of the tail).

Each arc is considered at most twice, as a member of an in-star and
of an out-star and the operations take O(1) for each arc.

Breadth-first search Depth-first search Connected components

(Pre-)topological order

The nodes of a digraph are sorted in topological order if
i < j ∀(vi , vj) ∈ A.

Hence a subset N ′ of nodes can be sorted in topological order only if
the induced subgraph (N ′,A(N ′)) is acyclic (i.e. it does not contain
circuits).

The nodes of a digraph are sorted in pre-topological order if the
following condition holds:

vi ≺ vj ⇒ i < j

dove vi ≺ vj means that j is reachable from i but i is not reachable
from j.

If the digraph is acyclic, then any pre-topological order is also
topological.

Breadth-first search Depth-first search Connected components

Pre-topological order

Theorem. Given a di-graph D = (N ,A) and a node s ∈ N , the nodes
in N reachable from s can be sorted in pre-topological order in
O(m′), where m′ is the number of arcs reachable from s.

Proof. In the execution of Scan(s) all nodes reachable from s are
scanned. The order in which their Scan() procedure terminates is the
reverse of their pre-topological order. For each pair of nodes u and v
reachable from s, if there is a path from u to v but not from v to u,
then Scan(v) terminates before Scan(u).

Corollary 1. The nodes of a digraph D(N ,A) can be sorted in
pre-topological order in linear time.

Proof. Insert a dummy node s into the digraph together with arcs
(s, v) ∀v ∈ N and then apply the previous theorem.

Corollary 2. The nodes of an acyclic digraph D(N ,A) can be sorted
in topological order in linear time.

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan
End
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A
End
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B
End
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F
End
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H
End
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G
End
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E
End
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E
End E
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E
End E G
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E
End E G H
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E
End E G H F
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M
End E G H F
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L
End E G H F
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L
End E G H F L
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L
End E G H F L M
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L
End E G H F L M B
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L
End E G H F L M B A
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L C
End E G H F L M B A
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L C D
End E G H F L M B A
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L C D
End E G H F L M B A D
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

A D C

G

E

L M

H

F

B

Scan A B F H G E M L C D
End E G H F L M B A D C
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Example

3 2 1

9

10

6 5

8

7

4

Scan A B F H G E M L C D
End E G H F L M B A D C
Order 10 9 8 7 6 5 4 3 2 1

Breadth-first search Depth-first search Connected components

Strongly connected components

Theorem (Kosaraju e Sharir, 1981). Given a digraph D = (N ,A) its
strongly connected components (s.c.c.) can be computed in linear
time.

Proof. Sort the nodes in pre-topological order: v1, v2, . . . , vn. Let N1

be the set of nodes from which v1 is reachable. Then N1 is the s.c.c.
v1 belongs to: each vj ∈ N1 is reachable from v1 for the
pre-topological order properties.
For the previous theorem N1 can be computed in O(|A1|) time (with
DFS on the reversed arcs) where A1 is the set of arcs with their head
in N1.
Deleting all nodes in N1 and the arcs in A1 another digraph is
obtained whose nodes are sorted in pre-topological order in the same
sequence as before.
Therefore, by repeatedly applying the procedure, all s.c.c. are
obtained.

Breadth-first search Depth-first search Connected components

Example

In our example node 1 (originally node C) is the first in the
pre-topological order. Running DFS from 1 with reversed arcs, we
see that there are no predecessors.

3 2 1

9

10

6 5

8

7

4

Scan 1

End 1

Hence V1 = {1}.

Breadth-first search Depth-first search Connected components

Example

Now we consider node 2 and the same happens.

3 2

9

10

6 5

8

7

4

Scan 2

End 2

Hence V2 = {2}.

Breadth-first search Depth-first search Connected components

Example

Now we consider node 3 (originally node A). Running DFS from 3
with reversed arcs, we visit some nodes.

3

9

10

6 5

8

7

4

Scan 3 7 4 6 5

End 5 6 4 7 3

Hence V3 = {3, 4, 5, 6, 7}.

Breadth-first search Depth-first search Connected components

Example

Running DFS from node 8 with reversed arcs, we find no
predecessors.

9

10

8

Scan 8

End 8

Hence V4 = {8}.

Breadth-first search Depth-first search Connected components

Example

Finally we consider node 9 and we run DFS from 9 with reversed
arcs:

9

10

Scan 9 10

End 10 9

Hence V5 = {9, 10} and the algorithm is over. Five s.c.c. have been
detected.

	Breadth-first search
	Breadth-first search

	Depth-first search
	Depth-first search

	Connected components
	Connected components

