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1 Introdu
tion

In these notes I present some examples of dis
rete optimization problems solved by dynami
 programming

(D.P. for short). The basi
 steps in the design of a D.P. algorithm are the same in all examples:

1. De�ne a sequen
e of de
isions, that 
orresponds to determining a solution.

2. De�ne the state. The state is the amount of information that one needs to know when some de
isions

in the sequen
e have already been taken and others are still to be taken. The information in the state

must be enough to determine the feasibility and the 
ost of the remaining de
isions.

3. De�ne a re
ursive extension fun
tion, i.e. how the 
ost of states 
an be 
omputed from the 
ost of other

states.

The exe
ution of a D.P. algorithm resembles the sear
h for an optimal path on an a
y
li
 and weighted

digraph, from a given sour
e node 
orrespondig to an empty solution (no de
ision taken) to a given target

node 
orresponding to a 
omplete solution (all de
isions taken). The stru
ture and the size of the digraph

depend on the problem at hand and they determine the 
omplexity of the D.P. algorithm. When the D.P.

algorithm terminates, the label (
ost to be minimized or value to be maximized) of the �nal state gives the

optimal value of the obje
tive fun
tion.

Besides 
omputing the optimal value, one usually wants to re
onstru
t a feasible solution with that value,

i.e. an optimal solution. This is a
hieved by s
anning the sequen
e of the de
isions ba
kward, from the �nal

state to the initial state. For ea
h state its optimal prede
essor is sele
ted and for this purpose it is required

that the optimal prede
essor has been stored for ea
h state.

For ea
h example, I will provide the des
ription of the problem, the des
ription of one or more D.P.

algorithms, the 
orresponding a
y
li
 weighted digraphs, the 
omplexity of the algorithm. Ea
h problem is

illustrated by a numeri
al example with its solution. I also provide the pseudo-
ode of the D.P. algorithm

allowing for an e�
ient and straightforward implementation.

Re�nements su
h as bi-dire
tional D.P. and the use of suitable data-stru
tures will be also dis
ussed.
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2 The shortest path problem on a weighted a
y
li
 digraph

The problem. Given an a
y
li
 digraph D = (N ,A) with |N | = n and |A| = m and a 
ost fun
tion

w : A 7→ ℜ, �nd the shortest path from a given node s ∈ N to a given node t ∈ N . A digraph is a
y
li
 if

and only if it does not 
ontain any 
ir
uit.

Step 1: sequen
ing the de
isions. Sin
e D is a
y
li
, it is possible to sort its nodes in topologi
al order

in O(m). If D is also layered, it is possible to sort the layers and it is not ne
essary to sort the nodes in ea
h

layer (any order �ts). We indi
ate by Pred(j) ⊂ N the set of prede
essors of ea
h node j ∈ N :

Pred(j) = {i ∈ N : (i, j) ∈ A}.

Step 2: de�ning the state. The state 
onsists of the last rea
hed node. All paths from node s to node

i ∈ N 
orrespond to sub-poli
ies leading to the same state. Hen
e states have the following (trivial) form:

{i}, with i ∈ N . The 
ost asso
iated with ea
h state {i} is indi
ated by c(i).

Step 3: state extension.

• Initialization: c(s) := 0.

• Extension: c(j) := mini∈Pred(j){c(i) + wij}.

The optimal value is c(t) when the algorithm stops.

Complexity. The a
y
li
 weighted state-transition digraph of the D.P. algorithm is the digraph D itself.

This is why this example is suitbale to be presented as the introdu
tory problem to illustrate D.P..

The time 
omplexity immediately follows: when extending states, ea
h ar
 of the digraph is 
onsidered

only on
e; hen
e the 
omplexity is O(m).
Sin
e ea
h node has a single label c(i) and its value is 
omputed only on
e, the resulting D.P. algorithm

is a label setting algorithm.

Pseudo-
ode. The pseudo-
ode of the D.P. algorithm is shown in Algorithm 2.1. A ve
tor π re
ords the

optimal prede
essor state for ea
h state, i.e. the optimal prede
essor node for ea
h node in this example.

The sub-routine ComputePredecessors is needed when the digraph is given in input as a list of weighted

ar
s. In su
h a 
ase the list is sequentially s
anned and for ea
h ar
 (i, j) ∈ A node i is inserted in Pred(j).
The 
omputational 
omplexity of this operation is obviously O(m).

The 
omputational 
omplexity of the label extension is O(m), as already proven.

The 
omputational 
omplexity of the last part, where an optimal solution is produ
ed, depends on the

required output format: if a binary ve
tor x is required, then the 
omplexity is O(m), as shown in Algorithm

2.1, be
ause m binary variables must be assigned a value; if a set X of sele
ted ar
s is required, then the


omplexity is O(n), be
ause the initialization X ← ∅ takes 
onstant time and no more than n − 1 ar
s 
an

belong to the s− t path.
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Algorithm 2.1 Shortest path problem on a weighted a
y
li
 digraph

1: TopologicalSort; ⊲ O(m)
2: ComputePredecessors; ⊲ O(m)
3: /* Negle
t unrea
hable nodes (nodes before s), if any */

4: for j = 0, . . . , s− 1 do ⊲ O(n)
5: c(j)←∞;

6: /* Initialization */

7: c(s)← 0;
8: /* Extension */

9: for j = s+ 1, . . . , t do
10: for i ∈ Pred(j) do
11: if (c(i) + wij < c(j)) then
12: c(j)← c(i) + wij ;

13: π(j)← i;

14: /* Optimal obje
tive fun
tion value */

15: z∗ ← c(t);
16: /* Retrieval of an optimal solution */

17: for (i, j) ∈ A do ⊲ O(m)
18: x∗(i, j)← 0;

19: j ← t;
20: while (j > s) do ⊲ O(n)
21: x∗(π(j), j) := 1;
22: j ← π(j);

return z∗, x∗

Label 
orre
ting variation. A variation of the D.P. algorithm is obtained by extending the labels from

ea
h state to its su

essors. Let Succ(i) be the set of all su

essors of node i, i.e.

Succ(i) = {j ∈ N : (i, j) ∈ A}.

The label extension part of Algorithm 2.1 
ould be repla
ed by the following Algorithm 2.2.

Algorithm 2.2 Label extension

9: for i = s, . . . , t− 1 do
10: for j ∈ Succ(i) do
11: if (c(i) + wij < c(j)) then
12: c(j)← c(i) + wij ;

13: π(j)← i;

The time 
omplexity is the same, i.e. O(m), be
ause every ar
 is examined on
e. However, in this 
ase

the label of ea
h state 
an be updated several times. Therefore this variation is a label 
orre
ting algorithm.
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A numeri
al example. Consider the a
y
li
 weighted digraph shown in Figure 1. The problem instan
e

requires to 
ompute a shortest path from node s = 0 to node t = 9.
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Figure 1: A weighted a
y
li
 (and layered) digraph.

Figure 2 shows the iteration in whi
h node 5 is labeled. Nodes 0 to 4 have already been labeled. Their

asso
iated 
osts are shown by the blue labels in Figure 2. Optimal prede
essors are represented by red ar
s.

Node 5 is now labeled by 
omparing three prede
essor states, yielding 
osts equal to 21 (from node 1), 18

(from node 2) and 21 (from node 3) and sele
ting the best option (the se
ond one).

0

0

1

6

2

8

3

13

4

15

5

18

6

7

8

9

6

8

13

9

15

8

10

12

8

7

15

20

8

7

3

4

Figure 2: A state extension.
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Figure 3 shows the solution. The optimal value is 30 and the 
orresponding optimal solution 
an be re
on-

stru
ted by following the 
hain of prede
essors π ba
kward from node 9 to node 1: the result is represented

by the thi
k red ar
s.
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Figure 3: The example solved.
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3 The shortest path problem on a weighted digraph

The problem. Given a digraph D = (N ,A) with |N | = n and |A| = m and a 
ost fun
tion w : A 7→ ℜ,
�nd the shortest path from a given node s ∈ N to a given node t ∈ N . The digraph is not 
onstrained to be

a
y
li
 as in the previous example; we 
onsider now a generi
 digraph, possibly 
ontaining 
ir
uits. However


ir
uits are guaranteed not to have negative 
ost.

Step 1: sequen
ing the de
isions. The problem is very similar to the previous one, but now the digraph

is not a
y
li
 and therefore its nodes 
annot be sorted as in the previous example. We 
an reformulate the

problem on an a
y
li
 and layered digraph D′ = (N ′,A′), where

• N ′
is made by a set L of n layers;

• ea
h layer Lk 
ontains a 
opy of ea
h node in N ; hen
e ea
h node in N ′
is indi
ated by a pair (i, k);

• for ea
h ar
 (i, j) ∈ A there is an ar
 from node (i, k) to node (j, k + 1) for ea
h layer k = 1, . . . , n− 1.

We indi
ate by Pred′(j, k) ⊆ N ′
the set of prede
essors of ea
h node (j, k) ∈ N ′

:

Pred′(j, k) = {(i, k − 1) ∈ N ′ : (i, j) ∈ A′} ∀k = 2, . . . , n.

The prede
essors of ea
h node in layer k belong to layer k − 1. The nodes in layer 1 have no prede
essor.

The n layers of digraph D′
represent the n stages of the D.P. algorithm. At ea
h stage k the algorithm


omputes and 
ompares paths made by k − 1 ar
s. Sin
e no feasible solution 
an 
ontain more than n − 1
ar
s, n layers are su�
ient to impli
itly enumerate all possible solutions.

After this reformulation, the shortest problem on a generi
 digraph with n nodes is translated into the

shortest path problem on an a
y
li
 digraph with m(n−1) nodes. Therefore, the same D.P. algorithm shown

in the previous example applies.

Step 2: de�ning the state. The state 
onsists of the last rea
hed node in N ′
. All s− i paths made by k

ar
s 
orrespond to sub-poli
ies leading to the same state. Hen
e labels have the following form: {i, k}, with
i ∈ N and k = 1, . . . , n. The 
ost asso
iated with ea
h label {i, k} is indi
ated by c(i, k).

Step 3: label extension.

• Initialization: c(s, 1) = 0 c(i, 1) =∞ ∀i 6= s.

• Extension: c(j, k) = min(i,k−1)∈Pred′(j,k){c(i, k − 1) + wij , c(j, k − 1)}.

The optimal value is c(t, n).

Remark 1. The algorithm 
an possibly terminate even before rea
hing stage n: if no 
hange in labels is

observed at a 
ertain stage, no 
hange 
an o

ur in the remaining stages either.

Remark 2. The algorithm 
omputes the shortest path from s to all the other nodes in N .

Complexity. When extending labels, ea
h ar
 in A′
is 
onsidered only on
e. The number of ar
s in A′

is

m(n− 1). Hen
e the 
omplexity is O(mn).

The algorithm is known as Bellman-Ford algorithm.

The label of a same node 
an be updated several times (on
e for ea
h stage). For this reason the Bellman-

Ford algorithm is a label 
orre
ting algorithm.

A numeri
al example. Figure 4 shows a weighted digraph 
ontaining 
ir
uits. We want to 
ompute the

shortest path from node 1 to node 6.

The solution pro
ess and the optimal solution are illustrated in Figure 5.
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Figure 4: A weighted digraph.
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Figure 5: The state-transition graph and the state extensions. Costs are represented in blue; optimal prede-


essors are represented in red. The optimal solution is indi
ated by thi
k ar
s and bolded numbers.
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4 The shortest Hamiltonian path problem on a weighted digraph

The problem. Given a digraph D = (N ,A) with |N | = n and |A| = m and a 
ost fun
tion w : A 7→ ℜ,
�nd the shortest Hamiltonian path from a given node s ∈ N to a given node t ∈ N .

A Hamiltonian path is a path that visits all nodes of the digraph on
e. Note that w.l.o.g. we 
an assume A
to be 
omplete; just 
onsider missing ar
s as ar
s with a very large 
ost.

Step 1: sequen
ing the de
isions. Similarly to the previous example, sin
e D is not a
y
li
, it is not

possible to sort its nodes and to set their labels permanently. We resort to an auxiliary a
y
li
 and layered

digraph D′
using the same 
onstru
tion of the previous example.

Step 2: de�ning the state. The state does not 
onsist only of the last rea
hed node. In order to 
he
k

the feasibility of the solution one must know whi
h nodes have already been visited. All paths from node

(s, 1) to node (i, k) ∈ N ′

orrespond to sub-poli
ies leading to the same state if and only if they also visit

the same subset of nodes. Hen
e labels have the following form: {i, k, S}, with i ∈ N and S ⊆ N . Note

that k = |S|, be
ause one additional node is visited every time a path is extended. Therefore the information

given by the layer index k is redundant and 
an be omitted. The 
ost asso
iated with ea
h label {i, S} is
indi
ated by c(i, S).

Step 3: label extension.

• Initialization: c(s, {s}) = 0.

• Extension: c(j, S) = mini∈S{c(i, S\{j}) + wij}.

The optimal value is c(t,N ).

Complexity. The number of states to be labeled is exponential in n. The number of distin
t values of the
possible subsets S is 2n and ea
h subset with k nodes appears in k di�erent states (depending on whi
h is the

last visited node). Hen
e the number of states is O(n2n). When extending labels the number of prede
essors

for ea
h state is O(n). Hen
e the 
omplexity of the D.P. algorithm is O(n22n).

Dominan
e. Dominan
e 
onsists of deleting some states from further 
onsideration be
ause there is a guar-

antee that they do not 
orrespond to optimal sub-poli
ies and therefore the 
orresponding partial solutions


annot be part of optimal solutions. In these examples the dominan
e 
riteria are impli
itly applied when

the label obtained from the best prede
essor is sele
ted and all other extensions (i.e. the labels produ
ed by

the other prede
essors) are dis
arded. This is a spe
ial 
ase of dominan
e: a state dominates another one

when it has a smaller 
ost and all information is identi
al in both states (same last visited node, same layer,

same subset of visited nodes,...).
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A numeri
al example.
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Figure 6: A weighted digraph. We want to �nd the minimum 
ost Hamiltonian path from node 1 to node 6.

Note that the digraph 
ontains ar
s with negative 
ost. However it does not 
ontain 
ir
uits of negative


ost. Cir
uits of zero 
ost are allowed and indeed there is one, 
ontaining nodes 4 and 5. Also note that not

all ar
s are present. This makes the instan
e easier to solve and the 
orresponding state-transition graph

easier to represent: some states have a unique prede
essor (see Figure 7).

The optimal solution is the path (1, 3, 4, 5, 2, 6), whose 
ost is 84. Dominan
e 
an be observed on the right

part of Figure 7, where some states have more than one prede
essor: this means that they 
an be rea
hed

in di�erent ways. For instan
e, state {5, 1345} 
an be rea
hed through the sequen
es (1, 4, 3, 5) with 
ost 77

and (1, 3, 4, 5) with 
ost 45. The former sub-poli
y is dominated by the latter one. Owing to dominan
e, the

states generated by the D.P. algorithm are fewer than all possible sequen
es (sub-poli
ies).
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Figure 7: The state-transition graph and the state extensions. Costs are represented in blue; optimal prede-


essors are represented in red. The optimal solution is indi
ated by thi
k ar
s and bolded numbers.
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5 String mat
hing problem

The problem. Given two strings S1 and S2, i.e. two sequen
es of 
hara
ters taken from a given alphabet

A, given an additional 
hara
ter �X� not o

urring in S1 and S2 and given a 
ost fun
tion w : A+×A+ 7→ ℜ,
where A+ = A∪ {“X ′′}, �nd the minimum 
ost alignment.

An alignment is given by inserting any number of 
hara
ters �X� in any positions along the two sequen
es,

so that the �nal sequen
es have the same length. The 
ost of an alignment is the sum of the values of the


ost fun
tion 
omputed for all positions along the resulting sequen
es: ea
h pair of 
hara
ters o

urring in

the same position is the argument of the fun
tion for that position.

Formally, let S+
1 and S+

2 be the two sequen
es after the insertion of the o

urren
es of the �X� 
hara
ter.

Let L be their length. Let indi
ate by S+
i (k) the 
hara
ter in position k in sequen
e S+

i . The 
ost of the

alignment is

∑L

k=1 w(S
+
1 (k), S+

2 (k)).
Remark. Obviously the fun
tion w is de�ned to penalize misalignments, i.e. the presen
e of di�erent


hara
ters in the same position, and to reward alignments, i.e. the presen
e of identi
al 
hara
ters in the

same positions. The alignment of a 
hara
ter in A with a 
hara
ter �X� is usually penalized, but less than

a misalignment. Aligning two 
hara
ters �X� is never optimal: they 
an be deleted from both sequen
es,

yielding a better solution.

Step 1: sequen
ing the de
isions. In this example we 
onsider two sequen
es of de
isions, one for ea
h

string. For ea
h position one has to de
ide whether to insert a 
hara
ter �X� or not in the string.

Step 2: de�ning the state. The state must represent whi
h de
isions have already been taken: sin
e

there are two sequen
es, the state 
ontains two indi
es, say k1 and k2, indi
ating how many positions have

already been s
anned and aligned in ea
h sequen
e. No further information is required to 
he
k the feasibility

of the remaining de
isions. Hen
e the states have the following form: {k1, k2}. The 
ost asso
iated with ea
h

state {k1, k2} is indi
ated by c(k1, k2).

Step 3: label extension.

• Initialization: c(0, 0) = 0.

• Extension: c(k1, k2) = min{c(k1 − 1, k2) + wS1(k1),“X′′ , c(k1, k2 − 1) + w“X′′,S2(k2), c(k1 − 1, k2 − 1) +
wS1(k1),S2(k2)}.

The optimal value is c(n1, n2), where n1 and n2 are the lengths of the given sequen
es.

Complexity. The number of states to be labeled is (n1+1)(n2+1). When extending labels the number of

prede
essors for ea
h state is at most equal to three. Hen
e the 
omplexity of the D.P. algorithm is quadrati


in the input size.
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A numeri
al example.

Instan
e

S1: A A A B A B

S2: B A B A B B

Cost A B X

A 0 2 1

B 2 0 1

X 1 1 -

Solution 1:

S1 = A A A B A B

S2 = B A B A B B

Cost = 8

Solution 2:

S1 = A A A B A B X X

S2 = B A X X B A B B

Cost = 4

Figure 8: A sample instan
e of the string mat
hing problem with two feasible solutions.
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Figure 9: The state-transition graph. The graph is dire
ted, a
y
li
 and layered: ea
h node 
an be rea
hed

from at most three prede
essors in the previous two layers. Costs asso
iated with the states are represented in

blue. Optimal prede
essors are represented by red ar
s. Optimal solutions are indi
ated by bolded numbers

and thi
k ar
s. For this small instan
e multiple optimal solutions exist.

6 p-medians on a line

The problem. Given a straight line and a set N = {1, . . . , n} of points along it in �xed positions x(i) ∀i ∈
N , �nd the optimal position along the line for p additional points, 
alled �medians�, su
h that the sum of the

distan
es between ea
h point in N and its 
losest median is minimized. W.l.o.g. we assume that the points

in N are ordered in the same order as they o

ur along the line.

Remark 1. The p-median problem is NP-hard on graphs, but this simpli�ed version in whi
h all points

lie on a straight line is polynomially solvable by dynami
 programming.

Remark 2. The 1-median problem on a line is easy (it is easy, i.e. polynomially solvable, even on general

graphs). If the number of points is odd, the optimal lo
ation of the median 
oin
ides with the 
entral point;

if the number of points is even, the optimal lo
ation of the median is anywhere along the segment between

the two 
entral points. We indi
ate by w(i, j) the optimal (minimum) 
ost of lo
ating a single median to

serve the points in the interval [i, j], with i ∈ N, j ∈ N, j ≥ i.

Step 1: sequen
ing the de
isions. All solutions indu
e a partition of N into non-overlapping intervals

su
h that all points within a same interval have the same 
losest median. If su
h partition is given, it is easy

13



to optimally lo
ate the median in ea
h interval (see Remark 2). Hen
e we s
an the sequen
e of the points

along the line and we de
ide how many medians are used to serve the points en
ountered.

Step 2: de�ning the state. The state represents whi
h de
isions have already been taken: at ea
h stage

in the de
ision pro
ess we need to know whi
h is the last s
anned point i ∈ N and the number m of medians

used up to that point. Hen
e the states have the following form: {i,m}. The 
ost asso
iated with ea
h state

{i,m} is indi
ated by c(i,m): it indi
ates the minimum 
ost to serve the points in [1..i] with m medians.

Step 3: label extension.

• Initialization: c(i, 1) = w(1, i) ∀i ∈ N .

• Extension: c(i,m) = minj<i{c(j,m− 1) + w(j + 1, i)} ∀i ∈ N : i ≥ 2 ∀m : 2 ≤ m ≤ min{i, p}.

The optimal value is c(n, p).

Complexity. The number of states to be labeled is given by np and sin
e p ≤ n it is not larger than n2
.

When extending labels, the number of prede
essors for ea
h state is O(n). Hen
e the 
omplexity of the D.P.

algorithm is O(n2p) or O(n3).

14



A numeri
al example. Figure 10 represents an instan
e of the p-median problem on a line.

0

❜

A

2

❜

B

4

❜

C

7

❜

D

10

❜

E

11

❜

F

14

❜

G

18

❜

H

19 20

Figure 10: An instan
e of the p-median problem on a line. For better readability the indi
es 1, . . . , n of the

given points have been repla
ed by letters. In this instan
e p = 3.

The 
osts w(j, i) for all pairs of points 
an be 
omputed in O(n2) exploiting the property outlined in

Remark 1 by the following simple algorithm.

Algorithm 6.1

1: for j = 1, . . . , n− 1 do
2: opt := j;
3: i := j;
4: w(j, i) := 0;
5: paritybit := 1;
6: while i < n do

7: i := i+ 1;
8: paritybit := 1− paritybit;
9: w(j, i) := w(j, i − 1) + (x(i)− x(opt));

10: if (paritybit = 0) then
11: opt := opt+ 1;

The resulting 
ost matrix is as follows.

w A B C D E F G H

A 0 2 5 11 15 22 30 39

B 0 3 6 10 14 22 30

C 0 3 4 8 15 23

D 0 1 4 11 16

E 0 3 7 12

F 0 4 5

G 0 1

H 0

The 
orresponding states-transitions graph, with the optimal solution, is represented in Figure 11.
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Figure 11: The states-transitions graph and the states extensions. Costs of the states are indi
ated in blue;


osts of the transitions are indi
ated in red. The optimal solution is indi
ated by bolded 
osts and thi
k ar
s.

7 The binary knapsa
k problem

The problem. Given a set N = {1, . . . , n} of items with a value vi ∀i ∈ N and a weight wi ∀i ∈ N , sele
t

the subset of items of maximum value su
h that the overall weight of the sele
ted items does not ex
eed a

given 
apa
ity W .

Step 1: sequen
ing the de
isions. We 
an 
onsider the items a

ording to their numbering from 1 to n.
For ea
h item we have to de
ide whether to sele
t it or not. Hen
e we have a sequen
e of n binary de
isions.

Step 2: de�ning the state. At ea
h point along the de
ision pro
ess we need to know the residual 
apa
ity

whi
h is left (or equivalently, the amount of 
apa
ity already used) after the already taken de
isions. Hen
e

16



i vi wi

1 45 4

2 55 5

3 42 4

4 62 6

5 61 6

6 80 8

7 69 7

Table 1: A small instan
e. Items are sorted a

ording to their e�
ien
y vi/wi. The 
apa
ity is W = 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 45 45 45 45 45 45 45 45 45 45 45 45 45

2 0 0 0 0 45 55 55 55 55 100 100 100 100 100 100 100 100

3 0 0 0 0 45 55 55 55 87 100 100 100 100 142 142 142 142

4 0 0 0 0 45 55 62 62 87 100 107 117 117 142 149 162 162

5 0 0 0 0 45 55 62 62 87 100 107 117 123 142 149 162 168

6 0 0 0 0 45 55 62 62 87 100 107 117 125 142 149 162 168

7 0 0 0 0 45 55 62 69 87 100 107 117 125 142 149 162 169

Table 2: The optimal solution (in bold): z∗ = 169, x∗ = [1, 1, 0, 0, 0, 0, 1].

the states have the following form: {i, q}, where i indi
ates the last item 
onsidered in the sequen
e and q
indi
ates the 
apa
ity used. The value asso
iated with ea
h state {i, q} is indi
ated by z(i, q): it indi
ates
the maximum value that 
an be a
hieved with the �rst i items, using an amount of 
apa
ity equal to q. A
dummy initial state indi
ates that at the beginning no item has been 
onsidered and no 
apa
ity has been

used.

Step 3: label extension.

• Initialization: z(0, q) = 0 ∀q = 0, . . . ,W .

• Extension: z(i, q) =

{

z(i− 1, q) ∀i ∈ N ∀q < wi

max{z(i− 1, q), z(i− 1, q − wi) + vi} ∀i ∈ N ∀q = wi, . . . ,W.

The optimal value is maxq=0,...,W {z(n, q)}.

Complexity. Index i ranges in the interval [0 . . . , n]; the number of possible values for i is n+ 1. Index q
ranges in the interval [0 . . . ,W ]; the number of possible values for q is W + 1. Hen
e the number of states

grows as O(nW ). When extending labels, the number of prede
essors for ea
h state is 2. Hen
e the worst-
ase
time 
omplexity of the D.P. algorithm is O(nW ). This 
omplexity is not polynomial, be
ause W does not

determine the size of the instan
e, like n; rather it is the value of a datum of the instan
e. In this 
ase, we say

that the 
omputational 
omplexity is pseudo-polynomial. Dynami
 Programming is a very powerful te
hnique

to design pseudo-polynomial 
omplexity algorithms for NP -hard problems. If an NP -hard problem admits

su
h an algorithm, it is 
lassi�ed as weakly NP -hard.

A numeri
al example. Table 1 shows a small instan
e of the binary knapsa
k problem. The 
orresponding

optimal solution is reported in Table 7.

Implementation. A basi
 version of the D.P. algorithm des
ribed above dire
tly 
omes from the de�nition

of the extension fun
tion. It 
onsists of �lling the matrix shown in Figure 7 row after row.

However in this algorithm many iterations are wasted, be
ause no all entries of the matrix z are needed. A
possibly more e�e
tive implementation is based on pointers, where every row of the matrix z is implemented

17



1: pro
edure Knapsa
k (basi
 version)

2: /* Inizialize */

3: for q = 0, . . . ,W do

4: z[0, q] := 0;

5: /* Compute all states */

6: for i = 1, . . . , n do

7: for q = 0, . . . , wi − 1 do
8: z[i, q] := z[i− 1, q];
9: flag[i, q] := 0;

10: for q = wi, . . . ,W do

11: if (z[i− 1, q − wi] + vi > z[i− 1, q]) then
12: z[i, q] := z[i− 1, q − wi] + vi;
13: flag[i, q] := 1;
14: else

15: z[i, q] := z[i− 1, q];
16: flag[i, q] := 0;

17: /* Find the optimal value */

18: z∗ := 0;
19: for q = 0, . . . ,W do

20: if (z[n, q] > z∗) then
21: z∗ := z[n, q];
22: q∗ := q;

23: /* Re
onstru
t the optimal solution */

24: for i = n, . . . , 1 do
25: x∗[i] := flag[i, q∗];
26: if (flag[i, q∗] = 1) then
27: q∗ := q∗ − wi;

return z∗,x∗

18



as a linked list. The algorithm starts from a single state of null value on row 0 and only existing states in

row i generate su

essor states in row i + 1. Every time a state (i, q) is generated, it is ne
essary to 
he
k

whether another state already exists with the same value of q. If it exists, then a 
omparison is needed whi
h

of the two states dominate. The sear
h for this state requires in general more steps than a dire
t a

ess to

a matrix entry. However this 
an be 
ompensated by the sparsity of the data-stru
ture: ea
h linked list is

likely to 
ontain less states than a single row of the matrix z, espe
ially in the earliest iterations.

The notation used in 7.1 is the following. Ea
h row is a doubly linked list made of re
ords with the

following �elds:

• capac: the value of the used 
apa
ity (q);

• value: the a

umulated value (z);

• left and right: pointers to the adja
ent re
ords;

• pred: pointer to the optimal prede
essor state;

• item: last element inserted into the knapsa
k.

An array tail 
ontains the pointers to the rightmost elements of ea
h row.

Algorithm 7.1 Knapsa
k (dynami
 data-stru
ture)

1: Initialize;
2: /* Compute all states */

3: for i = 1, . . . , n do

4: CopyList(i);
5: /* Initialize pointers to s
an the list */

6: p := tail[i];
7: s := tail[i];
8: repeat

9: if (pˆ.capac+ wi ≤W ) then
10: while (sˆ.capac > pˆ.capac+ wi) do
11: s := sˆ.left;

12: if (pˆ.capac+ wi > sˆ.capac) then
13: CreateNewState(p, s, i);
14: else

15: /* Dominan
e test */

16: if (sˆ.value < pˆ.value+ vi) then
17: sˆ.value := pˆ.value+ vi;
18: sˆ.item := i;
19: sˆ.pred := p;

20: p := pˆ.left;
21: until (p = nil);

22: RetrieveOptimalSolution;

Algorithm 7.2 Initialize

1: New(tail[0]);
2: tail[0]ˆ.value := 0;
3: tail[0]ˆ.capac := 0;
4: tail[0]ˆ.left := nil;
5: tail[0]ˆ.right := nil;
6: tail[0]ˆ.pred := nil;
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Algorithm 7.3 CopyList(i)

1: p := tail[i− 1];
2: tail[i] := nil;
3: while (p <> nil) do
4: if (tail[i] = nil) then
5: New(tail[i]);
6: s := tail[i];
7: sˆ.capac := pˆ.capac;
8: sˆ.value := pˆ.value;
9: sˆ.item := pˆ.item;

10: sˆ.right := nil;
11: sˆ.left := nil;
12: sˆ.pred := tail[i− 1];
13: else

14: New(sˆ.left);
15: sˆ.leftˆ.capac := pˆ.capac;
16: sˆ.leftˆ.value := pˆ.value;
17: sˆ.leftˆ.item := pˆ.item;

18: sˆ.leftˆ.right := s;
19: sˆ.leftˆ.left := nil;
20: sˆ.leftˆ.pred := p;
21: s := sˆ.left;

22: p := pˆ.left;

Algorithm 7.4 CreateNew(p, s, i)

1: New(t);
2: tˆ.left := s;
3: tˆ.right := sˆ.right;
4: sˆ.right := t;
5: if (tail[i] = s) then
6: tail[i] := t
7: else

8: tˆ.rightˆ.left := t;

9: tˆ.capac := pˆ.capac+ wi;

10: tˆ.value := pˆ.value+ vi;
11: tˆ.item := i;
12: tˆ.pred := p;

Algorithm 7.5 RetrieveOptimalSolution

1: z∗ := 0;
2: for i = 1, . . . , n do

3: x[i] := 0;

4: p := tail[n];
5: while (p <> nil) do
6: if (pˆ.value > z∗) then
7: z∗ := pˆ.value;
8: p∗ := p;

9: p := pˆ.left;

10: while (p∗ˆ.pred <> nil) do
11: x[p∗ˆ.item] := 1;
12: p∗ := p∗ˆ.pred;

return z∗,x∗
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 45

2 0 45 55 100

3 0 45 55 87 100 142

4 0 45 55 62 87 100 107 117 142 149 162

5 0 45 55 62 87 100 107 117 123 142 149 162 168

6 0 45 55 62 87 100 107 117 125 142 149 162 168

7 0 45 55 62 69 87 100 107 117 125 142 149 162 169

Table 3: The sparse matrix in the implementation using dynami
 data-stru
tures: about one half of the

states are not evaluated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 45

2 0 45 55 100

3 0 45 55 87 100 142

4 0 62 69 80 123 131 142 149

5 0 61 69 80 130 141 149

6 0 69 80 149

7 0 69

Table 4: The two sparse sub-matri
es in the bi-dire
tional implementation: about 75% of the states are not

generated.

In this implementation a large part of the matrix (i.e. a large part of the state spa
e) is not generated,

as shown in Table ??.

However, 
onsidering how many elementary operations are needed in the se
ond implementation 
ompared

to the �rst one, this saving may be insu�
ient to justify the use of dynami
 data-stru
tures to solve this toy

instan
e. The advantage of the se
ond implementation is likely to be meaningful only for very large instan
es

(where 
omputing time is also more signi�
ant).

An observation dire
tly stemming from the analysis of Table ?? is that the number of states grows

with index i: top rows in the matrix are sparser than bottom rows. This suggests a further improvement:

bi-dire
tional D.P.. In bi-dire
tional D.P. non-dominated states are generated in both dire
tions along the

sequen
e of de
isions; therefore we have to manage forward and ba
kward states separately and independently.

The extension of states stops when a suitable �half-way point� is rea
hed. The de�nition of this stop 
riterion

must satisfy a fundamental property: it must be possible to obtain any feasible solution by suitably 
ombining

a forward state and a ba
kward state, i.e. two non-dominated sub-poli
ies. In our example, a possible 
riterion

is the use of the items: for instan
e, we de�ne forward states as non-dominated 
ombinations of items 1 . . . , 3
and ba
kward states as non-dominated 
ombinations of items 4 . . . , 7. Using the same extension rules of

forward states for generating ba
kward states, with the only di�eren
e that items are 
onsidered in reverse

order, we obtain the result shown in Table 7.

Bi-dire
tional D.P. allows to de
rease signi�
antly the number of states to be 
onsidered. On the other

side, it requires a post-pro
essing operation to join pairs of forward and ba
kward states in order to obtain

solutions. Pairs of states must satisfy the 
apa
ity 
onstraint: ea
h forward state with 
apa
ity 
onsumption

q 
an be joined with any ba
kward state with 
apa
ity 
onsumption not larger than W − q. The join step


an be done in O(n), as illustrated in Table ??.

In the join step ea
h forward state is mat
hed with the most 
onvenient ba
kward state, that is with the

ba
kward state with maximum 
onsumption among those satisfying the 
apa
ity 
onstraint. For instan
e,

forward state with q = 5 and z = 55 
an be feasibly mat
hed with all ba
kward states with 
onsumption

between 0 and 11: the most 
onvenient one is the ba
kward state with q = 8 and z = 80. This 
an be done

in O(n) as shown in Algorithm 7.6: the pseudo-
ode assumes an implementation with two linked lists, whose

extreme elements are pointed by tailfw and tailbw on the right side of the matrix and headfw and headbw on
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FW 0 (0) (0) (0) 45 55 (55) (55) 87 100 (100) (100) (100) 142 (142) (142) (142)

BW 149 142 131 123 (80) (80) (80) 80 69 62 (0) (0) (0) (0) (0) 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

149 149 142 131 168 135 135 135 167 169 162 100 100 142 142 142 162

Table 5: The join step requires to s
an the forward and ba
kward list of non-dominated states.

the left side. It returns the optimal value z∗ and two pointers p∗ and q∗ to the optimal forward and ba
kward

state pair. Sin
e the two lists are s
anned only on
e, the worst-
ase time 
omplexity of the join pro
edure is

O(n).

Algorithm 7.6 Join

1: z∗ := 0;
2: p := tailfw;
3: q := headbw;
4: while (p 6= nil) and (q 6= nil) do
5: repeat

6: if (pˆ.value+ qˆ.value > z∗) then
7: z∗ := pˆ.value+ qˆ.value;
8: p∗ := p;
9: q∗ := q;

10: q := qˆ.right;
11: until (q = nil) or (pˆ.capac+ qˆ.capac > W )
12: repeat

13: p := pˆ.left;
14: until (p = nil) or (pˆ.capac+ qˆ.capac ≤W )

return z∗,p∗,q∗
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8 Dynami
 system optimal 
ontrol

The problem. We are given a dis
rete-time dynami
 system, i.e. a system 
hara
terized by an input, a

state and an output. In this example they are all very simple, just 
onsisting of a s
alar value. In a dis
rete

set of T points in time t = 1, . . . , T the state x(t) evolves a

ording to the equation

x(t) = x(t− 1) + u(t)

where u(t) is the input at time t. The domains U and X of u and x are dis
rete intervals. A 
ost ft(x(t −
1), u(t)) is asso
iated with ea
h transition o

urring from a state x(t − 1) with an input value u(t) at time

t. When the 
ost is negative it represents a bene�t. The whole set of input values is to be de
ided and the

initial state x(0) as well. We want to lead the system to a given �nal state x by a sequen
e of transitions of

minimum 
ost (or maximum bene�t).

Step 1: sequen
ing the de
isions. In this problem there is an obvious 
orresponden
e between the

de
ision pro
ess and the dynami
 system. In this 
orresponden
e the sequen
e of de
isions is the sequen
e

of input values to be 
hosen. So there is a de
ision for ea
h point in time t ∈ 1, . . . , T .

Step 2: de�ning the state. Owing to the above mentioned 
orresponden
e, the state in dynami
 pro-

gramming 
orresponds with the state of the dynami
 system. Hen
e the states have the following form:

{x, t}, where x indi
ates the state of the system and t indi
ates the point in time. The 
ost asso
iated with

ea
h state {x, t} is indi
ated by c(x, t): it indi
ates the minimum 
ost that must be paid for rea
hing state

x at time t.

Step 3: label extension.

• Initialization: c(x, 0) = 0 ∀x ∈ X .

• Extension: c(x, t) = maxu∈U{c(x− u, t− 1) + ft(x − u, u)} ∀x ∈ X ∀t ∈ 1, . . . , T .

The minimum 
ost is c(x, T ) (if it negative, it represents a maximum bene�t).

Complexity. The number of possible values for x is |X |, while the number of possible values for t is T .
Hen
e the number of states grows as O(|X |T ). When extending labels, the number of prede
essors for ea
h

state is |U |. Hen
e the worst-
ase time 
omplexity of the D.P. algorithm is O(|X ||U |T ). The 
omputational


omplexity is pseudo-polynomial.
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A numeri
al example. Tables 6 represents an instan
e of the problem with X = {1, 2, 3}, U = {−1, 0, 1}
and T = 3. The system is required to rea
h state x = 2 at t = 3. The states-transitions graph is represented

f1 f2 f3
-1 0 1 -1 0 1 -1 0 1

1 2 -7 -3 1 -5 -9 0 -6 -4

2 0 5 -4 -2 -14 2 1 -1 0

3 3 -10 -3 15 20 -8 4 -9 -2

Table 6: The transition 
osts. Rows indi
ate the x value, 
olumns indi
ate the u value.

in Figure 12 together with the labels and the optimal solution.
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Figure 12: The state-transition graph and the state extensions. Costs are represented in blue; optimal

prede
essors are represented in red. The optimal solution is indi
ated by thi
k ar
s and bolded numbers.
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9 Optimal budget allo
ation

The problem. We are given a set P = {1, . . . , n} of proje
ts and a budget R. We have to assign an

investment to ea
h proje
t. Depending on the investment, ea
h proje
t is expe
ted to yield a pro�t. No

assumption is made about the kind of relationship between the investment and the pro�t, but for simpli
ity

here we assume that the investments are integer and non-negative. For ea
h proje
t i ∈ P the 
orresponding

investment is represented by xi and the 
orresponding expe
ted pro�t by fi(xi). The domain of xi, i.e. the

set of possible investments in proje
t i ∈ P is indi
ated by Xi. The obje
tive is to maximize the overall

expe
ted pro�t without ex
eeding the budget.

Step 1: sequen
ing the de
isions. In this problem we 
onsider the proje
ts in a sequen
e, arbitrarily.

At ea
h point in time during the de
ision pro
ess the �rst part of the sequen
e has already been s
anned

while the last part of the sequen
e is not, i.e. the �rst proje
ts have been assigned an investment while the

investments in the remaining proje
ts are still to be de
ided. So a de
ision must be taken for ea
h proje
t

i ∈ P .

Step 2: de�ning the state. The state must represent all relevant information at any generi
 step during

the de
ision pro
ess. Obviously we need to know where we are in the de
ision pro
ess, i.e. whi
h is the last

de
ided investment. Furthermore, owing to the 
onstraint on the limited budget R, we need to know how

mu
h resour
e is left. Hen
e the states have the following form: {i, r}, where i indi
ates the last proje
t


onsidered and r indi
ates the residual available budget. The pro�t asso
iated with ea
h state {i, r} is

indi
ated by p(i, r): it indi
ates the maximum pro�t that 
an be a
hieved when rea
hing state {i, r}. An

additional initial state {0, R} 
orresponds to the beginning of the de
ision pro
ess, when no investment has

been de
ided yet and the whole budget is still available.

Step 3: label extension.

• Initialization: p(0, R) = 0.

• Extension: p(i, r) = maxxi∈Xi
{p(i− 1, r + xi) + fi(xi)} ∀i ∈ P ∀r ∈ 0, . . . , R.

The maximum overall expe
ted pro�t is maxRr=0{p(n, r)}. If the expe
ted pro�ts are larger than the in-

vestments (i.e. fi(xi) ≥ xi ∀i ∈ P ∀xi ∈ Xi) and it is possible to invest all the resour
e (i.e. R ≤
∑

i∈P maxxi∈Xi
{xi}), then the maximum expe
ted pro�t is 
ertainly attained at state (n, 0), be
ause it is


ertainly optimal to invest the whole budget.

Complexity. The number of possible values for i is n, while the number of possible values for r is R + 1
(from 0 to R). Hen
e the number of states grows as O(nR). When extending labels to ea
h state of proje
t

i ∈ P , the number of prede
essors for ea
h state is at most |Xi|, whi
h 
annot be larger than R+1. Hen
e the
worst-
ase time 
omplexity of the D.P. algorithm is O(nR2). The 
omputational 
omplexity of this algorithm

is pseudo-polynomial.
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A numeri
al example. Tables 7 represents an instan
e of the optimal budget allo
ation problem with

P = {1, . . . , 4} and R = 10.

x1 f1 x2 f2 x3 f3 x4 f4
0 0 0 -2 0 0 0 -5

1 7 1 4 1 5 1 -2

2 13 2 7 2 6 2 3

3 17 3 8 3 7 3 7

4 20 4 8

Table 7: The possible investments and the 
orresponding expe
ted pro�ts for ea
h proje
t.

The states-transitions graph is represented in Figure 13 together with the labels and the optimal solution.
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Figure 13: The state-transition graph and the state extensions. Costs are represented in blue; optimal

prede
essors are represented in red. The optimal solution is indi
ated by thi
k ar
s and bolded numbers.
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10 The max independent set problem on an interval graph

The problem. A very small 
ar rental 
ompany there is only one 
ar. The 
ompany has 
olle
ted a set N
of orders from potential 
ustomers and now it must de
ide whi
h orders to satisfy in order to maximize its

pro�ts. Ea
h order i ∈ N is 
hara
terized by a start time si, an end time ei and a pro�t pi. Obviously, no
two sele
ted orders 
an overlap in time.

Remark. In graph terminology this problem is 
alled Max independent set problem on an interval graph.

We 
an de�ne a graph where ea
h vertex 
orresponds to an order and any two verti
es i and j are 
onne
ted
by an edge if and only if the two 
orresponding orders overlap. For its parti
ular stru
ture, the resulting

graph is 
alled interval graph. Overlapping orders are in
ompatible, i.e. they 
annot be both sele
ted. This


onstraint translates into the sear
h for an independent set, i.e. a subset of verti
es su
h that they are

not 
onne
ted to one another by any edge. The subset of orders yielding the maximum pro�t 
orresponds

to a maximum weight independent set, after assigning ea
h vertex i a weight equal to the pro�t pi of the

orresponding order. The max independent set problem is NP -hard on general graphs, but it is polynomially

solvable on interval graphs.

Step 1: sequen
ing the de
isions. The orders 
an be sequen
ed a

ording to their start time s. A

binary de
ision must be taken for ea
h of them (whether to sele
t that order or not).

Step 2: de�ning the state. At ea
h point along the de
ision pro
ess we need to know where we are, i.e.

whi
h is the last order 
onsidered and what 
onstraints are propagated to the future de
isions be
ause of the

de
isions already taken. This is easily represented by the time when the 
ar be
omes available. A
tually the

time the 
ar be
omes available is not dire
tly relevant in itself; what is relevant is the next order that 
an be

sele
ted. If we know whi
h is the next order that 
an be sele
ted we do not even need to know whi
h is the

last order 
onsidered. Hen
e the states have the following (very simple) form: {i}, where i indi
ates the next
order that 
an be sele
ted when the 
ar be
omes available again. The pro�t asso
iated with ea
h state {i} is
indi
ated by f(i): it indi
ates the maximum pro�t that 
an be a
hieved when rea
hing state {i}. A dummy

state {n+1} represents the �nal state, when all orders have been de
ided. We set sn+1 to an arbitrary value

larger than maxi∈N{ei}.

Step 3: label extension.

• Initialization: f(1) := 0.

• Extension: f(i) := max{0,maxj∈N :ej≤si{f(j) + pj}} ∀i = 1, . . . , n+ 1.

The maximum pro�t is f(n+ 1).

Complexity. The number of possible values for i is n + 1. When extending labels to ea
h state {i}, the
number of prede
essors is at most n. Hen
e the worst-
ase time 
omplexity of the D.P. algorithm is not

worse than O(n2). However, it is redundant to explore all prede
essors for ea
h state. A more e�
ient

implementation is obtained if we assign ea
h state j a unique su

essor succ(j) su
h that

succ(j) = argmin
iinN :si≥ej

{si}.

The order succ(j) is the �rst order that 
an be sele
ted after order j. If we 
an determine succ(j) for ea
h
j ∈ N , then we 
an 
onstru
t a graph in whi
h ea
h state j has only two outgoing ar
s: an ar
 with value 0
to the next state j+1 and an ar
 of value pj to succ(j). These two ar
s represent the two alternatives: sele
t
j or do not sele
t j. The resulting graph is dire
ted, a
y
li
 and layered and has only O(n) ar
s: therefore
the label propagation algorithm takes O(n). The bottlene
k determining the worst-
ase time 
omplexity is

the 
onstru
tion of the graph. It 
an be done in linear time if the orders are sorted, as hown in Algorithm

10.1. If they are not, it takes O(n logn) to sort them and therefore this is the resulting time 
omplexity of

the algorithm.

A ve
tor G 
ontains 2n re
ords, two re
ords for ea
h order, with the following �elds:
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Algorithm 10.1 MaxIndependentSetonanIntervalGraph

1: Initialize;
2: Sort;
3: ComputeLabels;
4: RetrieveOptimalSolution;

• id: the order 
orresponding to the re
ord;

• time: the start or end time of order id;

• tail: a boolean �ag indi
ating whether the value time is the start time (tail = 1) or the end time

(tail = 0) of order id;

• mate: the position in the array G of the other time value of order id;

They are initialized as shown in 10.2.

Algorithm 10.2 Initialize

1: for i = 1, . . . , n do

2: G[i].id := i;
3: G[i + n].id := i;
4: G[i].time := si;
5: G[i + n].time := ei;
6: G[i].tail := 1;
7: G[i + n].tail := 0;
8: G[i].mate := i+ n;
9: G[i + n].mate := i;

The sorting pro
edure 
an be implemented in O(n log n) keeping the 
onsisten
y of the information stored

in the re
ord �elds. In parti
ular the �elds mate 
an be updated in O(1) every time the position in G of any

re
ord is 
hanged.

The pro
edure that 
omputes the optimal labels of the states (shown in 10.3) simply s
ans the ve
tor G
and propagates labels in two ways: from ea
h state 
orresponding to the start time of an order to the state


orresponding to the end time of the same order; and from ea
h state to the next one. The �rst type of

extension implies a pro�t, the se
ond one does not.

Algorithm 10.3 ComputeLabels

1: for i = 1, . . . , 2n do

2: G[i].value := 0;
3: G[i + n].pred := 0;

4: for i = 1, . . . , 2n do

5: /* Extend to the head */

6: if (G[i].tail = 1) then
7: if (G[i].value+ pG[i].id > G[G[i].mate].value) then
8: G[G[i].mate].value := G[i].value+ pG[i].id;

9: G[G[i].mate].pred := i;

10: /* Extend to the next */

11: if (G[i].value > G[i + 1].value) then
12: G[i+ 1].value := G[i].value;
13: G[i+ 1].pred := i;

Finally the optimal solution 
an be retrieved starting from the dummy node n + 1 and going ba
kward

along the 
hain of pointers de�ned by the �elds pred, as des
ribed in 10.4.
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Algorithm 10.4 RetrieveOptimalSolution

1: z∗ := G[2n+ 1].value;
2: for i = 1, . . . , n do

3: x∗[i] := 0;

4: i := 2n;
5: while (i 6= 0) do
6: if (G[i].pred = G[i].mate) then
7: x∗[G[i].id] := 1;

8: i := G[i].pred;
return z∗, x∗

A numeri
al example. Table 8 represents an instan
e of the problem with n = 7.

i si ei pi
1 4 15 11

2 18 42 24

3 40 45 5

4 4 33 29

5 7 29 22

6 3 9 6

7 21 30 9

Table 8: The orders re
eived by the 
ar rental 
ompany.

The state-transitions graph is represented in Figure 14 together with the labels and the optimal solution.
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end
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6,6 1,29

4,11 5,22

2,24

7,9 3,5

Figure 14: The state-transition graph and the state extensions. Costs are represented in blue; optimal

prede
essors are represented in red. The optimal solution is indi
ated by thi
k ar
s and bolded numbers.

The matrix implementation des
ribed above would produ
e the following matrix.
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Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

id 1 2 3 4 5 6 7 1 2 3 4 5 6 7

time 4 18 40 4 7 3 21 15 42 45 33 29 9 30

tail 1 1 1 1 1 1 1 0 0 0 0 0 0 0

mate 8 9 10 11 12 13 14 1 2 3 4 5 6 7

Table 9: The matrix after initialization.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

id 6 1 4 5 6 1 2 7 5 7 4 3 2 3

time 3 4 4 7 9 15 18 21 29 30 33 40 42 45

tail 1 1 1 1 0 0 1 1 0 0 0 1 0 0

mate 5 6 11 9 1 2 13 10 4 8 3 14 7 12

Table 10: The matrix after sorting.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

id 6 1 4 5 6 1 2 7 5 7 4 3 2 3

time 3 4 4 7 9 15 18 21 29 30 33 40 42 45

tail 1 1 1 1 0 0 1 1 0 0 0 1 0 0

mate 5 6 11 9 1 2 13 10 4 8 3 14 7 12

value 0 0 0 0 6 11 11 11 22 22 29 29 35 35

pred 0 1 2 3 1 2 6 7 4 9 3 11 7 13

Table 11: The matrix after labeling.

index

1 2 3 4 5 6 7 8 9 10 11 12 13 14

id

6 1 4 5 6 1 2 7 5 7 4 3 2 3

pred

0 1 2 3 1 2 6 7 4 9 3 11 7 13

x[2] := 1x[1] := 1

Figure 15: Re
onstru
tion of the optimal solution.
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