
Graphs

Graphs
Combinatorial optimization

Giovanni Righini
Università degli Studi di Milano



Graphs

Definitions - 1

A graph, indicated as G = (V , E), is defined by
• a set of vertices V ;
• a set of edges E .

The vertex set V is an elementary set, i.e. its elements are just
atomic items.
The edge set E is a complex set, i.e. its elements are sets: each edge
is a pair of vertices in V .

E ⊆ {[i, j] : i ∈ V , j ∈ V , i 6= j}.

A digraph (directed graph), indicated as D = (N ,A), is defined by
• a set of nodes N ;
• a set of arcs A.

Each arc is an ordered pair of nodes in N .

A ⊆ {(i, j) : i ∈ N , j ∈ N , i 6= j}.

We exclude self-loops, i.e. edges (arcs) whose endpoints coincide.



Graphs

Definitions - 2

A subgraph G′ induced by a subset V ′ of vertices is G′ = (V ′
, E ′) with

E ′ = {[i, j] ∈ E : i ∈ V ′
, j ∈ V ′

.}

An analogous definition applies to di-graphs.

We will not consider multi-(di-)graphs and hyper-graphs.

A multi-(di-)graph is a (di-)graph whose edge or arc set is a multi-set,
i.e. it may contain multiple copies of the same element.

An hyper-graph is a graph whose edges are subsets of vertices, not
necessarily pairs.



Graphs

Definitions - 3

If [i, j] ∈ E , then:

• vertices i and j are adjacent,

• edge [i, j] is incident to vertex i and to vertex j.

If (u, v) ∈ A, then:

• arc (u, v) is incident to node u and to node v ,

• arc (u, v) leaves node u,

• arc (u, v) enters node v ,

• node u is a predecessor of node v ,

• node v is a successor of node u.

The degree of a vertex i ∈ V is the n. of edges e ∈ E incident to it.
The in-degree of a node i ∈ N is the n. of arcs a ∈ A entering it.
The out-degree of a node i ∈ N is the n. of arcs a ∈ A leaving it.



Graphs

Definitions - 4

In a graph G(V ,E) a connected component of G is a subgraph
S = (U,E(U)), where U ⊂ V and E(U) = {[i, j] ∈ E : i ∈ U ∧ j ∈ U},
such that for each pair of nodes i and j in U, there is a path between
them in E(U).

In a digraph D(N,A) a strongly connected component of D is a
subgraph S = (U,A(U)), where U ⊂ N and
A(U) = {(i, j) ∈ A : i ∈ U ∧ j ∈ U}, such that for each ordered pair of
nodes i and j in U, there is a directed path from i to j in A(U).



Graphs

Weights and objectives

A graph is weighted when there is a function associating a weight
with each edge, i.e. c : E 7→ ℜ, or vertex, i.e. c : V 7→ ℜ.

The same definition applies to digraphs as well.

Weights often represent costs and the objective to be optimized
(minimized) is the overall cost of a subset of edges or arcs,
representing the solution: so we search for minimum cost paths,
minimum cost trees, minimum cost flows, etc.



Graphs

Combinatorial structures

When we solve combinatorial optimization problems on graphs, it is
usually because we want to find the best among solutions with a
particular structure:

• paths, representing origin to destination routes on street graphs;

• trees, representing links between geographically dispersed sites
in telecommunication networks;

• flows, representing amounts of freight, passengers, goods,
money... moving from one site to another;

• matchings, representing pairings in graphs of relations between
people, activities, attributes,...;

• and many others...

The solutions correspond to subsets of edges or arcs.



Graphs

Complexity - 1

The problem of finding the optimal edge (arc) subset with a given
structure is combinatorial when the number of solutions is
combinatorial in the number of edges or arcs, i.e. there as many
solutions as the possible combinations of edges and arcs.

Due to the combinatorial explosion in the number of solutions, it is
impractical to enumerate all of them explicitly: hence we need
suitable (efficient) graph optimization algorithms.

According to the classification established by the Computational
Complexity Theory, an algorithm is efficient if it computes an optimal
solution taking polynomial time and space in the size of the instance.



Graphs

Complexity - 2

In the case of graph optimization problems the size of the instance is
the size of the graph.

We indicate with n the number of vertices or nodes.
We indicate with m the number of edges or arcs.
The computational complexity of graph optimization algorithms is
usually given as a function of n and m.

We do not know polynomial complexity algorithms for all
combinatorial optimization problems on graphs, but for some of them
we do.

It is very important to know these well-solved cases, because they
often occur as sub-problems within larger and more complicated
optimization problems.



Graphs

Complexity - 3

The maximum number of edges a graph can have is

mmax =
n(n − 1)

2
.

The maximum number of arcs a digraph can have is

mmax = n(n − 1).

A (di)graph is complete if and only if it contains mmax edges or arcs. A

(di)graph is dense (sparse) when m
mmax is large (small).

The density/sparsity of a graph can affect the computing time of
graph optimization algorithms, according to the data-structures used
to represent the graph.



Graphs

Data-structures

There are many possibilities to store the information corresponding to
a (di)graph in a computer memory, i.e. in a data-structure.

The choice of the most suitable data-structure depends:

• on the efficiency of the operations we need to execute on it;

• on the density/sparsity of the graph.

The most used data-structures to represent graphs are:

• adjacency matrix,

• incidence matrix,

• edge (arc) list,

• (in/out-)stars.



Graphs

Adjacency matrix

An adjacency matrix M is a square n × n matrix, whose rows and
columns correspond to vertices/nodes. Each entry M[i, j] contains the
piece of information associated with edge [i, j] or arc (i, j).

For instance:
M[i, j] = 0 when [i, j] 6∈ E and M[i, j] = 1 when [i, j] ∈ E ;
M[i, j] = ∞ when [i, j] 6∈ E and M[i, j] = cij when [i, j] ∈ E .

An arc set requires the whole matrix; an edge set requires half of it.

1 2

34

22

3

15 20
7

6

8

18

Figure: A digraph.

∞ 22 3 ∞
∞ ∞ 15 7
∞ 20 ∞ 6
8 ∞ 18 ∞

Table: Its adjacency matrix.



Graphs

Incidence matrix

An incidence matrix M is an n × m matrix, whose rows correspond to
vertices/nodes and whose columns correspond to edges/arcs.

Each entry M[i, e] contains a significant piece of information if and
only if edge e is incident in vertex i.
The same applies to arcs and nodes, with the sign indicating the
direction.

1 2

34

22

3

15 20
7

6

8

18

Figure: A digraph.

(1, 2) (1, 3) (2, 3) (2, 4) (3, 2) (3, 4) (4, 1) (4, 3)
1 -22 -3 8
2 22 -15 -7 20
3 3 15 -20 -6 18
4 7 6 -8 -18

Table: Its incidence matrix.



Graphs

Edge (arc) list

An edge (arc) list L is a list of all the edges (arcs) in the (di-)graph.

Each element in the list is a record with all relevant information about
the edge (arc).

1 2

34

22

3

15 20
7

6

8

18

Figure: A digraph.

Node Node Cost
1 2 22
1 3 3
2 3 15
3 2 20
2 4 7
3 4 6
4 1 8
4 3 18

Table: Its arc list.



Graphs

(In/Out-)stars

A star S is a list of all edges incident in a vertex.
An in-star I is a list of all arcs entering a node.
An out-star O is a list of all arcs leaving a node.

Each element in the list is a record with all relevant information about
the edge (arc).

The whole (di-)graph is represented by a list of all (in/out-)stars, for all
its vertices (or nodes).

1 2

34

22

3

15 20
7

6

8

18

Figure: A digraph.

Node Successors and weight
1 2,22 3, 3
2 3,15 4, 7
3 2,20 4, 6
4 1, 8 3,18

Table: Its out-stars.


	Graphs
	Definitions and terminology


