
Approximation algorithms
Heuristic Algorithms

Giovanni Righini

University of Milan

Department of Computer Science (Crema)

Approximation algorithms

Approximation algorithms are heuristic algorithms providing
guarantees on the approximation.

To evaluate how good approximation algorithms are, it is necessary to
measure the approximation they guarantee a priori.

Measuring the approximation

Given an instance I of a problem P, we want to measure the
approximation guaranteed by an algorithm A. We call

• zA
I the value of the heuristic solution, computed by the algorithm

• z∗
I the value of the optimal solution.

Now we can consider

• the absolute difference |zA
I − z∗

I |; this is not recommendable
because it depends on the scale, which is arbitrary;

• the relative difference |zA
I −z∗

I |
|z∗

I |
, often used in experimental

analysis;

• the approximation ratio max{ zA
I

z∗

I
,

z∗

I

zA
I
} which is always ≥ 1.

Worst-case approximation

We do not want to evaluate algorithms for single instances, but for
any instance of a given problem.

Hence, as with the computational complexity analysis, we consider
the worst-case, i.e. the maximum value that the approximation ratio
can have among all possible instances of the problem.

max
I

{
zA

I

z∗
I

}.

g(N)-approximation

If for any instance I of P we have

|zA
I − z∗

I |

|z∗
I |

≤ g(n)

where g(n) is a polynomial in the instance size n, then algorithm A is
g(n)-approximating for problem P.

In this case the approximation bound depends on n, i.e. on the size of
the instance.

When the approximation bounds depend on the data of the instance
(not only on its size), they are called data-dependent bounds.

Constant factor approximation

If for any instance I of P we have

|zA
I − z∗

I |

|z∗
I |

≤ K

where K is a constant, then algorithm A is K -approximating for
problem P.

In this case the approximation bound depends neither on the size of
the instance nor on the values of the data.

Approximation schemes

If for any instance I of P we have

|zA
I − z∗

I |

|z∗
I |

≤ ǫ

where ǫ ≥ 0 is an arbitrarily chosen parameter, then algorithm A is an
approximation scheme for problem P.

In this case we can tune the trade-off between accuracy and
computing time, by a suitable choice of ǫ.

An approximation scheme is polynomial (PTAS: polynomial time
approximation scheme) if, for each fixed ǫ, its computational
complexity is polynomial in n.
An approximation scheme is fully polynomial (FPTAS: fully polynomial
time approximation scheme) if, its computational complexity is
polynomial in n and 1/ǫ.

Constructive algorithms

Approximation properties are usually proven for constructive
algorithms.

The general technique to prove these properties consists of
establishing a relationship between a lower bound to z∗

I and an upper
bound to zA

I (for minimization problems).

A constructive algorithm is an algorithm where decisions are taken
sequentially, so that a partial solution (initially empty) is iteratively
added new elements until a complete solution is produced and the
algorithm stops.

In a partial solution some variables have already been assigned a
value, while others are still to be decided.

A 2-approximation algorithm for the Vertex Cover Problem

Given a graph G = (V ,E) we search for a minimum cardinality vertex
set covering all the edges.

A matching is a set of non-adjacent edges.

A maximal matching is a matching such that all the other edges of the
graph are adjacent to it.

Matching algorithm:

1. Compute a maximal matching M ⊆ E ;

2. The solution is the set of the endpoints of M.

An example

A B C

D E F G

H

A B C

D E F G

H

zA = 2 · |M| = 2

A B C

D E F G

H

A B C

D E F G

H

zA = 2 · |M| = 4 zA = 2 · |M| = 6

The optimal solution value is z∗ = 5 (many optimal solutions).

Proof

The matching algorithm is 2-approximating.
1. The cardinality of M is a lower bound LB (I):

• the cardinality of an optimal covering for any subset of edges
E ′ ⊆ E does not exceed that of an optimal covering for the whole
edge set E .

|x∗

E′ | ≤ |x∗

E |

• the optimal covering for any matching M has cardinality |M|,
because one vertex is necessary and sufficient for each edge of M.

2. Including both endpoints of each edge of M we get
• a value equal to 2LB(I) (two endpoints for each edge)
• an upper bound UB(I) (because it covers M and the edges

adjacent to it)

3. The matching algorithm produces solutions whose value is
zA (I) = UB (I).

Therefore zA(I) ≤ 2z∗(I) for each I ∈ I, i.e. maxI{
zA(I)
z∗(I)} = 2.

Tightness

In a K -approximating algorithm, the factor K does not link zA(I) with
z∗(I), but UB(I) with LB(I).

The approximation achieved by the algorithm in practice is often
much better (tighter) than K .

An interesting question is:
Are there instances Ī such that zA(̄I) = Kz∗(̄I)?
What characteristics do they have?

Studying these instances is useful
• to understand whether they are frequent or rare;
• to modify the algorithm.

A VCP instance for which the bound is tight.

A B C

D E F G

H

A B C

H

D E F

G

Inapproximability

For some NP-hard optimization problems it is not possible to find a
K -approximation algorithm for any fixed K , unless P = NP .

For instance, if there exist an instance Ī whose optimal solution has
null cost

{

z∗(̄I) = 0

zA(I) ≤ Kz∗(I) ∀I ∈ I
⇒ zA(̄I) ≤ Kz∗(̄I) = 0 ⇒ zA(̄I) = 0

Example: given a digraph G, give null cost to its arcs and complete
the digraph with arcs of cost 1. The ATSP has a zero-cost solution if
and only if G contains a Hamiltonian circuit. ⇒ The ATSP admits a
polynomial-time approximation algorithm if and only if P = NP.

Special cases

A non-approximable problem may contain approximable special
cases.

Consider the TSP with the following additional assumptions:

• the graph G = (N,A) is complete;

• the cost function c is symmetric and satisfies the triangle
inequality:

cij = cji ∀i, j ∈ N and cij + cjk ≥ cik ∀i, j, k ∈ N

The double spanning tree algorithm

Double spanning tree algorithm for the TSP with triangle inequality.
1. Given G = (V ,E), compute a minimum cost spanning tree

T ∗ = (V ,X∗);
2. Duplicate each edge [i, j] of X∗ into two opposite arcs (i, j) and

(j, i); Let D be the resulting arc set; it forms a circuit visiting each
vertex at least once.

3. Compute the Euler Tour Representation (ETR) of D as follows:
• Sort the arcs of D in lexicographic order.
• Compute an adjacency list for each vertex (called next) and a map

from vertices to the first entries of the adjacency lists (called first):
• For each arc (u, v) in the sorted list:

• if the previous arc (u′
, v ′) has u′ = u then set next(u′

, v ′) := (u, v)
else set first(u) := (u, v).

• Compute the (circular) arc list (called succ) as follows:

succ(u, v) :=

{

first(v) next(v ,u) = nil(advance arc)

next(v ,u) otherwise (retreat arc).

4. Follow the Euler tour defined by succ and every time a vertex
occurs after the first time, shortcut it.

Example

Proving the approximation ratio

The double spanning tree algorithm is 2-approximating.
1. the cost of T ∗ is a lower bound because:

• deleting an arc from a Hamiltonian cycle, we obtain a Hamiltonian
path with a non-larger cost;

• a Hamiltonian path is a special case of a spanning tree.

2. when we replace each edge with two arcs we obtain D whose
cost is twice the cost of T ∗;

3. when we shortcut some arcs, we obtain a final solution whose
cost is not larger than that of D (for the triangle inequality).

Therefore red zA(I) ≤ 2z∗(I) for every instance I ∈ I.

The repeated assignment algorithm for the ATSP

Given a strongly connected digraph D = (N,A) and a cost function
c : A 7→ ℜ+, we want to compute a minimum cost Hamiltonian circuit.

We assume that the costs satisfy the asymmetric triangle inequality:

cij + cjk ≥ cik ∀i, j, k ∈ N

and the digraph is complete.

Let us define a bipartite graph B = (T ,H,E), where T and H are the
set of tails and heads of the arcs in A and the cost of each edge [i, j]
with i ∈ T and j ∈ H is cij .

Since there are no self-loops in D and D is complete, B has all edges
except those of the form [i, i].

The repeated assignment algorithm for the ATSP

i j

i i

j j

cij

cji cij

cji

Figure: Correspondence between weighted arcs in D and weighted edges in
B.

The repeated assignment algorithm for the ATSP

Property 1. A perfect bipartite matching on B corresponds to a set of
arcs in A such that each node in N has in-degree and out-degree
equal to 1. In general this is a set of sub-tours in D.

Figure: A set of sub-tours in D.

The repeated assignment algorithm for the ATSP

Property 2. A Hamiltonian circuit is a special case. Hence a
minimum cost perfect bipartite matching M∗ on B provides a lower
bound to the minimum cost Hamiltonian tour H∗ on D.

M∗ ≤ H∗.

The same property holds if we consider any subset N ⊆ N.

A minimum cost perfect bipartite matching M
∗

on N provides a lower
bound to the minimum cost Hamiltonian tour H

∗
visiting N.

M
∗
≤ H

∗
.

The repeated assignment algorithm for the ATSP

But
H

∗
≤ H∗ ≤ H∗

where H∗ is the sub-tour obtained from H∗ short-cutting all nodes not
in N.

The first inequality comes from the optimality of H
∗
.

The second inequality comes from the triangle inequality.
Therefore

M
∗
≤ H∗ ∀N ⊆ N.

This idea is applied iteratively.

The repeated assignment algorithm for the ATSP

Step 1. Set k = 1 and define the initial bipartite graph B1.

Step 2. Compute a minimum cost complete matching M∗
k on bipartite

graph Bk .

Step 3. If the number of sub-tours corresponding to M∗
k is equal to 1,

then go to Step 5a.

Step 4. Set k := k + 1. In each sub-tour choose a node at random as
a representative and define the bipartite graph Bk induced by the
representatives. Go back to Step 2.

The repeated assignment algorithm for the ATSP

Figure: Iteration 1: 4 sub-tours and their representatives (red).

The repeated assignment algorithm for the ATSP

Figure: Iteration 2: 2 sub-tours and their representatives (blue).

The repeated assignment algorithm for the ATSP

Figure: Iteration 3: a single sub-tour. The result is an Euler digraph.

The repeated assignment algorithm for the ATSP

Property 3. The digraph D′ = (N,
⋃

k M∗
k) resulting from these steps

is strongly connected, because each sub-tour is a s.c.c. and all of
them can be reached from one another following the arcs between
the representatives.

Property 4. The resulting digraph D′ is also an Euler graph, because
at each iteration both the in-degree and the out-degree of the
representatives are increased by 1 while the degrees of the other
nodes remain unchanged. So the in-degree and the out-degree of
each node are always equal.

The repeated assignment algorithm for the ATSP

Step 5a. Find an Euler tour T in D′. By definition its cost is the same
as the cost of all arcs in D′: T =

∑

k M∗
k .

Step 5b. Obtain a Hamiltonian tour H from the Euler tour T by
repeated shortcuts.

Property 5. The cost of the final Hamiltonian tour H is not larger than
the cost of the Euler tour T , because of the asymmetric triangle
inequality: H ≤ T .

Property 6. The number of sub-tours (and representatives) is at least
halved at each iteration, because self-loops are not allowed. Hence
the number K of iterations is bounded by log n.

The repeated assignment algorithm for the ATSP

Approximation. Combining the inequalities above, we have:

• H ≤ T ;

• T =
∑K

k=1 M∗
k ;

• M∗
k ≤ H∗ ∀k = 1, . . . ,K ;

• K ≤ log2 n.

Therefore
H ≤ log2 n H∗.

Complexity. Since every minimum cost bipartite matching M∗
k can be

computed in polynomial time (O(n3) with the Hungarian algorithm)
and the number of iterations is bounded by log2 n, the algorithm is
polynomial time.

The repeated assignment algorithm (Frieze, Galbiati, Maffioli, 1975)
is log n-approximating for the ATSP with triangle inequality.

Christofides’ algorithm (1976)

Christofides’ algorithm is a constant-factor approximation algorithm
for the TSP with triangle inequality. It runs in three steps.

Step 1. On the assigned graph G = (V ,E), compute a minimum cost
spanning 1-tree T ∗.

Property 1. A minimum cost spanning 1-tree can be computed in
polynomial time in this way:

• compute a minimum cost spanning tree (Prim, Kruskal,
Boruvka,...);

• find the minimum cost edge not in it and add it to the spanning
tree.

Property 2. A Hamiltonian cycle is a special case of a spanning
1-tree. Hence T ∗ ≤ H∗, where H∗ is the minimum cost Hamiltonian
cycle on G.

Christofides’ algorithm (1976)

Step 2. Consider the subset Vo of vertices with odd degree in T ∗.
Compute a minimum cost perfect matching M∗ between them.

Property 3. The cardinality of Vo is even, because the sum of the
degrees of all nodes in a graph is always an even number. Therefore
a perfect matching on the vertices in Vo exists.

Property 4. The perfect matching in a graph with an even umber of
vertices can be computed in polynomial time (Edmonds’ algorithm).

Christofides’ algorithm (1976)

Property 5. Every Hamiltonian cycle with an even number of edges
is the union of two perfect matchings. In particular M∗ ≤ 1

2H∗
o , where

H∗
o is the cost of the minimum Hamiltonian cycle through the vertices

of Vo.

Property 6. Let H∗ be the optimal Hamiltonian cycle and let (H∗)o

the cycle obtained from it by short-cutting all vertices not in Vo. Since
the triangle inequality holds, (H∗)o ≤ H∗. Since H∗

o is the minimum
Hamiltonian cycle in the subgraph induced by Vo, H∗

o ≤ (H∗)o.

Therefore M∗ ≤ 1
2 H∗.

Christofides’ algorithm (1976)

Step 3. Consider the graph with the edges of T ∗ and the edges of
M∗. Traverse it, skipping already visited vertices and produce a
Hamiltonian cycle H.

Property 7. All nodes with even degree in T ∗ have degree 0 in M∗.
All nodes with odd degree in T ∗ have degree 1 in M∗. Hence all
nodes in T ∗ ∪ M∗ have even degree and the graph is connected
(because it contains a spanning tree). Therefore the resulting graph
with the edges of T ∗ and those of M∗ is an Euler graph.

Property 8. An Euler tour E in an Euler graph can be found in
polynomial time with a simple greedy algorithm: Start from a random
vertex and traverse-and-delete one of the edges without
disconnecting the resulting graph.

Christofides’ algorithm (1976)

Property 9. A Hamiltonian tour H can be produced from an Euler
tour E by successive shortcuts in polynomial time with another simple
greedy algorithm: Follow the Euler tour and apply a shortcut every
time the next vertex has already been visited.

Property 10. Because of the triangle inequality, shortcuts cannot
increase the cost of the tour. Hence H ≤ E .

Now we can combine the inequalities obtained from each step:

• From Step 1: T ∗ ≤ H∗

• From Step 2: M∗ ≤ 1
2H∗

• From Step 3: H ≤ E = T ∗ + M∗.

Therefore

H ≤
3
2

H∗.

The nearest neighbor algorithm for the TSP

Nearest neighbor (NN) algorithm: start from a vertex at random and
go to the closest vertex among those not yet visited.

If the triangle inequality holds, this algorithm has

zA(I)
z∗(I)

≤
1
2
+

1
2
⌈log n⌉

i.e. a g(n)-approximation guarantee.

Insertion algorithms for the TSP

Insertion Algorithms: Start from a partial tour including only two
vertices and iteratively include in it one more vertex among those out
of it.

The insertion always occurs in the cheapest position along the tour.

According to the selection criterion of the next vertex to insert we
have different algorithms with different approximation properties:

Nearest Insertion and Cheapest Insertion have zA(I)
z∗(I) ≤ 2;

Farthest Insertion and Furthest Insertion have zA(I)
z∗(I) ≤ 1 + ⌈log n⌉.

Remark: Those with worse theoretical approximation properties
provide better experimental results (!).

Insertion algorithms for the TSP with TI

Given a graph G = (V ,E) and a cost function c on the edges,
satisfying the triangle inequality,

• select the two closest vertices u and v ;
• arbitrarily select an insertion order of the other vertices.

This defines a heuristic solution of cost H.

We indicate by δi the increase in the solution cost when vertex i is
inserted.

We set:
δu = 0

δv = 2cuv .

The cost of the heuristic solution is

H =
∑

i∈V

δi .

Insertion algorithms for the TSP with TI

After the first two vertices, every time a vertex i is inserted between a
vertex j and a vertex k :

j k

i

the increase in the tour length is δi = cij + cik − cjk .
Owing to the triangle inequality:

cik − cjk ≤ cij and cij − cjk ≤ cik

δi ≤ 2cij and δi ≤ 2cik

if i is inserted adjacent to j or k (after them).

Insertion algorithms for the TSP with TI

Insertions are always done in the cheapest position.

i

j k

δi ≤ cij + cik − cjk

Owing to the triangle inequality:

cik − cjk ≤ cij and cij − cjk ≤ cik

δi ≤ 2cij and δi ≤ 2cik

if i is inserted not adjacent to j or k (after them).

Insertion algorithms for the TSP with TI

So, the triangle inequality and the choice of the optimal insertion
position guarantee that

δi ≤ 2cij

whenever a vertex i is inserted into the tour and a vertex j is already
in the tour.

This property holds also for the first two vertices u and v , because
cuv = min[i,j]∈E{cij}.

Now consider any pair of vertices i and j.
If j is inserted after i then δj ≤ 2cij .
If i is inserted after j then δi ≤ 2cij .

Hence
Lemma 1 : min{δi , δj} ≤ 2cij ∀i, j ∈ V .

Insertion algorithms for the TSP with TI

At iteration k = 1, consider the whole set of vertices V1 = V and the
corresponding optimal solution X∗

1 = X∗.

At each iteration k :

• Assign each edge [i, j] in X∗
k a weight wij = min{δi , δj}. The

endpoint with minimum value of δ is the leading vertex for edge
[i, j].

• Compute a minimum cost matching Mk with respect to the
original cost function c using the edges of X∗

k . Let Lk be the set
of the leading vertices of the edges of Mk .

• Shortcut the vertices in Lk from X∗
k and obtain X∗

k+1.

• Delete the vertices in Lk from Vk and obtain Vk+1.

• Stop when only a vertex v̄ is left.

Insertion algorithms for the TSP with TI

At each iteration ⌊ |Vk |
2 ⌋ vertices are deleted.

The number of iterations is K = ⌈log2 n⌉.

All vertices but v̄ are leading vertices of an edge in the matchings
exactly once.

Hence

V =

K
⋃

k=1

Lk ∪ v̄

and
K
∑

k=1

∑

i∈Lk

δi =
∑

i∈V\{v̄}

δi = H − δv̄ .

Insertion algorithms for the TSP with TI

At each iteration k :
• by definition of leading vertex

∑

i∈Lk

δi =
∑

[i,j]∈Mk

wij

• for the definition of the weight function w and Lemma 1

wij ≤ 2cij ∀[i, j] ∈ Mk and
∑

[i,j]∈Mk

wij ≤ 2
∑

[i,j]∈Mk

cij

• since X∗
k \Mk contains a matching and Mk is optimal

∑

[i,j]∈Mk

cij ≤
1
2

X∗
k

• for the triangle inequality

X∗
k ≤ X∗

Insertion algorithms for the TSP with TI

Recalling that:
K
∑

k=1

∑

i∈Lk

δi = H − δv̄

K = ⌈log2 n⌉

and observing that δv̄ ≤ H∗ (trivial), we get:

H =

K
∑

k=1

∑

i∈Lk

δi + δv̄ =

K
∑

k=1

∑

[i,j]∈Mk

wij + δv̄ ≤
K
∑

k=1

(2
∑

[i,j]∈Mk

cij) + δv̄ ≤

≤
K
∑

k=1

2
1
2

X∗
k + δv̄ ≤

K
∑

k=1

X∗ + δv̄ ≤ (⌈log2 n⌉)X∗ + X∗ = (1 + ⌈log2 n⌉)X∗.

Data-dependent bounds for the ATSP

Given a complete digraph D(N,A) with a cost function c on the arcs,
satisfying the asymmetric triangle inequality, we define a complete
graph G = (N,E) with weights w on the edges, such that
wij = cij + cji for each edge [i, j] ∈ E .

Each circuit in D has a corresponding anti-circuit Ĉ, i.e.
(i, j) ∈ C ⇔ (j, i) ∈ Ĉ.

Each pair (C, Ĉ) in D corresponds to a cycle in G, whose cost is the
sum of the costs of C and Ĉ.
Let C∗ be the minimum cost Hamiltonian circuit in D, let Ĉ∗ be its
anti-circuit and let S be the Hamiltonian cycle in G corresponding to
the pair (C∗, Ĉ∗).

It is easy to prove that the triangle inequality also holds on G, as a
consequence of the triangle inequality on D.

Data-dependent bounds for the ATSP

Running Christofides’ algorithm on G, we get a Hamiltonian cycle
S ≤ 3

2S∗, where S∗ is the minimum Hamiltonian cycle on G.

Let (CS , ĈS) the circuit-anti-circuit pair in D that corresponds to S, so
that S = (CS + ĈS).
Let H be the shortest Hamiltonian circuit among CS and ĈS . Then
H ≤ 1

2 (CS + ĈS).

Combining the above inequalities we obtain:

• H ≤ 1
2 (CS + ĈS);

• S = (CS + ĈS);

• S ≤ 3
2S∗;

• S∗ ≤ S;

• S = (C∗ + Ĉ∗).

Hence H ≤ 3
4 (C

∗ + Ĉ∗), i.e. H
C∗

≤ 3
4 (1 + Ĉ∗

C∗
).

Data-dependent bounds for the ATSP

Now we define a measure of the asymmetry of the digraph D:

α = max
(i,j)∈A

{
cij

cji
}

and we obtain
H
C∗

≤
3
4
(1 + α).

When α tends to 1 (symmetric costs), this bound tends to that of
Christofides’ algorithm, i.e. 3

2 .

Therefore this algorithm (Righini, Trubian, 1995) provides
data-dependent bounds for the ATSP with triangle inequality.
In cases like this different instances of a same problem can be
classified according to their approximability.

Combination of bounds: the Stacker-Crane Problem

We are given a weighted mixed graph G = (N,A,E), where N is the
set of nodes, A is a set of oriented arcs, E is a set of un-oriented
edges and the following properties hold:

• each node either the tail or the head of exactly one arc (hence
|N| = 2|A|);

• the cost of the edges linking the endpoints of an arc has the
same cost as the arc;

• E contains all possible edges and the triangle inequality holds for
their costs;

The objective is to find a minimum cost Hamiltonian tour on G that
traverses all arcs in the right direction (from the tail to the head).

Every feasible solution is made by N/2 arcs and N/2 edges
alternating.
We indicate by E∗ the edges in the optimal solution H∗.

The problem is NP-hard.

Large-Arcs algorithm

Step 1. Define a complete bipartite graph B = (T ,H,E), where T
and H are the set of tails and heads of the arcs in A. Compute a
minimum cost matching M∗ in B. The graph made by A and M∗ is a
set S of sub-tours.

Step 2. Define an auxiliary graph L = (S,W), with one vertex for
each sub-tour. The cost of each edge [s′, s′′] in W is the minimum
edge cost among all the edges of E connecting the two sub-tours s′

and s′′. Compute a minimum cost spanning tree T ∗ in L.

Step 3. Consider the multi-graph U made by the arcs A, the edges in
M∗ and two copies of each edge in T ∗. It is an Euler graph. Find an
Euler tour along it and transform it into a Hamiltonian tour HLargeArcs ,
by repeated shortcuts on pairs of consecutive edges.

All steps can be done in polynomial time.

Large-Arcs algorithm

The following inequalities hold:

• M∗ ≤ E∗

• T ∗ ≤ E∗

• U = A + M∗ + 2T ∗ by construction;

• HLargeArcs ≤ U, for the triangle inequality;

• H∗ = A + E∗.

Therefore HLargeArcs ≤ U = A+M∗ + 2T ∗ ≤ A+ 3E∗ = 3H∗ − 2A, i.e.:

HLargeArcs

H∗
∗ ≤ 3 − 2

A
H∗

.

The larger is A, the better is the approximation bound.

Small-Arcs algorithm

Step 1. Consider an auxiliary graph L = (V ,W) with a vertex in V for
each arc in A and such that the cost of each edge [i, j] in W is the
minimum among the costs of the four edges in E linking the endpoints
of arc i with those of arc j. Compute a minimum cost spanning tree
T ∗ in L and report its edges back to the original graph G.

Step 2. Consider the subset of nodes of L that have odd degree in
T ∗. Compute a minimum cost perfect matching M∗ on them and
report its edges back to the original graph G.

Small-Arcs algorithm

Step 3. Consider the graph made by the arcs A, the edges in T ∗ and
the edges in M∗. The in-degree and out-degree of the endpoints of all
arcs are either both even or both odd. Define odd arcs and even arcs
accordingly. For each odd arc, insert a copy of its parallel edge; the
cost for this is Aodd . For each sub-tour containing even arcs, consider
its two possible orientations and choose the one in which the arcs
traversed in the wrong direction have minimum cost. According to the
chosen orientation, insert two copies of the parallel edges for each
arc traversed in the wrong direction. The cost for this is at most 2 Aeven

2 .
The resulting mixed graph U is an Euler graph.

Step 4. Find an Euler tour along U and transform it into a Hamiltonian
tour HSmallAarcs, by repeated shortcuts on pairs of consecutive edges.

All steps can be done in polynomial time.

Small-Arcs algorithm

The following inequalities hold (the first two steps are the same as
those of Christofides’ heuristics):

• T ∗ ≤ E∗;

• M∗ ≤ 1
2E∗;

• U ≤ A + M∗ + T ∗ + Aodd + 2 Aeven
2 by construction;

• A = Aodd + Aeven;

• HSmallArcs ≤ U for the triangle inequality;

• H∗ = A + E∗.

Therefore HSmallArcs ≤ U ≤ 2A + M∗ + T ∗ ≤ 2A + 3
2E∗ =

2A + 3
2 (H

∗ − A) = 3
2H∗ + 1

2 A, i.e.:

HSmallArcs

H∗
≤

3
2
+

A
2H∗

.

The smaller is A, the better is the approximation bound.

Combining the two bounds

Both Large-Arcs and Small-Arcs provide an approximation bound that
depends on A, i.e. a data-dependent bound.

But one of the bounds increases with A, the other one decreases with
A. Hence, their combination provides a constant approximation
bound.
When we run both algorithm and we select the best solution H we get
an approximation equal to:

H
H∗

≤ min{HLargeArcs/H∗,HSmallArcs/H∗} = min{3 − 2
A

H∗
,

3
2
+

A
2H∗

}.

The worst-case occurs when 3 − 2 A
H∗

= 3
2 + A

2H∗
, i.e. for A

2H∗
= 3

5 and
the corresponding bound is H

H∗
≤ 9

5 .

Therefore the combination of Large-Arcs and Small-Arcs
(Frederickson, Hecht and Kim, 1978) provides a 9

5 -approximation for
the Stacker Crane Problem.

Greedy algorithms: example 1

Example 1: the Knapsack Problem. Consider the following greedy
algorithm: Choose the next item of maximum value among those that
fit into the residual capacity, until no more item can be inserted.

Consider this instance:

• item 1 has volume b and value v ;

• items 2, . . . , b + 1 have volume 1 and value u < v ;

• the capacity of the knapsack is b.

The greedy algorithm selects item 1 and then stops: xA = [1, 0, . . . , 0]
and z(A) = v .

But there exists a feasible solution x∗ = [0, 1, . . . , 1] of value z∗ = bu.

The approximation factor z∗−z(A)
z∗

= bu−v
bu can be arbitrarily close to 1

for very large values for b.

Greedy algorithms: example 2

Example 2: the Knapsack Problem (again). A slightly different
greedy algorithm for the KP is the following:
Choose the next item of maximum efficiency among those that fit into
the residual capacity, until no more item can be inserted.

The efficiency of an item is the ratio between its value and its volume,
i.e. cj

aj
.

This yields an approximation scheme for the KP.

Approximation algorithm for the Knapsack problem

The binary knapsack problem is:

KP) maximize z =
∑

j∈N

cjxj

s.t.
∑

j∈N

ajxj ≤ b

x ∈ Bn

It can be solved to optimality with a dynamic programming algorithm
based on the following recursion:

{

f (j, 0) = 0
f (j, i) = min{f (j − 1, i − cj) + aj , f (j − 1, i)} ∀i = 1, . . . , z∗

where f (j, i) is the minimum capacity needed to achieve profit i using
the first j elements of N .

The algorithms takes O(nz∗) time.

Bounds on z∗

Observation. Denoting the largest value of the profit vector c by
c = maxj∈N {cj}, we have:

c ≤ z∗ ≤ nc

The first inequality is true under the obvious assumption that all
solutions with only one item are feasible (items with aj > b can be
identified and discarded at pre-processing time in O(n)).

The second inequality is true because
z∗ =

∑

j∈N cjx∗
j ≤

∑

j∈N cj ≤
∑

j∈N c = nc.

Scaling

We choose a scale factor k and we define modified costs c′
j = ⌊

cj

k ⌋.
The scaled problem is

KP′) maximize z ′ =
∑

j∈N

c′
j xj

s.t.
∑

j∈N

ajxj ≤ b

x ∈ Bn

This is still a binary knapsack problem and it can be solved to
optimality with the same D.P. algorithm in O(nz∗′

) time.

Observation. Denoting the largest value of the scaled profit vector c′

by c′ = maxj∈N {c′
j }, we have:

c′ ≤ z∗′

≤ nc′.

Therefore the time complexity of the algorithm for KP′ is O(n2 c
k).

Relationship between z∗ and z∗
′

Let X∗′

be the set of items with x = 1 in the optimal solution of KP′.
Let X∗ be the set of items with x = 1 in the optimal solution of KP.

We can now establish a relationship between z(X∗) and z(X∗′

).

z(X∗′

) =
∑

j∈X∗
′

cj ≥
∑

j∈X∗
′

k⌊
cj

k
⌋ ≥

∑

j∈X∗

k⌊
cj

k
⌋

≥
∑

j∈X∗

(cj − k) =
∑

j∈X∗

cj − k |X∗| ≥ z(X∗)− kn

The absolute error is bounded by kn.
The relative error is bounded by kn

z(X∗) , i.e. by kn
c .

Relationship between z∗ and z∗
′

So, if we solve the scaled problem KP′ instead of the original problem
KP,

• we need O(n2 c
k) computing time;

• we achieve an approximation factor ǫ = kn
c .

Therefore the computational complexity of the approximation
algorithm is

O(
n3

ǫ
).

This provides a fully polynomial time approximation scheme (FPTAS)
for problem KP.

Truncated branch-and-bound

Another way to obtain approximated solutions is to truncate the
search in branch-and-bound algorithms.

Trivially stopping the algorithm as soon as a given time-out expires
does not provide any approximation guarantee.

We can modify the fathoming test, so that we have guarantees on the
approximation (but not on computing time).

In case of minimization:

Normal test (optimality):

if (LB(P) ≥ UB) then Fathom(P)

Modified test (1/α approximation):

if (LB(P) ≥ αUB) then Fathom(P)

