Graph search algorithms

Combinatorial optimization

Giovanni Righini

Università degli Studi di Milano

Breadth-first search

Given:

- a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$
- a vertex $s \in \mathcal{V}$,
we indicate with \mathcal{V}_{k} the set of all vertices that
- are reachable from s along a path made of k edges;
- and not reachable from s along any path with less than k edges.

Recursive definition:

- $\mathcal{V}_{0}=\{s\}$
- $\mathcal{V}_{k+1}=\left\{v \in \mathcal{V} \backslash \bigcup_{i=0}^{k} \mathcal{V}_{i}: \exists u \in \mathcal{V}_{k} \wedge \exists[u, v] \in \mathcal{E}\right\}$.

Analogous definitions hold for digraphs.

Breadth-first search

To compute \mathcal{V}_{k+1} it is enough to scan the set of all edges (arcs) incident to (leaving) the vertices (nodes) in \mathcal{V}_{k} e to insert these vertices (nodes) into \mathcal{V}_{k+1}, if they have not been reached before. A binary flag associated with each vertex (node) is enough to check this.

The complexity of this algorithm is $O(m)$, because each edge (arc) is scanned at most twice (once).

This BFS algorithm determines the shortest path from s to any other vertex (node) of the (di-)graph in the special case of unit weight edges (arcs).

Pseudo-code

Breadth-First Search (Berge 1958, Moore 1959):
begin
for $v:=1$ to n do flag $[v]:=0$; flag $[s]:=1$;
$k:=0 ; \mathcal{V}_{k}:=\{s\} ;$
while $\mathcal{V}_{k} \neq \emptyset$ do
$\mathcal{V}_{k+1}:=\emptyset$;
for $u \in \mathcal{V}_{k}$ do
for $[u, v] \in \delta(u)$ do
if (flag[$v]=0$) then
$\mathcal{V}_{k+1}:=\mathcal{V}_{k+1} \cup\{v\} ;$
flag[$v]:=1$;
$k:=k+1$;
end.
The vertices (nodes) not reached when the algorithm terminates do not belong to the same connected component of s.

Connected components

Corollary (Shirey, 1969). The connected components of $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ can be computed in linear time.

Depth-First Search (Tarry 1895)

Given:

- a digraph $\mathcal{D}=(\mathcal{N}, \mathcal{A})$
- a node $s \in \mathcal{N}$,
we define $\operatorname{Scan}(s)$ the following recursive procedure:
for $(s, v) \in \delta^{+}(s)$ do
for $(u, v) \in \delta^{-}(v): u \neq s$ do
Delete (u, v);
Scan(v);
If all nodes in \mathcal{N} are reachable from s, the arcs not deleted by
$\operatorname{Scan}(s)$ form an arborescence rooted in s and spanning them.

Depth-First Search

To implement the Delete operation we can associate a binary flag "existing (1)/deleted (0)" with each arc.

Pseudo-code of DFS(root):
for $(i, j) \in \mathcal{A}$ do
Flag $[(i, j)] \leftarrow 1$
Scan(root)

Pseudo-code of Scan(i):
for $(i, j) \in \delta^{+}(i)$ do
if $\operatorname{Flag}(i, j)=1$ then for $(k, j) \in \delta^{-}(j)$ do if $k \neq i$ then Flag $[(i, j)] \leftarrow 0$
Scan(j)

Depth-First Search

A slightly different implementation of DFS requires a binary flag for each node, meaning "visited (1)/not visited (0)".

Pseudo-code of DFS(root):

for $i=1, \ldots, n$ do
Flag $[i] \leftarrow 0$
Scan root)

Pseudo-code of Scan(i):

```
    Flag \([i] \leftarrow 1\)
    for \((i, j) \in \delta^{+}(i)\) do
    if Flag[j] \(=0\) then
    Scan(j)
```


Complexity

If the graph is represented as an adjacency matrix, then DFS takes $O\left(n^{2}\right)$, because all cells of the matrix need to be tested or modified, including those that do not correspond to existing arcs.

If the graph is represented with out-stars and in-stars, then its complexity can be reduced to $O(m)$.

To achieve this with the first version, it is necessary that

- either a single record is used to represent each arc and it is linked in bi-dimensional linked list (rows = in-stars; columns = out-stars)
- or there is a pair of pointers between the two records corresponding to the same arc (in the in-star of the head and in the out-star of the tail).

Each arc is considered at most twice, as a member of an in-star and of an out-star and the operations take $O(1)$ for each arc.

(Pre-)topological order

The nodes of a digraph are sorted in topological order if $i<j \forall\left(v_{i}, v_{j}\right) \in \mathcal{A}$.

Hence a subset \mathcal{N}^{\prime} of nodes can be sorted in topological order only if the induced subgraph $\left(\mathcal{N}^{\prime}, \mathcal{A}\left(\mathcal{N}^{\prime}\right)\right)$ is acyclic (i.e. it does not contain circuits).

The nodes of a digraph are sorted in pre-topological order if the following condition holds:

$$
v_{i} \prec v_{j} \Rightarrow i<j
$$

dove $v_{i} \prec v_{j}$ means that j is reachable from i but i is not reachable from j.

If the digraph is acyclic, then any pre-topological order is also topological.

Pre-topological order

Theorem. Given a di-graph $\mathcal{D}=(\mathcal{N}, \mathcal{A})$ and a node $s \in \mathcal{N}$, the nodes in \mathcal{N} reachable from s can be sorted in pre-topological order in $O\left(m^{\prime}\right)$, where m^{\prime} is the number of arcs reachable from s.

Proof. In the execution of Scan(s) all nodes reachable from s are scanned. The order in which their Scan() procedure terminates is the reverse of their pre-topological order. For each pair of nodes u and v reachable from s, if there is a path from u to v but not from v to u, then $\operatorname{Scan}(v)$ terminates before $\operatorname{Scan}(u)$.

Corollary 1. The nodes of a digraph $\mathcal{D}(\mathcal{N}, \mathcal{A})$ can be sorted in pre-topological order in linear time.

Proof. Insert a dummy node s into the digraph together with arcs $(s, v) \forall v \in \mathcal{N}$ and then apply the previous theorem.

Corollary 2. The nodes of an acyclic digraph $\mathcal{D}(\mathcal{N}, \mathcal{A})$ can be sorted in topological order in linear time.

Example

Example

Scan A
 End

$\begin{array}{llllllllll}\text { Order } 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

Example


```
Scan A B
End
\(\begin{array}{llllllllll}\text { Order } 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\)
```


Example

Example

Scan A End Order 10	B	F	H						

Example

Scan A	B	F	H	G					
End Order 10	9	8	7	6	5	4	3	2	1

Example

Scan A	B	F	H	G	E				
End Order 10	9	8	7	6	5	4	3	2	1

Example

Scan	A	B	F	H	G	E	M	L		
End	E	G	H	F	L	M	B	A		
Order 10	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	

Example

Example

Example

Example

Scan	A	B	F	H	G	E	M	L	C	D
End	E	G	H	F	L	M	B	A	D	C
Order	10	$\mathbf{9}$	$\mathbf{8}$	7	6	5	$\mathbf{4}$	3	2	$\mathbf{1}$

Example

Strongly connected components

Theorem (Kosaraju e Sharir, 1981). Given a digraph $\mathcal{D}=(\mathcal{N}, \mathcal{A})$ its strongly connected components (s.c.c.) can be computed in linear time.

Proof. Sort the nodes in pre-topological order: $v_{1}, v_{2}, \ldots, v_{n}$. Let \mathcal{N}_{1} be the set of nodes from which v_{1} is reachable. Then \mathcal{N}_{1} is the s.c.c. v_{1} belongs to: each $v_{j} \in \mathcal{N}_{1}$ is reachable from v_{1} for the pre-topological order properties.
For the previous theorem \mathcal{N}_{1} can be computed in $O\left(\left|\mathcal{A}_{1}\right|\right)$ time (with DFS on the reversed arcs) where \mathcal{A}_{1} is the set of arcs with their head in \mathcal{N}_{1}.
Deleting all nodes in \mathcal{N}_{1} and the arcs in \mathcal{A}_{1} another digraph is obtained whose nodes are sorted in pre-topological order in the same sequence as before.
Therefore, by repeatedly applying the procedure, all s.c.c. are obtained.

Example

In our example node 1 (originally node C) is the first in the pre-topological order. Running DFS from 1 with reversed arcs, we see that there are no predecessors.

$$
\begin{array}{ll}
\hline \text { Scan } & 1 \\
\text { End } & 1
\end{array}
$$

Hence $\mathcal{V}_{1}=\{1\}$.

Example

Now we consider node 2 and the same happens.


```
Scan 2
End 2
```

Hence $\mathcal{V}_{2}=\{2\}$.

Example

Now we consider node 3 (originally node A). Running DFS from 3 with reversed arcs, we visit some nodes.

$$
\begin{array}{llllll}
\text { Scan } & 3 & 7 & 4 & 6 & 5 \\
\text { End } & 5 & 6 & 4 & 7 & 3
\end{array}
$$

Hence $\mathcal{V}_{3}=\{3,4,5,6,7\}$.

Example

Running DFS from node 8 with reversed arcs, we find no predecessors.


```
Scan 8
End 8
```

Hence $\mathcal{V}_{4}=\{8\}$.

Example

Finally we consider node 9 and we run DFS from 9 with reversed arcs:

Hence $\mathcal{V}_{5}=\{9,10\}$ and the algorithm is over. Five s.c.c. have been detected.

