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Linear Programming (LP)

A linear program is defined by

• linear constraints,

• a linear objective function.

Its variables are continuous and they can be

• free (unrestricted in sign),

• non-negative (constrained to be non-negative).



LP: general form

In its general form, it reads like this:

P) minimize z =cT x

subject to a′x ≥ b′

a′′x = b′′

x ′
≥ 0

x ′′ free

We can always get rid of the free variables by replacing each of them
with the difference of two non-negative variables.

We can always get rid of linear equalities by variable elimination.



LP: inequalities form

In its inequalities form, a linear program reads like this:

P) minimize z =cT x

subject to ax ≥ b

x ≥ 0

Every solution of the problem is a point in an n-dimensional space,
where n is the number of variables.

Solutions are feasible if the comply with all the constraints and the
non-negativity restrictions. Otherwise they are infeasible.

The set of feasible solutions is the feasible region of the linear
program.



Constraints: geometrical interpretation

The constraints set of a linear program is made of linear inequalities.

In the variables space

• linear equalities correspond to hyperplanes;

• linear inequalities correspond to halfspaces.

The feasible region is a system of linear inequalities; it corresponds to
the intersection of halfspaces, i.e. to a polyhedron.

Half spaces are convex; hence their intersection is also convex:
polyhedra are convex.

Theorem (Minkowsky and Weil). Every point in a polyhedron can
be obtained as a convex combination of its extreme points and its
extreme rays.



Polyhedra: three cases

Given a polyhedron one of these three cases occurs:

• the polyhedron is not empty and it is bounded (polytope);

• the polyhedron is not empty and it is not bounded;

• the polyhedron is empty.



Case 1: polytope

 

Figure: A polytope is defined by its extreme points.



Case 2: unbounded polyhedron

 

Figure: An unbounded polyhedron is defined by its extreme points and its
extreme rays.



Case 3: empty polyhedron

 

Figure: An empty polyhedron contains no points at all.



Objective function: geometrical interpretation

The objective function of a linear program is represented by parallel
hyperplanes, such that points on the same hyperplane have the same
value.

 

Figure: minimize z = 2x1 − 3x2



Linear programs: three cases

Given a linear program P, one of these three cases occurs (and the
simplex algorithm detects it in a finite number of steps):

• P has a finite optimal solution;

• P is unbounded;

• P is infeasible.



Case 1: finite optimal solution

 

Figure: Two cases in which the linear program has a finite optimal solution.



Case 2: unbounded problem

 

Figure: The linear program is unbounded if the direction of the objective
function is in the cone defined by the extreme rays.



Case 3: infeasible problem

 

Figure: Empty polyhedron: the linear program in infeasible, independently of
the objective function.



LP: standard form

A linear program is in its standard form, when all inequalities have
been turned into equalities by explicitly inserting non-negative slack
variables or surplus variables.

Inequalities form:

P) minimize z =cT x

subject to a′x ≥ b′

a′′x ≤ b′′

x ≥ 0.

m inequality constraints
n non-negative variables.

Standard form:

P) minimize z =cT x

subject to a′x − xsurplus = b′

a′′x + xslack = b′′

x , xsurplus
, xslack

≥ 0.

m equality constraints
n + m non-negative variables.

The number of inequalities is the same in the two models.



Bases

A base is a subset of m linearly independent columns of the
constraint matrix.

The m variables corresponding to the columns of the base are basic.

The other n variables are non-basic.

If the value of the non-basic variables is fixed, we are left with a
non-degenerate system of m linear equalities and m variables, which
provides a unique solution x .

If x ≥ 0, then it is feasible. Otherwise it is infeasible.



Base solutions

An inequality constraint is active iff its slack/surplus variable is null.

If we fix n (non-basic) variables to 0, we define a solution x in which n
constraints are active. The points of intersection of n constraints in an
n-dimensional variable space are called base solutions. They can be
feasible or infeasible.

All the extreme points of the polyhedron are feasible base solutions.

 

Figure: An example with n = 2, m = 2. There are 6 base solutions: 4 are
feasible, 2 are infeasible.



Linear Programming (LP) duality

Every linear program P has a dual linear program D.

P) min z =c′T x ′ + c′′T x ′′

s.t. a′x ′ + a′′x ′′
≥ b′ [y ′]

d ′x ′ + d ′′x ′′ = b′′ [y ′′]

x ′
≥ 0

x ′′ free

D) max w =b′T y ′ + b′′T y ′′

s.t. a′T y ′ + d ′T y ′′
≤ c′ [x ′]

a′′T y ′ + d ′′T y ′′ = c′′ [x ′′]

y ′
≥ 0

y ′′ free



The fundamental theorem of LP duality

Given a primal-dual pair, one of these four cases occurs (and the
simplex algorithm detects it in a finite number of steps):

• both P and D have a finite optimal solution;

• P is unbounded and D is infeasible;

• D is unbounded and P is infeasible;

• both P and D are infeasible.



Weak duality theorem

Weak duality theorem.
For each feasible solution x of P and for each feasible solution y of D,
z(x) ≥ w(y).

Corollary 1.
If P is unbounded, then D is infeasible.

Corollary 2.
If x is feasible for P and y is feasible for D and z(x) = w(y), then
both x and y are also optimal.



Strong duality theorem

Strong duality theorem.
If there exist a feasible and optimal solution x∗ for P and a feasible
and optimal solution y∗ for D, then z(x∗) = w(y∗).



Complementary slackness theorem

Complementary slackness theorem.
Given a feasible solution x for P and a feasible solution y for D,
necessary and sufficient condition for them to be optimal is:

• Primal complementary slackness conditions (they are n):

x ′ (c′
− a′T y ′ + d ′T y ′′) = 0

• Dual complementary slackness conditions (they are m):

y ′ (a′x ′ + a′′x ′′
− b′) = 0.

They only refer to inequality constraints, because those
corresponding to equality constraints are always trivially satisfied.



Primal-dual algorithms

A primal-dual algorithm solves linear programming problems
exploiting duality theory and in particular the CSCs.

The algorithm is initialized with a dual feasible solution and a
corresponding primal solution (in general, infeasible) satisfying the
CSCs.

After every iteration the algorithm keeps a pair of primal (infeasible)
and dual (feasible) solutions, satisfying the CSCs.

The algorithm alternates two types of iterations, and it monotonically
decreases primal infeasibility until it achieves primal feasibility.

• Primal iteration: keeping the current dual feasible solution fixed,
find a primal solution minimizing primal infeasibility among those
satisfying the CSCs;

• Dual iteration: keeping the current primal solution fixed, modify
the dual solution, keeping it feasible and the CSCs satisfied.


