
Dynami programming

Giovanni Righini

Dipartimento di Informatia

Polo Didattio e di Riera di Crema

Università degli Studi di Milano

Via Bramante 65, 26013 Crema, Italy

1 Introdution

In these notes I present some examples of disrete optimization problems solved by dynami programming

(D.P. for short). The basi steps in the design of a D.P. algorithm are the same in all examples:

1. De�ne a sequene of deisions, that orresponds to determining a solution.

2. De�ne the state. The state is the amount of information that one needs to know when some deisions

in the sequene have already been taken and others are still to be taken. The information in the state

must be enough to determine the feasibility and the ost of the remaining deisions.

3. De�ne a reursive extension funtion, i.e. how the ost of states an be omputed from the ost of other

states.

The exeution of a D.P. algorithm resembles the searh for an optimal path on an ayli and weighted

digraph, from a given soure node orrespondig to an empty solution (no deision taken) to a given target

node orresponding to a omplete solution (all deisions taken). The struture and the size of the digraph

depend on the problem at hand and they determine the omplexity of the D.P. algorithm. When the D.P.

algorithm terminates, the label (ost to be minimized or value to be maximized) of the �nal state gives the

optimal value of the objetive funtion.

Besides omputing the optimal value, one usually wants to reonstrut a feasible solution with that value,

i.e. an optimal solution. This is ahieved by sanning the sequene of the deisions bakward, from the �nal

state to the initial state. For eah state its optimal predeessor is seleted and for this purpose it is required

that the optimal predeessor has been stored for eah state.

For eah example, I will provide the desription of the problem, the desription of one or more D.P.

algorithms, the orresponding ayli weighted digraphs, the omplexity of the algorithm. Eah problem is

illustrated by a numerial example with its solution. I also provide the pseudo-ode of the D.P. algorithm

allowing for an e�ient and straightforward implementation.

Re�nements suh as bi-diretional D.P. and the use of suitable data-strutures will be also disussed.

1

2 The shortest path problem on a weighted ayli digraph

The problem. Given an ayli digraph D = (N ,A) with |N | = n and |A| = m and a ost funtion

w : A 7→ ℜ, �nd the shortest path from a given node s ∈ N to a given node t ∈ N . A digraph is ayli if

and only if it does not ontain any iruit.

Step 1: sequening the deisions. Sine D is ayli, it is possible to sort its nodes in topologial order

in O(m). If D is also layered, it is possible to sort the layers and it is not neessary to sort the nodes in eah

layer (any order �ts). We indiate by Pred(j) ⊂ N the set of predeessors of eah node j ∈ N :

Pred(j) = {i ∈ N : (i, j) ∈ A}.

Step 2: de�ning the state. The state onsists of the last reahed node. All paths from node s to node

i ∈ N orrespond to sub-poliies leading to the same state. Hene states have the following (trivial) form:

{i}, with i ∈ N . The ost assoiated with eah state {i} is indiated by c(i).

Step 3: state extension.

• Initialization: c(s) := 0.

• Extension: c(j) := mini∈Pred(j){c(i) + wij}.

The optimal value is c(t) when the algorithm stops.

Complexity. The ayli weighted state-transition digraph of the D.P. algorithm is the digraph D itself.

This is why this example is suitbale to be presented as the introdutory problem to illustrate D.P..

The time omplexity immediately follows: when extending states, eah ar of the digraph is onsidered

only one; hene the omplexity is O(m).
Sine eah node has a single label c(i) and its value is omputed only one, the resulting D.P. algorithm

is a label setting algorithm.

Pseudo-ode. The pseudo-ode of the D.P. algorithm is shown in Algorithm 2.1. A vetor π reords the

optimal predeessor state for eah state, i.e. the optimal predeessor node for eah node in this example.

The sub-routine ComputePredecessors is needed when the digraph is given in input as a list of weighted

ars. In suh a ase the list is sequentially sanned and for eah ar (i, j) ∈ A node i is inserted in Pred(j).
The omputational omplexity of this operation is obviously O(m).

The omputational omplexity of the label extension is O(m), as already proven.

The omputational omplexity of the last part, where an optimal solution is produed, depends on the

required output format: if a binary vetor x is required, then the omplexity is O(m), as shown in Algorithm

2.1, beause m binary variables must be assigned a value; if a set X of seleted ars is required, then the

omplexity is O(n), beause the initialization X ← ∅ takes onstant time and no more than n − 1 ars an

belong to the s− t path.

2

Algorithm 2.1 Shortest path problem on a weighted ayli digraph

1: TopologicalSort; ⊲ O(m)
2: ComputePredecessors; ⊲ O(m)
3: /* Neglet unreahable nodes (nodes before s), if any */

4: for j = 0, . . . , s− 1 do ⊲ O(n)
5: c(j)←∞;

6: /* Initialization */

7: c(s)← 0;
8: /* Extension */

9: for j = s+ 1, . . . , t do
10: for i ∈ Pred(j) do
11: if (c(i) + wij < c(j)) then
12: c(j)← c(i) + wij ;

13: π(j)← i;

14: /* Optimal objetive funtion value */

15: z∗ ← c(t);
16: /* Retrieval of an optimal solution */

17: for (i, j) ∈ A do ⊲ O(m)
18: x∗(i, j)← 0;

19: j ← t;
20: while (j > s) do ⊲ O(n)
21: x∗(π(j), j) := 1;
22: j ← π(j);

return z∗, x∗

Label orreting variation. A variation of the D.P. algorithm is obtained by extending the labels from

eah state to its suessors. Let Succ(i) be the set of all suessors of node i, i.e.

Succ(i) = {j ∈ N : (i, j) ∈ A}.

The label extension part of Algorithm 2.1 ould be replaed by the following Algorithm 2.2.

Algorithm 2.2 Label extension

9: for i = s, . . . , t− 1 do
10: for j ∈ Succ(i) do
11: if (c(i) + wij < c(j)) then
12: c(j)← c(i) + wij ;

13: π(j)← i;

The time omplexity is the same, i.e. O(m), beause every ar is examined one. However, in this ase

the label of eah state an be updated several times. Therefore this variation is a label orreting algorithm.

3

A numerial example. Consider the ayli weighted digraph shown in Figure 1. The problem instane

requires to ompute a shortest path from node s = 0 to node t = 9.

0

1

2

3

4

5

6

7

8

9

6

8

13

9

15

8

10

12

8

7

15

20

8

7

3

4

Figure 1: A weighted ayli (and layered) digraph.

Figure 2 shows the iteration in whih node 5 is labeled. Nodes 0 to 4 have already been labeled. Their

assoiated osts are shown by the blue labels in Figure 2. Optimal predeessors are represented by red ars.

Node 5 is now labeled by omparing three predeessor states, yielding osts equal to 21 (from node 1), 18

(from node 2) and 21 (from node 3) and seleting the best option (the seond one).

0

0

1

6

2

8

3

13

4

15

5

18

6

7

8

9

6

8

13

9

15

8

10

12

8

7

15

20

8

7

3

4

Figure 2: A state extension.

4

Figure 3 shows the solution. The optimal value is 30 and the orresponding optimal solution an be reon-

struted by following the hain of predeessors π bakward from node 9 to node 1: the result is represented

by the thik red ars.

0

0

1

6

2

8

3

13

4

15

5

18

6

20

7

30

8

26

9

30

6

8

13

9

15

8

10

12

8

7

15

20

8

7

3

4

Figure 3: The example solved.

5

3 The shortest path problem on a weighted digraph

The problem. Given a digraph D = (N ,A) with |N | = n and |A| = m and a ost funtion w : A 7→ ℜ,
�nd the shortest path from a given node s ∈ N to a given node t ∈ N . The digraph is not onstrained to be

ayli as in the previous example; we onsider now a generi digraph, possibly ontaining iruits. However

iruits are guaranteed not to have negative ost.

Step 1: sequening the deisions. The problem is very similar to the previous one, but now the digraph

is not ayli and therefore its nodes annot be sorted as in the previous example. We an reformulate the

problem on an ayli and layered digraph D′ = (N ′,A′), where

• N ′
is made by a set L of n layers;

• eah layer Lk ontains a opy of eah node in N ; hene eah node in N ′
is indiated by a pair (i, k);

• for eah ar (i, j) ∈ A there is an ar from node (i, k) to node (j, k + 1) for eah layer k = 1, . . . , n− 1.

We indiate by Pred′(j, k) ⊆ N ′
the set of predeessors of eah node (j, k) ∈ N ′

:

Pred′(j, k) = {(i, k − 1) ∈ N ′ : (i, j) ∈ A′} ∀k = 2, . . . , n.

The predeessors of eah node in layer k belong to layer k − 1. The nodes in layer 1 have no predeessor.

The n layers of digraph D′
represent the n stages of the D.P. algorithm. At eah stage k the algorithm

omputes and ompares paths made by k − 1 ars. Sine no feasible solution an ontain more than n − 1
ars, n layers are su�ient to impliitly enumerate all possible solutions.

After this reformulation, the shortest problem on a generi digraph with n nodes is translated into the

shortest path problem on an ayli digraph with m(n−1) nodes. Therefore, the same D.P. algorithm shown

in the previous example applies.

Step 2: de�ning the state. The state onsists of the last reahed node in N ′
. All s− i paths made by k

ars orrespond to sub-poliies leading to the same state. Hene labels have the following form: {i, k}, with
i ∈ N and k = 1, . . . , n. The ost assoiated with eah label {i, k} is indiated by c(i, k).

Step 3: label extension.

• Initialization: c(s, 1) = 0 c(i, 1) =∞ ∀i 6= s.

• Extension: c(j, k) = min(i,k−1)∈Pred′(j,k){c(i, k − 1) + wij , c(j, k − 1)}.

The optimal value is c(t, n).

Remark 1. The algorithm an possibly terminate even before reahing stage n: if no hange in labels is

observed at a ertain stage, no hange an our in the remaining stages either.

Remark 2. The algorithm omputes the shortest path from s to all the other nodes in N .

Complexity. When extending labels, eah ar in A′
is onsidered only one. The number of ars in A′

is

m(n− 1). Hene the omplexity is O(mn).

The algorithm is known as Bellman-Ford algorithm.

The label of a same node an be updated several times (one for eah stage). For this reason the Bellman-

Ford algorithm is a label orreting algorithm.

A numerial example. Figure 4 shows a weighted digraph ontaining iruits. We want to ompute the

shortest path from node 1 to node 6.

The solution proess and the optimal solution are illustrated in Figure 5.

6

1

2

3

4

5

6

20

10

63

72

0

40

70

5

40

34

100

-20

-5

36

-31

5

80

Figure 4: A weighted digraph.

1,1

2,2

3,2

4,2

5,2

6,2

2,3

3,3

4,3

5,3

6,3

2,4

3,4

4,4

5,4

6,4

2,5

3,5

4,5

5,5

6,5

0

20

10

63

72

∞

15

10

50

44

90

13

10

49

44

85

13

10

49

44

83

20

10

63

72

0

40

70

5

40

34

100

-20

-5

36

-31

5

80

0

40

70

5

40

34

100

-20

-5

36

-31

5

80

0

40

70

5

40

34

100

-20

-5

36

-31

5

80

Figure 5: The state-transition graph and the state extensions. Costs are represented in blue; optimal prede-

essors are represented in red. The optimal solution is indiated by thik ars and bolded numbers.

7

4 The shortest Hamiltonian path problem on a weighted digraph

The problem. Given a digraph D = (N ,A) with |N | = n and |A| = m and a ost funtion w : A 7→ ℜ,
�nd the shortest Hamiltonian path from a given node s ∈ N to a given node t ∈ N .

A Hamiltonian path is a path that visits all nodes of the digraph one. Note that w.l.o.g. we an assume A
to be omplete; just onsider missing ars as ars with a very large ost.

Step 1: sequening the deisions. Similarly to the previous example, sine D is not ayli, it is not

possible to sort its nodes and to set their labels permanently. We resort to an auxiliary ayli and layered

digraph D′
using the same onstrution of the previous example.

Step 2: de�ning the state. The state does not onsist only of the last reahed node. In order to hek

the feasibility of the solution one must know whih nodes have already been visited. All paths from node

(s, 1) to node (i, k) ∈ N ′
orrespond to sub-poliies leading to the same state if and only if they also visit

the same subset of nodes. Hene labels have the following form: {i, k, S}, with i ∈ N and S ⊆ N . Note

that k = |S|, beause one additional node is visited every time a path is extended. Therefore the information

given by the layer index k is redundant and an be omitted. The ost assoiated with eah label {i, S} is
indiated by c(i, S).

Step 3: label extension.

• Initialization: c(s, {s}) = 0.

• Extension: c(j, S) = mini∈S{c(i, S\{j}) + wij}.

The optimal value is c(t,N).

Complexity. The number of states to be labeled is exponential in n. The number of distint values of the
possible subsets S is 2n and eah subset with k nodes appears in k di�erent states (depending on whih is the

last visited node). Hene the number of states is O(n2n). When extending labels the number of predeessors

for eah state is O(n). Hene the omplexity of the D.P. algorithm is O(n22n).

Dominane. Dominane onsists of deleting some states from further onsideration beause there is a guar-

antee that they do not orrespond to optimal sub-poliies and therefore the orresponding partial solutions

annot be part of optimal solutions. In these examples the dominane riteria are impliitly applied when

the label obtained from the best predeessor is seleted and all other extensions (i.e. the labels produed by

the other predeessors) are disarded. This is a speial ase of dominane: a state dominates another one

when it has a smaller ost and all information is idential in both states (same last visited node, same layer,

same subset of visited nodes,...).

8

A numerial example.

1

2

3

4

5

6

20

10

63

72

0

40

70

5

40

34

100

-20

-5

36

-31

5

80

Figure 6: A weighted digraph. We want to �nd the minimum ost Hamiltonian path from node 1 to node 6.

Note that the digraph ontains ars with negative ost. However it does not ontain iruits of negative

ost. Ciruits of zero ost are allowed and indeed there is one, ontaining nodes 4 and 5. Also note that not

all ars are present. This makes the instane easier to solve and the orresponding state-transition graph

easier to represent: some states have a unique predeessor (see Figure 7).

The optimal solution is the path (1, 3, 4, 5, 2, 6), whose ost is 84. Dominane an be observed on the right

part of Figure 7, where some states have more than one predeessor: this means that they an be reahed

in di�erent ways. For instane, state {5, 1345} an be reahed through the sequenes (1, 4, 3, 5) with ost 77

and (1, 3, 4, 5) with ost 45. The former sub-poliy is dominated by the latter one. Owing to dominane, the

states generated by the D.P. algorithm are fewer than all possible sequenes (sub-poliies).

9

1,{1}

2,{1,2}

3,{1,3}

4,{1,4}

5,{1,5}

2,{1,2,3}

2,{1,2,5}

3,{1,2,3}

3,{1,3,4}

4,{1,2,4}

4,{1,3,4}

4,{1,4,5}

5,{1,3,5}

5,{1,4,5}

2,{1,2,3,4}

2,{1,2,3,5}

2,{1,2,4,5}

3,{1,2,3,4}

3,{1,2,3,5}

3,{1,3,4,5}

4,{1,2,3,4}

4,{1,2,4,5}

4,{1,3,4,5}

5,{1,2,3,5}

5,{1,2,4,5}

5,{1,3,4,5}

2,{1,2,3,4,5}

3,{1,2,3,4,5}

4,{1,2,3,4,5}

5,{1,2,3,4,5}

6,{1,2,3,4,5,6}

0

20

10

63

72

15

41

20

43

60

50

77

44

58

48

13

27

40

41

57

55

81

49

54

55

45

14

27

53

50

84

20

10

63

72

0

40

5

40

34

-20

-5

-31

5

40

0

40

40

34

5

34

-20

-5

-5

-20

-31

5

-31

40

0

34

40

5

-5

5

-20

-31

70

100

36

80

Figure 7: The state-transition graph and the state extensions. Costs are represented in blue; optimal prede-

essors are represented in red. The optimal solution is indiated by thik ars and bolded numbers.

10

5 String mathing problem

The problem. Given two strings S1 and S2, i.e. two sequenes of haraters taken from a given alphabet

A, given an additional harater �X� not ourring in S1 and S2 and given a ost funtion w : A+×A+ 7→ ℜ,
where A+ = A∪ {“X ′′}, �nd the minimum ost alignment.

An alignment is given by inserting any number of haraters �X� in any positions along the two sequenes,

so that the �nal sequenes have the same length. The ost of an alignment is the sum of the values of the

ost funtion omputed for all positions along the resulting sequenes: eah pair of haraters ourring in

the same position is the argument of the funtion for that position.

Formally, let S+
1 and S+

2 be the two sequenes after the insertion of the ourrenes of the �X� harater.

Let L be their length. Let indiate by S+
i (k) the harater in position k in sequene S+

i . The ost of the

alignment is

∑L

k=1 w(S
+
1 (k), S+

2 (k)).
Remark. Obviously the funtion w is de�ned to penalize misalignments, i.e. the presene of di�erent

haraters in the same position, and to reward alignments, i.e. the presene of idential haraters in the

same positions. The alignment of a harater in A with a harater �X� is usually penalized, but less than

a misalignment. Aligning two haraters �X� is never optimal: they an be deleted from both sequenes,

yielding a better solution.

Step 1: sequening the deisions. In this example we onsider two sequenes of deisions, one for eah

string. For eah position one has to deide whether to insert a harater �X� or not in the string.

Step 2: de�ning the state. The state must represent whih deisions have already been taken: sine

there are two sequenes, the state ontains two indies, say k1 and k2, indiating how many positions have

already been sanned and aligned in eah sequene. No further information is required to hek the feasibility

of the remaining deisions. Hene the states have the following form: {k1, k2}. The ost assoiated with eah

state {k1, k2} is indiated by c(k1, k2).

Step 3: label extension.

• Initialization: c(0, 0) = 0.

• Extension: c(k1, k2) = min{c(k1 − 1, k2) + wS1(k1),“X′′ , c(k1, k2 − 1) + w“X′′,S2(k2), c(k1 − 1, k2 − 1) +
wS1(k1),S2(k2)}.

The optimal value is c(n1, n2), where n1 and n2 are the lengths of the given sequenes.

Complexity. The number of states to be labeled is (n1+1)(n2+1). When extending labels the number of

predeessors for eah state is at most equal to three. Hene the omplexity of the D.P. algorithm is quadrati

in the input size.

11

A numerial example.

Instane

S1: A A A B A B

S2: B A B A B B

Cost A B X

A 0 2 1

B 2 0 1

X 1 1 -

Solution 1:

S1 = A A A B A B

S2 = B A B A B B

Cost = 8

Solution 2:

S1 = A A A B A B X X

S2 = B A X X B A B B

Cost = 4

Figure 8: A sample instane of the string mathing problem with two feasible solutions.

12

0,0 0,1 0,2 0,3 0,4 0,5 0,6

1,0 1,1 1,2 1,3 1,4 1,5 1,6

2,0 2,1 2,2 2,3 2,4 2,5 2,6

3,0 3,1 3,2 3,3 3,4 3,5 3,6

4,0 4,1 4,2 4,3 4,4 4,5 4,6

5,0 5,1 5,2 5,3 5,4 5,5 5,6

6,0 6,1 6,2 6,3 6,4 6,5 6,6

0 1

2 3 4 5 6

1 2 1 2
3 4 5

2 3 2 3 2

3 4

3 4
3

4
3

4 5

4 3 4
3

4
3

4

5 4 3 4

3 4

5

6 5 4 3 4
3 4

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 0 2 0 2 2

2 0 2 0 2 2

2 0 2 0 2 2

0 2 0 2 0 0

2 0 2 0 2 2

0 2 0 2 0 0

Figure 9: The state-transition graph. The graph is direted, ayli and layered: eah node an be reahed

from at most three predeessors in the previous two layers. Costs assoiated with the states are represented in

blue. Optimal predeessors are represented by red ars. Optimal solutions are indiated by bolded numbers

and thik ars. For this small instane multiple optimal solutions exist.

6 p-medians on a line

The problem. Given a straight line and a set N = {1, . . . , n} of points along it in �xed positions x(i) ∀i ∈
N , �nd the optimal position along the line for p additional points, alled �medians�, suh that the sum of the

distanes between eah point in N and its losest median is minimized. W.l.o.g. we assume that the points

in N are ordered in the same order as they our along the line.

Remark 1. The p-median problem is NP-hard on graphs, but this simpli�ed version in whih all points

lie on a straight line is polynomially solvable by dynami programming.

Remark 2. The 1-median problem on a line is easy (it is easy, i.e. polynomially solvable, even on general

graphs). If the number of points is odd, the optimal loation of the median oinides with the entral point;

if the number of points is even, the optimal loation of the median is anywhere along the segment between

the two entral points. We indiate by w(i, j) the optimal (minimum) ost of loating a single median to

serve the points in the interval [i, j], with i ∈ N, j ∈ N, j ≥ i.

Step 1: sequening the deisions. All solutions indue a partition of N into non-overlapping intervals

suh that all points within a same interval have the same losest median. If suh partition is given, it is easy

13

to optimally loate the median in eah interval (see Remark 2). Hene we san the sequene of the points

along the line and we deide how many medians are used to serve the points enountered.

Step 2: de�ning the state. The state represents whih deisions have already been taken: at eah stage

in the deision proess we need to know whih is the last sanned point i ∈ N and the number m of medians

used up to that point. Hene the states have the following form: {i,m}. The ost assoiated with eah state

{i,m} is indiated by c(i,m): it indiates the minimum ost to serve the points in [1..i] with m medians.

Step 3: label extension.

• Initialization: c(i, 1) = w(1, i) ∀i ∈ N .

• Extension: c(i,m) = minj<i{c(j,m− 1) + w(j + 1, i)} ∀i ∈ N : i ≥ 2 ∀m : 2 ≤ m ≤ min{i, p}.

The optimal value is c(n, p).

Complexity. The number of states to be labeled is given by np and sine p ≤ n it is not larger than n2
.

When extending labels, the number of predeessors for eah state is O(n). Hene the omplexity of the D.P.

algorithm is O(n2p) or O(n3).

14

A numerial example. Figure 10 represents an instane of the p-median problem on a line.

0

❜

A

2

❜

B

4

❜

C

7

❜

D

10

❜

E

11

❜

F

14

❜

G

18

❜

H

19 20

Figure 10: An instane of the p-median problem on a line. For better readability the indies 1, . . . , n of the

given points have been replaed by letters. In this instane p = 3.

The osts w(j, i) for all pairs of points an be omputed in O(n2) exploiting the property outlined in

Remark 1 by the following simple algorithm.

Algorithm 6.1

1: for j = 1, . . . , n− 1 do
2: opt := j;
3: i := j;
4: w(j, i) := 0;
5: paritybit := 1;
6: while i < n do

7: i := i+ 1;
8: paritybit := 1− paritybit;
9: w(j, i) := w(j, i − 1) + (x(i)− x(opt));

10: if (paritybit = 0) then
11: opt := opt+ 1;

The resulting ost matrix is as follows.

w A B C D E F G H

A 0 2 5 11 15 22 30 39

B 0 3 6 10 14 22 30

C 0 3 4 8 15 23

D 0 1 4 11 16

E 0 3 7 12

F 0 4 5

G 0 1

H 0

The orresponding states-transitions graph, with the optimal solution, is represented in Figure 11.

15

A,1

B,1

C,1

D,1

E,1

F,1

B,2

C,2

D,2

E,2

F,2

G,2

H,3

0

2

5

11

15

22

0

2

5

6

9

16

14

0

3

6

10

14

22

0

3

4

8

15

0

1

4

11

0

3

7

0

4

0

30

23

16

12

5

1

Figure 11: The states-transitions graph and the states extensions. Costs of the states are indiated in blue;

osts of the transitions are indiated in red. The optimal solution is indiated by bolded osts and thik ars.

7 The binary knapsak problem

The problem. Given a set N = {1, . . . , n} of items with a value vi ∀i ∈ N and a weight wi ∀i ∈ N , selet

the subset of items of maximum value suh that the overall weight of the seleted items does not exeed a

given apaity W .

Step 1: sequening the deisions. We an onsider the items aording to their numbering from 1 to n.
For eah item we have to deide whether to selet it or not. Hene we have a sequene of n binary deisions.

Step 2: de�ning the state. At eah point along the deision proess we need to know the residual apaity

whih is left (or equivalently, the amount of apaity already used) after the already taken deisions. Hene

16

i vi wi

1 45 4

2 55 5

3 42 4

4 62 6

5 61 6

6 80 8

7 69 7

Table 1: A small instane. Items are sorted aording to their e�ieny vi/wi. The apaity is W = 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 45 45 45 45 45 45 45 45 45 45 45 45 45

2 0 0 0 0 45 55 55 55 55 100 100 100 100 100 100 100 100

3 0 0 0 0 45 55 55 55 87 100 100 100 100 142 142 142 142

4 0 0 0 0 45 55 62 62 87 100 107 117 117 142 149 162 162

5 0 0 0 0 45 55 62 62 87 100 107 117 123 142 149 162 168

6 0 0 0 0 45 55 62 62 87 100 107 117 125 142 149 162 168

7 0 0 0 0 45 55 62 69 87 100 107 117 125 142 149 162 169

Table 2: The optimal solution (in bold): z∗ = 169, x∗ = [1, 1, 0, 0, 0, 0, 1].

the states have the following form: {i, q}, where i indiates the last item onsidered in the sequene and q
indiates the apaity used. The value assoiated with eah state {i, q} is indiated by z(i, q): it indiates
the maximum value that an be ahieved with the �rst i items, using an amount of apaity equal to q. A
dummy initial state indiates that at the beginning no item has been onsidered and no apaity has been

used.

Step 3: label extension.

• Initialization: z(0, q) = 0 ∀q = 0, . . . ,W .

• Extension: z(i, q) =

{

z(i− 1, q) ∀i ∈ N ∀q < wi

max{z(i− 1, q), z(i− 1, q − wi) + vi} ∀i ∈ N ∀q = wi, . . . ,W.

The optimal value is maxq=0,...,W {z(n, q)}.

Complexity. Index i ranges in the interval [0 . . . , n]; the number of possible values for i is n+ 1. Index q
ranges in the interval [0 . . . ,W]; the number of possible values for q is W + 1. Hene the number of states

grows as O(nW). When extending labels, the number of predeessors for eah state is 2. Hene the worst-ase
time omplexity of the D.P. algorithm is O(nW). This omplexity is not polynomial, beause W does not

determine the size of the instane, like n; rather it is the value of a datum of the instane. In this ase, we say

that the omputational omplexity is pseudo-polynomial. Dynami Programming is a very powerful tehnique

to design pseudo-polynomial omplexity algorithms for NP -hard problems. If an NP -hard problem admits

suh an algorithm, it is lassi�ed as weakly NP -hard.

A numerial example. Table 1 shows a small instane of the binary knapsak problem. The orresponding

optimal solution is reported in Table 7.

Implementation. A basi version of the D.P. algorithm desribed above diretly omes from the de�nition

of the extension funtion. It onsists of �lling the matrix shown in Figure 7 row after row.

However in this algorithm many iterations are wasted, beause no all entries of the matrix z are needed. A
possibly more e�etive implementation is based on pointers, where every row of the matrix z is implemented

17

1: proedure Knapsak (basi version)

2: /* Inizialize */

3: for q = 0, . . . ,W do

4: z[0, q] := 0;

5: /* Compute all states */

6: for i = 1, . . . , n do

7: for q = 0, . . . , wi − 1 do
8: z[i, q] := z[i− 1, q];
9: flag[i, q] := 0;

10: for q = wi, . . . ,W do

11: if (z[i− 1, q − wi] + vi > z[i− 1, q]) then
12: z[i, q] := z[i− 1, q − wi] + vi;
13: flag[i, q] := 1;
14: else

15: z[i, q] := z[i− 1, q];
16: flag[i, q] := 0;

17: /* Find the optimal value */

18: z∗ := 0;
19: for q = 0, . . . ,W do

20: if (z[n, q] > z∗) then
21: z∗ := z[n, q];
22: q∗ := q;

23: /* Reonstrut the optimal solution */

24: for i = n, . . . , 1 do
25: x∗[i] := flag[i, q∗];
26: if (flag[i, q∗] = 1) then
27: q∗ := q∗ − wi;

return z∗,x∗

18

as a linked list. The algorithm starts from a single state of null value on row 0 and only existing states in

row i generate suessor states in row i + 1. Every time a state (i, q) is generated, it is neessary to hek

whether another state already exists with the same value of q. If it exists, then a omparison is needed whih

of the two states dominate. The searh for this state requires in general more steps than a diret aess to

a matrix entry. However this an be ompensated by the sparsity of the data-struture: eah linked list is

likely to ontain less states than a single row of the matrix z, espeially in the earliest iterations.

The notation used in 7.1 is the following. Eah row is a doubly linked list made of reords with the

following �elds:

• capac: the value of the used apaity (q);

• value: the aumulated value (z);

• left and right: pointers to the adjaent reords;

• pred: pointer to the optimal predeessor state;

• item: last element inserted into the knapsak.

An array tail ontains the pointers to the rightmost elements of eah row.

Algorithm 7.1 Knapsak (dynami data-struture)

1: Initialize;
2: /* Compute all states */

3: for i = 1, . . . , n do

4: CopyList(i);
5: /* Initialize pointers to san the list */

6: p := tail[i];
7: s := tail[i];
8: repeat

9: if (pˆ.capac+ wi ≤W) then
10: while (sˆ.capac > pˆ.capac+ wi) do
11: s := sˆ.left;

12: if (pˆ.capac+ wi > sˆ.capac) then
13: CreateNewState(p, s, i);
14: else

15: /* Dominane test */

16: if (sˆ.value < pˆ.value+ vi) then
17: sˆ.value := pˆ.value+ vi;
18: sˆ.item := i;
19: sˆ.pred := p;

20: p := pˆ.left;
21: until (p = nil);

22: RetrieveOptimalSolution;

Algorithm 7.2 Initialize

1: New(tail[0]);
2: tail[0]ˆ.value := 0;
3: tail[0]ˆ.capac := 0;
4: tail[0]ˆ.left := nil;
5: tail[0]ˆ.right := nil;
6: tail[0]ˆ.pred := nil;

19

Algorithm 7.3 CopyList(i)

1: p := tail[i− 1];
2: tail[i] := nil;
3: while (p <> nil) do
4: if (tail[i] = nil) then
5: New(tail[i]);
6: s := tail[i];
7: sˆ.capac := pˆ.capac;
8: sˆ.value := pˆ.value;
9: sˆ.item := pˆ.item;

10: sˆ.right := nil;
11: sˆ.left := nil;
12: sˆ.pred := tail[i− 1];
13: else

14: New(sˆ.left);
15: sˆ.leftˆ.capac := pˆ.capac;
16: sˆ.leftˆ.value := pˆ.value;
17: sˆ.leftˆ.item := pˆ.item;

18: sˆ.leftˆ.right := s;
19: sˆ.leftˆ.left := nil;
20: sˆ.leftˆ.pred := p;
21: s := sˆ.left;

22: p := pˆ.left;

Algorithm 7.4 CreateNew(p, s, i)

1: New(t);
2: tˆ.left := s;
3: tˆ.right := sˆ.right;
4: sˆ.right := t;
5: if (tail[i] = s) then
6: tail[i] := t
7: else

8: tˆ.rightˆ.left := t;

9: tˆ.capac := pˆ.capac+ wi;

10: tˆ.value := pˆ.value+ vi;
11: tˆ.item := i;
12: tˆ.pred := p;

Algorithm 7.5 RetrieveOptimalSolution

1: z∗ := 0;
2: for i = 1, . . . , n do

3: x[i] := 0;

4: p := tail[n];
5: while (p <> nil) do
6: if (pˆ.value > z∗) then
7: z∗ := pˆ.value;
8: p∗ := p;

9: p := pˆ.left;

10: while (p∗ˆ.pred <> nil) do
11: x[p∗ˆ.item] := 1;
12: p∗ := p∗ˆ.pred;

return z∗,x∗

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 45

2 0 45 55 100

3 0 45 55 87 100 142

4 0 45 55 62 87 100 107 117 142 149 162

5 0 45 55 62 87 100 107 117 123 142 149 162 168

6 0 45 55 62 87 100 107 117 125 142 149 162 168

7 0 45 55 62 69 87 100 107 117 125 142 149 162 169

Table 3: The sparse matrix in the implementation using dynami data-strutures: about one half of the

states are not evaluated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 45

2 0 45 55 100

3 0 45 55 87 100 142

4 0 62 69 80 123 131 142 149

5 0 61 69 80 130 141 149

6 0 69 80 149

7 0 69

Table 4: The two sparse sub-matries in the bi-diretional implementation: about 75% of the states are not

generated.

In this implementation a large part of the matrix (i.e. a large part of the state spae) is not generated,

as shown in Table ??.

However, onsidering how many elementary operations are needed in the seond implementation ompared

to the �rst one, this saving may be insu�ient to justify the use of dynami data-strutures to solve this toy

instane. The advantage of the seond implementation is likely to be meaningful only for very large instanes

(where omputing time is also more signi�ant).

An observation diretly stemming from the analysis of Table ?? is that the number of states grows

with index i: top rows in the matrix are sparser than bottom rows. This suggests a further improvement:

bi-diretional D.P.. In bi-diretional D.P. non-dominated states are generated in both diretions along the

sequene of deisions; therefore we have to manage forward and bakward states separately and independently.

The extension of states stops when a suitable �half-way point� is reahed. The de�nition of this stop riterion

must satisfy a fundamental property: it must be possible to obtain any feasible solution by suitably ombining

a forward state and a bakward state, i.e. two non-dominated sub-poliies. In our example, a possible riterion

is the use of the items: for instane, we de�ne forward states as non-dominated ombinations of items 1 . . . , 3
and bakward states as non-dominated ombinations of items 4 . . . , 7. Using the same extension rules of

forward states for generating bakward states, with the only di�erene that items are onsidered in reverse

order, we obtain the result shown in Table 7.

Bi-diretional D.P. allows to derease signi�antly the number of states to be onsidered. On the other

side, it requires a post-proessing operation to join pairs of forward and bakward states in order to obtain

solutions. Pairs of states must satisfy the apaity onstraint: eah forward state with apaity onsumption

q an be joined with any bakward state with apaity onsumption not larger than W − q. The join step

an be done in O(n), as illustrated in Table ??.

In the join step eah forward state is mathed with the most onvenient bakward state, that is with the

bakward state with maximum onsumption among those satisfying the apaity onstraint. For instane,

forward state with q = 5 and z = 55 an be feasibly mathed with all bakward states with onsumption

between 0 and 11: the most onvenient one is the bakward state with q = 8 and z = 80. This an be done

in O(n) as shown in Algorithm 7.6: the pseudo-ode assumes an implementation with two linked lists, whose

extreme elements are pointed by tailfw and tailbw on the right side of the matrix and headfw and headbw on

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FW 0 (0) (0) (0) 45 55 (55) (55) 87 100 (100) (100) (100) 142 (142) (142) (142)

BW 149 142 131 123 (80) (80) (80) 80 69 62 (0) (0) (0) (0) (0) 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

149 149 142 131 168 135 135 135 167 169 162 100 100 142 142 142 162

Table 5: The join step requires to san the forward and bakward list of non-dominated states.

the left side. It returns the optimal value z∗ and two pointers p∗ and q∗ to the optimal forward and bakward

state pair. Sine the two lists are sanned only one, the worst-ase time omplexity of the join proedure is

O(n).

Algorithm 7.6 Join

1: z∗ := 0;
2: p := tailfw;
3: q := headbw;
4: while (p 6= nil) and (q 6= nil) do
5: repeat

6: if (pˆ.value+ qˆ.value > z∗) then
7: z∗ := pˆ.value+ qˆ.value;
8: p∗ := p;
9: q∗ := q;

10: q := qˆ.right;
11: until (q = nil) or (pˆ.capac+ qˆ.capac > W)
12: repeat

13: p := pˆ.left;
14: until (p = nil) or (pˆ.capac+ qˆ.capac ≤W)

return z∗,p∗,q∗

22

8 Dynami system optimal ontrol

The problem. We are given a disrete-time dynami system, i.e. a system haraterized by an input, a

state and an output. In this example they are all very simple, just onsisting of a salar value. In a disrete

set of T points in time t = 1, . . . , T the state x(t) evolves aording to the equation

x(t) = x(t− 1) + u(t)

where u(t) is the input at time t. The domains U and X of u and x are disrete intervals. A ost ft(x(t −
1), u(t)) is assoiated with eah transition ourring from a state x(t − 1) with an input value u(t) at time

t. When the ost is negative it represents a bene�t. The whole set of input values is to be deided and the

initial state x(0) as well. We want to lead the system to a given �nal state x by a sequene of transitions of

minimum ost (or maximum bene�t).

Step 1: sequening the deisions. In this problem there is an obvious orrespondene between the

deision proess and the dynami system. In this orrespondene the sequene of deisions is the sequene

of input values to be hosen. So there is a deision for eah point in time t ∈ 1, . . . , T .

Step 2: de�ning the state. Owing to the above mentioned orrespondene, the state in dynami pro-

gramming orresponds with the state of the dynami system. Hene the states have the following form:

{x, t}, where x indiates the state of the system and t indiates the point in time. The ost assoiated with

eah state {x, t} is indiated by c(x, t): it indiates the minimum ost that must be paid for reahing state

x at time t.

Step 3: label extension.

• Initialization: c(x, 0) = 0 ∀x ∈ X .

• Extension: c(x, t) = maxu∈U{c(x− u, t− 1) + ft(x − u, u)} ∀x ∈ X ∀t ∈ 1, . . . , T .

The minimum ost is c(x, T) (if it negative, it represents a maximum bene�t).

Complexity. The number of possible values for x is |X |, while the number of possible values for t is T .
Hene the number of states grows as O(|X |T). When extending labels, the number of predeessors for eah

state is |U |. Hene the worst-ase time omplexity of the D.P. algorithm is O(|X ||U |T). The omputational

omplexity is pseudo-polynomial.

23

A numerial example. Tables 6 represents an instane of the problem with X = {1, 2, 3}, U = {−1, 0, 1}
and T = 3. The system is required to reah state x = 2 at t = 3. The states-transitions graph is represented

f1 f2 f3
-1 0 1 -1 0 1 -1 0 1

1 2 -7 -3 1 -5 -9 0 -6 -4

2 0 5 -4 -2 -14 2 1 -1 0

3 3 -10 -3 15 20 -8 4 -9 -2

Table 6: The transition osts. Rows indiate the x value, olumns indiate the u value.

in Figure 12 together with the labels and the optimal solution.

1,0

2,0

3,0

1,1

2,1

3,1

1,2

2,2

3,2

2,3

0

0

0

-7

-3

-10

-12

-17

-1

-18

-7

-3

0

5

-4

3

-10

-5

-9

-2

-14

2

15

20

-4

-1

4

Figure 12: The state-transition graph and the state extensions. Costs are represented in blue; optimal

predeessors are represented in red. The optimal solution is indiated by thik ars and bolded numbers.

24

9 Optimal budget alloation

The problem. We are given a set P = {1, . . . , n} of projets and a budget R. We have to assign an

investment to eah projet. Depending on the investment, eah projet is expeted to yield a pro�t. No

assumption is made about the kind of relationship between the investment and the pro�t, but for simpliity

here we assume that the investments are integer and non-negative. For eah projet i ∈ P the orresponding

investment is represented by xi and the orresponding expeted pro�t by fi(xi). The domain of xi, i.e. the

set of possible investments in projet i ∈ P is indiated by Xi. The objetive is to maximize the overall

expeted pro�t without exeeding the budget.

Step 1: sequening the deisions. In this problem we onsider the projets in a sequene, arbitrarily.

At eah point in time during the deision proess the �rst part of the sequene has already been sanned

while the last part of the sequene is not, i.e. the �rst projets have been assigned an investment while the

investments in the remaining projets are still to be deided. So a deision must be taken for eah projet

i ∈ P .

Step 2: de�ning the state. The state must represent all relevant information at any generi step during

the deision proess. Obviously we need to know where we are in the deision proess, i.e. whih is the last

deided investment. Furthermore, owing to the onstraint on the limited budget R, we need to know how

muh resoure is left. Hene the states have the following form: {i, r}, where i indiates the last projet

onsidered and r indiates the residual available budget. The pro�t assoiated with eah state {i, r} is

indiated by p(i, r): it indiates the maximum pro�t that an be ahieved when reahing state {i, r}. An

additional initial state {0, R} orresponds to the beginning of the deision proess, when no investment has

been deided yet and the whole budget is still available.

Step 3: label extension.

• Initialization: p(0, R) = 0.

• Extension: p(i, r) = maxxi∈Xi
{p(i− 1, r + xi) + fi(xi)} ∀i ∈ P ∀r ∈ 0, . . . , R.

The maximum overall expeted pro�t is maxRr=0{p(n, r)}. If the expeted pro�ts are larger than the in-

vestments (i.e. fi(xi) ≥ xi ∀i ∈ P ∀xi ∈ Xi) and it is possible to invest all the resoure (i.e. R ≤
∑

i∈P maxxi∈Xi
{xi}), then the maximum expeted pro�t is ertainly attained at state (n, 0), beause it is

ertainly optimal to invest the whole budget.

Complexity. The number of possible values for i is n, while the number of possible values for r is R + 1
(from 0 to R). Hene the number of states grows as O(nR). When extending labels to eah state of projet

i ∈ P , the number of predeessors for eah state is at most |Xi|, whih annot be larger than R+1. Hene the
worst-ase time omplexity of the D.P. algorithm is O(nR2). The omputational omplexity of this algorithm

is pseudo-polynomial.

25

A numerial example. Tables 7 represents an instane of the optimal budget alloation problem with

P = {1, . . . , 4} and R = 10.

x1 f1 x2 f2 x3 f3 x4 f4
0 0 0 -2 0 0 0 -5

1 7 1 4 1 5 1 -2

2 13 2 7 2 6 2 3

3 17 3 8 3 7 3 7

4 20 4 8

Table 7: The possible investments and the orresponding expeted pro�ts for eah projet.

The states-transitions graph is represented in Figure 13 together with the labels and the optimal solution.

0,10 1,10

1,9

1,8

1,7

1,6

2,7

2,6

2,5

2,4

2,3

3,3

3,2

3,1

3,0 4,0

0 0

7

13

17

20

17

21

24

27

28

32

33

34

35 39

0

7

13

17

20

8

7

8

4

7

8

-2

4

7

8

-2

4

7

8

8

7

8

6

7

8

5

6

7

8

0

5

6

7

7

3

-2

-5

Figure 13: The state-transition graph and the state extensions. Costs are represented in blue; optimal

predeessors are represented in red. The optimal solution is indiated by thik ars and bolded numbers.

26

10 The max independent set problem on an interval graph

The problem. A very small ar rental ompany there is only one ar. The ompany has olleted a set N
of orders from potential ustomers and now it must deide whih orders to satisfy in order to maximize its

pro�ts. Eah order i ∈ N is haraterized by a start time si, an end time ei and a pro�t pi. Obviously, no
two seleted orders an overlap in time.

Remark. In graph terminology this problem is alled Max independent set problem on an interval graph.

We an de�ne a graph where eah vertex orresponds to an order and any two verties i and j are onneted
by an edge if and only if the two orresponding orders overlap. For its partiular struture, the resulting

graph is alled interval graph. Overlapping orders are inompatible, i.e. they annot be both seleted. This

onstraint translates into the searh for an independent set, i.e. a subset of verties suh that they are

not onneted to one another by any edge. The subset of orders yielding the maximum pro�t orresponds

to a maximum weight independent set, after assigning eah vertex i a weight equal to the pro�t pi of the
orresponding order. The max independent set problem is NP -hard on general graphs, but it is polynomially

solvable on interval graphs.

Step 1: sequening the deisions. The orders an be sequened aording to their start time s. A

binary deision must be taken for eah of them (whether to selet that order or not).

Step 2: de�ning the state. At eah point along the deision proess we need to know where we are, i.e.

whih is the last order onsidered and what onstraints are propagated to the future deisions beause of the

deisions already taken. This is easily represented by the time when the ar beomes available. Atually the

time the ar beomes available is not diretly relevant in itself; what is relevant is the next order that an be

seleted. If we know whih is the next order that an be seleted we do not even need to know whih is the

last order onsidered. Hene the states have the following (very simple) form: {i}, where i indiates the next
order that an be seleted when the ar beomes available again. The pro�t assoiated with eah state {i} is
indiated by f(i): it indiates the maximum pro�t that an be ahieved when reahing state {i}. A dummy

state {n+1} represents the �nal state, when all orders have been deided. We set sn+1 to an arbitrary value

larger than maxi∈N{ei}.

Step 3: label extension.

• Initialization: f(1) := 0.

• Extension: f(i) := max{0,maxj∈N :ej≤si{f(j) + pj}} ∀i = 1, . . . , n+ 1.

The maximum pro�t is f(n+ 1).

Complexity. The number of possible values for i is n + 1. When extending labels to eah state {i}, the
number of predeessors is at most n. Hene the worst-ase time omplexity of the D.P. algorithm is not

worse than O(n2). However, it is redundant to explore all predeessors for eah state. A more e�ient

implementation is obtained if we assign eah state j a unique suessor succ(j) suh that

succ(j) = argmin
iinN :si≥ej

{si}.

The order succ(j) is the �rst order that an be seleted after order j. If we an determine succ(j) for eah
j ∈ N , then we an onstrut a graph in whih eah state j has only two outgoing ars: an ar with value 0
to the next state j+1 and an ar of value pj to succ(j). These two ars represent the two alternatives: selet
j or do not selet j. The resulting graph is direted, ayli and layered and has only O(n) ars: therefore
the label propagation algorithm takes O(n). The bottlenek determining the worst-ase time omplexity is

the onstrution of the graph. It an be done in linear time if the orders are sorted, as hown in Algorithm

10.1. If they are not, it takes O(n logn) to sort them and therefore this is the resulting time omplexity of

the algorithm.

A vetor G ontains 2n reords, two reords for eah order, with the following �elds:

27

Algorithm 10.1 MaxIndependentSetonanIntervalGraph

1: Initialize;
2: Sort;
3: ComputeLabels;
4: RetrieveOptimalSolution;

• id: the order orresponding to the reord;

• time: the start or end time of order id;

• tail: a boolean �ag indiating whether the value time is the start time (tail = 1) or the end time

(tail = 0) of order id;

• mate: the position in the array G of the other time value of order id;

They are initialized as shown in 10.2.

Algorithm 10.2 Initialize

1: for i = 1, . . . , n do

2: G[i].id := i;
3: G[i + n].id := i;
4: G[i].time := si;
5: G[i + n].time := ei;
6: G[i].tail := 1;
7: G[i + n].tail := 0;
8: G[i].mate := i+ n;
9: G[i + n].mate := i;

The sorting proedure an be implemented in O(n log n) keeping the onsisteny of the information stored

in the reord �elds. In partiular the �elds mate an be updated in O(1) every time the position in G of any

reord is hanged.

The proedure that omputes the optimal labels of the states (shown in 10.3) simply sans the vetor G
and propagates labels in two ways: from eah state orresponding to the start time of an order to the state

orresponding to the end time of the same order; and from eah state to the next one. The �rst type of

extension implies a pro�t, the seond one does not.

Algorithm 10.3 ComputeLabels

1: for i = 1, . . . , 2n do

2: G[i].value := 0;
3: G[i + n].pred := 0;

4: for i = 1, . . . , 2n do

5: /* Extend to the head */

6: if (G[i].tail = 1) then
7: if (G[i].value+ pG[i].id > G[G[i].mate].value) then
8: G[G[i].mate].value := G[i].value+ pG[i].id;

9: G[G[i].mate].pred := i;

10: /* Extend to the next */

11: if (G[i].value > G[i + 1].value) then
12: G[i+ 1].value := G[i].value;
13: G[i+ 1].pred := i;

Finally the optimal solution an be retrieved starting from the dummy node n + 1 and going bakward

along the hain of pointers de�ned by the �elds pred, as desribed in 10.4.

28

Algorithm 10.4 RetrieveOptimalSolution

1: z∗ := G[2n+ 1].value;
2: for i = 1, . . . , n do

3: x∗[i] := 0;

4: i := 2n;
5: while (i 6= 0) do
6: if (G[i].pred = G[i].mate) then
7: x∗[G[i].id] := 1;

8: i := G[i].pred;
return z∗, x∗

A numerial example. Table 8 represents an instane of the problem with n = 7.

i si ei pi
1 4 15 11

2 18 42 24

3 40 45 5

4 4 33 29

5 7 29 22

6 3 9 6

7 21 30 9

Table 8: The orders reeived by the ar rental ompany.

The state-transitions graph is represented in Figure 14 together with the labels and the optimal solution.

6 1 4 5 2 7 3

end

0 0 0 0 0 0 0 0

6,6 1,29

4,11 5,22

2,24

7,9 3,5

Figure 14: The state-transition graph and the state extensions. Costs are represented in blue; optimal

predeessors are represented in red. The optimal solution is indiated by thik ars and bolded numbers.

The matrix implementation desribed above would produe the following matrix.

29

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

id 1 2 3 4 5 6 7 1 2 3 4 5 6 7

time 4 18 40 4 7 3 21 15 42 45 33 29 9 30

tail 1 1 1 1 1 1 1 0 0 0 0 0 0 0

mate 8 9 10 11 12 13 14 1 2 3 4 5 6 7

Table 9: The matrix after initialization.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

id 6 1 4 5 6 1 2 7 5 7 4 3 2 3

time 3 4 4 7 9 15 18 21 29 30 33 40 42 45

tail 1 1 1 1 0 0 1 1 0 0 0 1 0 0

mate 5 6 11 9 1 2 13 10 4 8 3 14 7 12

Table 10: The matrix after sorting.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

id 6 1 4 5 6 1 2 7 5 7 4 3 2 3

time 3 4 4 7 9 15 18 21 29 30 33 40 42 45

tail 1 1 1 1 0 0 1 1 0 0 0 1 0 0

mate 5 6 11 9 1 2 13 10 4 8 3 14 7 12

value 0 0 0 0 6 11 11 11 22 22 29 29 35 35

pred 0 1 2 3 1 2 6 7 4 9 3 11 7 13

Table 11: The matrix after labeling.

index

1 2 3 4 5 6 7 8 9 10 11 12 13 14

id

6 1 4 5 6 1 2 7 5 7 4 3 2 3

pred

0 1 2 3 1 2 6 7 4 9 3 11 7 13

x[2] := 1x[1] := 1

Figure 15: Reonstrution of the optimal solution.

30

