
Generating random graphs
Combinatorial optimization

Giovanni Righini
Università degli Studi di Milano



Random graphs: requirements

Given a vertex set N, generate a random graph/digraph of given
density.

The density is defined as

ρ =
m

mmax

where mmax = n(n − 1)/2 for undirected graphs and mmax = n(n − 1)
for directed graphs.

In a random graph/digraph it is required that
• all edges/arcs have the same probability of being selected;
• such probabilities are independent;
• multiple copies of edges/arcs are not allowed;
• self-loops are not allowed.



Assumptions

Assumption 1. A generator of pseudo-random numbers is available:
we can draw integer numbers at random within any specified interval
with uniform probability distribution.

Assumption 2. The computational complexity of this operation is
O(1), i.e. it is an atomic operation whose computing time does not
depend on the interval width.

Remark. This is not a combinatorial optimization problem. It is
combinatorial, but it does not imply to optimize any objective function.



Observation

The integer number p of edges/arcs to be selected is given by
p = ρm, possibly rounded.

If ρ > 1/2, i.e. p > m/2, it is faster to extract m − p items from the
ground set, instead of p, i.e. to select the edges/arcs of the
complement graph.

Hence, without loss of generality, we assume

p ≤ m/2

from now on.



Algorithm 1: general description

Since
• we want to select p elements from a set of m,
• we have a very efficient sub-routine to select an element at

random,

a possible algorithm is:
• For p times, generate a random number in [1, . . . ,m].



Algorithm 1: pseudo-code

Algorithm 1 Select p elements independently
for k = 1, . . . , p do

S[k ]← Random(1,m)
return S

• k is an iteration counter;
• Random(a, b): sub-routine that generates a random number

between two integers a and b with u.p.d.;
• S: vector where the p selected elements are recorded.



Algorithm 1: correctness and complexity

Computational complexity: O(p) in both time and space (best
possible!).

Correctness: no guarantee that p distinct elements be selected.

Repetitions may occur (and they are likely to occur, especially for
relatively large values of p).

Trade-off between the computational complexity (excellent) and the
guarantee that the algorithm provides (weak).



Algorithm 2: general description

Avoid repetitions by explicitly selecting a subset of distinct elements.

For instance: select a set of p consecutive elements from the ground
set {1, . . . ,m}, starting from a randomly selected initial element.



Algorithm 2: pseudo-code

Algorithm 2 Select a subset of p elements
i ← Random(1,m)
for k = 1, . . . , p do

S[k ]← i
if i = m then

i ← 1
else

i ← i + 1
return S



Algorithm 2: correctness and complexity

Complexity: O(p) in time and space.

Correctness:
• all selected elements are distinct: no multiple copies are

generated;
• all elements have the same probability of being selected;
• no self-loops are generated;
• the probabilities of being selected are not independent, as

required.

So, we really need to extract each element by a distinct call to
Random().



Algorithm 3: general description

Instead of avoiding repetitions a priori, we can detect them as soon
as one occurs.

To immediately detect repetitions, we can keep a vector of binary
flags associated with the elements of the ground set.

Whenever an element is selected, its flag is set to 1.

If an element whose flag is set to 1 is selected again, this is detected
in O(1) and the element is not inserted in S the second time.



Algorithm 3: pseudo-code

Algorithm 3 Discard the last element when a repetition occurs.
for i = 1, . . . ,m do

f [i]← 0
k ← 0
while k < p do

i ← Random(1,m)
if f [i] = 0 then

k ← k + 1
S[k ]← i
f [i]← 1

return S



Algorithm 3: correctness and complexity

Correctness. All requirements are now satisfied.

Complexity (space). O(m), because it needs to allocate an array of
m binary flags.

Complexity (time). The worst case is an infinite number of wasted
iterations.

The average case must be analyzed.
• The operations within the while loop take O(1) time.
• The number of times the while loop iterations are successful is p.
• We must evaluate the number of wasted iterations of the while

loop.



Algorithm 3: average-case time complexity

Compute the probability of occurrence of a wasted iteration
∀k = 0, . . . , p − 1, with p ≤ m/2.

Definition. Wk : number of wasted iterations when k elements have
been selected.

P(Wk = w) =

(

k
m

)w m − k
m

.

The expected value of Wk is given by

E [Wk ] =
∞
∑

w=0

w
(

k
m

)w m − k
m

=
m − k

m

∞
∑

w=0

w
(

k
m

)w

.

Setting η =
k
m

, the sum can be computed as follows:

∞
∑

w=0

wηw = η

∞
∑

w=0

wηw−1 = η

∞
∑

w=0

∂(ηw )

∂η
= η

∂
(
∑

∞

w=0 η
w
)

∂η
.



Algorithm 3: average-case time complexity

Observing that η < 1,

η
∂
(
∑

∞

w=0 η
w
)

∂η
= η

∂
(

1
1−η

)

∂η
= η

1
(1− η)2 =

η

(1− η)2 .

Replacing the sum back into the original expression, and replacing η

with
k
m

,

E [Wk ] =
m − k

m

k
m

(

m − k
m

)2 =
k

m − k
.

So, the expected number of wasted iterations increases more than
linearly as k increases from 0 to p − 1.



Algorithm 3: average-case time complexity

The expected total number of wasted iterations is

E [W ] =

p−1
∑

k=0

E [Wk ] =

p−1
∑

k=1

k
m − k

=

p−1
∑

k=1

k −m + m
m − k

=

=

p−1
∑

k=1

(

−1 +
m

m − k

)

= (1− p) +
p−1
∑

k=1

m
m − k

=

= (1− p) + m
p−1
∑

k=1

1
m − k

.

Let define h = m − k . Then we have

E [W ] = (1− p) + m
p−1
∑

k=1

1
m − k

= (1− p) + m

(

m−1
∑

h=1

1
h
−

m−p+1
∑

h=1

1
h

)

.



Algorithm 3: average-case time complexity

For the harmonic sum stopped at term a the following bounds hold:

log (a + 1) <
a
∑

h=1

1
h
< log (a + 1) + γ,

being γ = 0.5772... the Euler-Mascheroni constant. Hence

E [W ] < 1− p + m (logm − 1 + γ − log (m − p + 1 + 1)) =

= 1− ρm + γm + m log
m − 1

m − p + 2
=

= 1 + m(γ − ρ) + m log
m − 1

m(1− ρ) + 2
.

Being γ > 0.5 and ρ ≤ 0.5, the term (γ − ρ) is positive.

Therefore, for each fixed ρ < 1/2, when m grows to infinity we have

E [W ] = O(m).

Since the number of successful iterations is equal to p = ρm, then the
expected total number of iterations is O(m) for each given ρ.



Algorithm 3: correctness and complexity

Correctness. All requirements are satisfied.

Complexity (space). O(m).

Complexity (time). The worst case is an infinite number of wasted
iterations.

The average case is O(m).

Drawbacks of Algorithm 3:
• its worst-case time complexity cannot be bounded;
• its O(m) space complexity can be impractical for large graphs.



Algorithm 4: general description

Instead of a binary flag for each element, we can use a hash table to
detect repetitions:

h : {1, . . . ,m} 7→ {1, . . . , r}

We keep a binary flag for each value c ∈ {1, . . . , r} and a
corresponding list L[c] ∀c.

Every time a number i ∈ {1, . . . ,m} is generated at random
• compute c = h(i);
• if the flag of c is 0, there is no repetition:

• append i to the list L[c]
• set the flag of c to 1.

• if the flag of c is 1, there can be a repetition:
• scan L[c] to possibly detect it.



Algorithm 4: pseudo-code

Algorithm 4 Using a hash function to detect repetitions.
for c = 1, . . . , r do

f [c]← 0
L[c]← ∅

k ← 0
while k < p do

i ← Random(1,m)
c ← h(i)
if (f [c] = 0) ∨ (i 6∈ L[c]) then

k ← k + 1
L[c]← L[c] ∪ {i}
f [c]← 1

S ← ∅
for c = 1, . . . , r do

S ← S ∪ L[c]
return S



Algorithm 4: correctness and complexity

Space complexity. O(r + p), because we need r flags (instead of m)
and at most p elements in the lists.

(Average) time complexity. The hash function can be chosen, so
that each value of h(i) has the same probability. For instance:
h(i) = i mod r .

Each scan takes in average O(k/r) time, where k is the number of
already selected elements.

The number of potential conflicts in the hash table decreases for
increasing r . Hence, a suitable trade-off between time and space
must be defined by suitably selecting r .

Variation. Replace lists L with binary trees.
• insertion: O(log k/r) instead of O(1);
• search: O(log k/r) instead of O(k/r).

A suitable trade-off must be found also in this case.



Algorithm 5: general description

Avoid repetitions a ppriori by generating random numbers in a range
of decreasing width, corresponding to the subset of not-yet-selected
elements of the ground set.

Problem: the Random(a, b) procedure requires a range with no
“holes” between a and b. Therefore we need to pack the
not-yet-selected elements so that their indices cover a range of
integers with no missing values.

Keep an array v of m integers, one for each element of the ground
set.
• Initialize v [i] = i ∀i = 1, . . . ,m.
• For each iteration k = 1, . . . , p, generate a random number

i ∈ [k + 1, . . . ,m] (instead of [1, . . . ,m]).
• Swap v [i] and v [k ].



Algorithm 5: pseudo-code

Algorithm 5 Selection of suitably indexed elements, to avoid repeti-
tions.

for i = 1, . . . ,m do
v [i]← i

for k = 1, . . . , p do
i ← Random(k ,m)
w ← v [i]
v [i]← v [k ]
S[k ]← w

return S



Algorithm 5: correctness and complexity

Correctness. After each iteration k
• the first k positions of v contain the selected elements,
• there are no duplicates in v ,
• the random extraction only involves elements not yet selected.

Space complexity (worst-case): O(m).

Time complexity (worst-case).
• Initialization: O(m);
• Loop: O(p), because each iteration takes constant time.

Initialization is the bottleneck.



Algorithm 6: general description

Store only the elements of v for which v [i] 6= i.

Assume we have a list of such elements; each record in the list has
two fields, π and e: they indicate an element of v where v [π] = e and
π 6= e. For all positions π not contained in the list, v [π] = π.

Every time a position i is generated at random in iteration k , the list is
scanned and the following two tests are done.
• Test 1: if the list contains a record with π = i, let e′ be the

corresponding element;
• Test 2: if the list contains a record with π = k , let e′′ be the

corresponding element.

Four cases can occur:
• Both tests fail: select i; append (i, k) to the list.
• Test 1 succeeds, Test 2 fails: select e′; update (i, e′) to (i, k).
• Test 1 fails, Test 2 succeeds: select i; update (k , e′′) to (i, e′′).
• Both tests succeed: select e′; update (i, e′) to (i, e′′); delete
(k , e′′).



Algorithm 6: correctness and complexity

Correctness. The output is the same as for Algorithm 5.

Space complexity: O(p), instead of O(m).

Time-complexity.
• Linked list: it must be scanned (twice) at each iteration.

Each scan takes O(p).
The number of iterations is p.
Therefore: O(p2).
• AVL tree (balanced binary tree):

each iteration takes O(logp).
The number of iterations is p.
Therefore: O(p logp).



Coding the arcs of digraphs

So far, we have assumed that each edge/arc of the ground set is
represented by an integer number in a range with no holes.

Digraphs. Numbering rows and columns (i.e. vertices) starting from
0 instead of 1:

r =

{

i(n − 1) + j if i > j
i(n − 1) + j − 1 if i < j

i = r DIV (n − 1)

j =
{

r MOD(n − 1) if r < in
r MOD(n − 1) + 1 if r ≥ in



Coding the egdes of graphs

Graphs. The ground set of undirected graphs contains only one edge
for each unordered pair of distinct vertices.

Only half of an adjacency matrix is needed. Assume i < j.

To avoid wasting memory space, instead of using a triangular part of
the adjacency matrix, we can use the top half of it, which is a
rectangular matrix.

If n is odd, include row (n − 1)/2, and use only the first half of the row
from column 0 to column (n − 1)/2.



Coding the egdes of graphs

The elements of the upper triangle in the bottom part of the adjacency
matrix (i.e. those with j > i and j > n/2) are put in one-to-one
correspondence with the elements under the main diagonal in the
rectangular matrix (i.e. those with j < i and j < n/2− 1).

In this way, the correspondence between a randomly selected
number r and an edge [i, j] of the graph is the same as for digraphs,
but when r corresponds to a pair [i, j] such that j < i, then the edge is
transformed into a pair [i ′, j ′] in this way in constant time:

i ′ = (n − 1)− i j ′ = (n − 1)− j.

The time complexity is not affected because coding/decoding
operations take O(1) in both directions.


