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Definitions

Given a graph G = (V , E) a matching is an edge subset M ⊆ E such
that no edge of M is incident to any vertex of V more than once.

Given a matching M,
• an edge [i, j] ∈ E is matched ⇔ [i, j] ∈ M;
• a vertex i ∈ V is matched ⇔ ∃j ∈ V : [i, j] ∈ M.

Any matching M of G contains at most ⌊n/2⌋ edges, where n = |V|.

Problem: compute a matching of maximum cardinality.



 

Definitions

Given a graph G = (V , E) and a matching M ⊆ E , an alternating path
P is a path [p1, p2, . . . , pq] in G such that for each consecutive pair of
edges [pi−1, pi ] and [pi , pi+1] along P, one of them is matched and the
other is unmatched.

If q is odd, the n. of edges in P is even⇒ P is an even alternating
path.
If q is even, the n. of edges in P is odd⇒ P is an odd alternating
path.

An alternating cycle is an alternating path [p1, p2, . . . , pq] in which
p1 = pq.

If an alternating cycle is odd, it contains two adjacent unmatched
edges, [p1, p2] and [pq−1, pq].



 

Definitions

An augmenting path in G w.r.t. M is an odd alternating path where the
first and the last vertices are unmatched.

In an augmenting path the first and the last edges, [p1, p2] and
[pq−1, pq], are unmatched.

Reversing the matching status of the edges in an augmenting path
w.r.t. M produces a new matching M ′ with |M ′| = |M|+ 1.



 

Symmetric difference

The symmetric difference Q of two sets S1 and S2 is

Q = S1 ⊖ S2 = (S1 ∪ S2)− (S1 ∩ S2).

Property 1. Given a matching M and an augmenting path P, the set
M ′ = M ⊖ P is a matching and |M ′| = |M|+ 1.
All vertices matched in M are matched in M ′; two more vertices are
matched in M ′: the endpoints of P.



 

Symmetric difference
Property 2. Given M1 and M2, Ĝ = (V ,M1 ⊖M2) has only
components of these six types, because degree(i) ∈ {0, 1, 2} ∀i ∈ V .

(a)

(b)

(c)

(d)

(e)

(f)



 

The augmenting path theorem

Theorem. If a vertex p in unmatched in a matching M and M
contains no augmenting path starting at p, then there exists a max
cardinality matching in which p is unmatched.

Proof. Let M∗ be a max cardinality matching.

If p (unmatched in M) is unmatched in M∗, the statement is true.

If p (unmatched in M) is matched in M∗, then deg(p) = 1 in M ⊖M∗.

Since p is unmatched in M, then in M ⊖M∗ p must be endpoint of an
alternating path, starting with an edge of M∗ (cases (c) and (e)).

Since p is not the endpoint of an augmenting path, then it cannot be
an endpoint of an odd alternating path in M ⊖M∗ (case (e)).

Then p must be the starting point of an even alternating path P in
M ⊖M∗ (case (c)).

Consider M ′ = M∗ ⊖ P: M ′ is a matching; |M ′| = |M∗|; p is
unmatched in M ′. Therefore, there exists a maximum cardinality
matching M ′ where p is unmatched. �



 

Searching for augmenting paths

This theorem is the basis for an algorithm that iteratively looks for
augmenting paths and stops when no augmenting path exists from
any starting vertex.

Augmenting paths could be searched by alternately labeling the
vertices as “odd” and “even” starting from an unmatched vertex, until
another unmatched vertex is reached and it is labeled as “odd”.

From “even” vertices, “odd” vertices can be labeled along unmatched
edges.
From “odd” vertices, “even” vertices can be labeled along matched
edges.

Such a labeling would work fine in bipartite graphs, but it would not be
unique in general graphs because of odd cycles.



 

Example
Allowing one label per node would restrict the search too much.

1 2 3

4 5 6

7 8

Following (1, 2, 3, 7, 8, 5), label(5)← odd and vertex 6 is not reached.
False negative: an augmenting path (1, 2, 3, 4, 5, 6) does exist.



 

Example
Allowing two labels per node would relax the search too much.

1 2 3

4 5

6 7 8

Following (1, 2, 3, 4, 5, 8, 7, 3, 2, 6), a fake augmenting path is found.
False positive: an augmenting path does not exist.



 

Definitions

Given a graph G and a matching M, a flower is a subgraph made by
• a stem: a possibly empty even alternating path from an

unmatched vertex p to some vertex w (the base);
• a blossom: an odd alternating cycle from w to w .

p w



 

Properties

Properties. In a flower:
• the stem spans 2l + 1 vertices and contains l matched edges,

with l ≥ 0;
• the blossom B spans 2k + 1 vertices and contains k matched

edges, with k ≥ 1;
• the base w gets an “even” label from p and it is not matched in B;
• each vertex i ∈ B is reachable from p along an even path and an

odd path:
• the even path terminates with a matched edge;
• the odd path terminates with an unmatched edge.



 

Blossom contraction

All vertices in a blossom are matched.

Therefore they can label other vertices out of the blossom only along
unmatched edges.

This is possible only if they have an even label.

Assigning all vertices in a blossom an even label, would allow to
discover an augmenting path, if one exists.

To achieve this effect, a blossom is contracted into a single
pseudo-vertex, which receives an even label.



 

Example

p w

q

p b q



 

The algorithm

Every unmatched vertex p is tried as a starting vertex of an
augmenting path.

To search for an augmenting path from p, p is labeled “even” and
vertices are alternately labeled as ‘odd” and “even” through
unmatched and matched edges, respectively.

When a vertex receives two different labels, a blossom has been
found: it is contracted into a pseudo-vertex, the pseudo-vertex is
labeled “even” and the search resumes.

If an unmatched vertex is labeled “odd”, then an augmenting path has
been found: a new matching is obtained, where p is matched.

Otherwise, when all vertices have been labeled, the search stops: no
augmenting path exists from p and p is deleted from the graph.

When all vertices are either matched or deleted, the algorithm stops.



 

Correctness

To prove the correctness of the algorithm, it is necessary and
sufficient to prove that blossom contractions do not create or destroy
augmenting paths.

Let G and G′ be the graphs before and after the contraction of B.
Let M and M ′ be the matchings before and after the contraction of B.

Theorem.

1. If G′ contains an augmenting path P′ from vertex p (or the
pseudo-vertex containing p) w.r.t. M ′, then G contains an
augmenting path P from vertex p w.r.t. M.

2. If G contains an augmenting path P from vertex p to vertex q
w.r.t. M, then G′ contains an augmenting path P′ from vertex p
(or the pseudo-vertex containing p) to q w.r.t. M ′.



 

Correctness

Proof (I). If P′ does not contain pseudo-vertices⇒ P = P′. �

Otherwise, let b the last pseudo-vertex along P′.

p i b l qP1 P3

p i w

k l q

P1

P3

P2 is the even alternating path from w to k .
(P1 ∪ [i,w ]) ∪ P2 ∪ [k , l] ∪ P3 is an augmenting path in G. �



 

Correctness
Proof (II). If P has no vertices in common with B ⇒ P′ = P. �

Otherwise, assume B has empty stem: then p is the base of B and b
contains p. Let i be the last vertex in B along P.
Then P = P1 ∪ [i, j] ∪ P2 for some j with [i, j] 6∈ M.

p

i

j qP2

P1

b j qP2

P′ = [b, j] ∪ P2 is an augmenting path in G′. �



 

Correctness

Assume now that B has non-empty stem.

W.l.o.g. we assume that p and q are the only unmatched vertices in G
(the augmenting path P from p to q is not affected by the existence of
other unmatched vertices).

Let P3 be the even alternating path from p to w .

p w

q

︸ ︷︷ ︸

P3



 

Correctness

Consider the matching M = M ⊖ P3.

p w

q

︸ ︷︷ ︸

P3

In M, p is matched and w in unmatched.



 

Correctness

Since P3 is even, M and M have the same cardinality.

Then, M is not a max matching iff M is not a max matching.

By assumption G contains an augmenting path w.r.t. M.

Therefore G must contain an augmenting path w.r.t. M.

But w.r.t. M vertices w and q are the only unmatched vertices in G.

Then G must contain an augmenting path from w to q.



 

Correctness

Let M
′

be the matching in G′ corresponding to M in G.

In M, the blossom B has empty stem.

Then the previous proof applies: G′ contains an augmenting path
w.r.t. M

′

.

p b

q
︸ ︷︷ ︸

P3

p b

q
︸ ︷︷ ︸

P3

Since M
′

and M ′ have the same cardinality, G′ must also contain an
augmenting path w.r.t. M ′. �



 

The algorithm
Input: a graph G = (V , E), represented by an adjacency list E(i) for
each vertex i ∈ V (a linked list).

for i ∈ V do
mate(i) = nil

for p ∈ V do
if mate(p) = nil then

Search(G, p)
if mate(p) = nil then

Delete p from G



 

Search(G, p)

V ′ ← ∅
for i ∈ V do

Insert(V ′, i)
pseudo(i)← false; active(i)← true; label(i) ← nil
E ′(i)← E(i)

found ← false
label(p) ← even
L← {p}
while (L 6= ∅) ∧ (found = false) do

i ← Extract(L)
if label(i) = even then

ExamineEven(i, found)
else

ExamineOdd(i, found)
if found = true then

Augment



 

ExamineEven(i , found)

for j ∈ E ′(i) do
if label(j) = even then

Contract(i, j)
Return

if (active(j) = true) ∧ (mate(j) = nil) then
q ← j
pred(q)← i
found ← true
Return

if (active(j) = true) ∧ (label(j) = nil) then
pred(j)← i
label(j) ← odd
Insert(L, j)



 

ExamineOdd(i , found)

j ← mate(i)
if label(j) = odd then

pred(j)← i
Contract(i, j)
Return

if (label(j) = nil) then
pred(j)← i
label(j) ← even
Insert(L, j)



 

Contract(i , j)

B(b)← FindBlossom(i, j)
Insert(V ′, b)
pseudo(b)← true
E ′(b)← ∅
for k ∈ V do

marked(k)← false
for j ∈ B(b) do

for k ∈ E ′(j) do
marked(k)← true

for k ∈ V do
if marked(k) = true then

Insert(E ′(b), j)
Insert(E ′(j), b)



 

FindBlossom(i , j)

for k ∈ V do
blossom(k)← false

k ← i ; blossom(k)← true
repeat

k ← pred(k); blossom(k)← true
until k = p
k ← j
repeat

blossom(k)← true; k ← pred(k)
until blossom(k) = true
w ← k
repeat

k ← pred(k); blossom(k)← false
until k = p
B ← ∅
for k ∈ V do

if blossom(k) = true then
Insert(B, k)
active(k) = false

return B



 

Augment

P ← ∅
k ← q
repeat

if pseudo(pred(k)) then
ExpandPred(k)

else
Insert(P, [pred(k), k ])
k ← pred(k)

until k = p
M ← M ⊖ P



 

ExpandPred(k)

b ← pred(k)
for i ∈ V ′ do

marked(i)← false
for i ∈ B(b) do

marked(i)← true
j ← FindMarked(E ′(k))
pred(k)← j



 

Complexity

The number of augmentations is bounded by n/2 since the graph has
n vertices and each edge in M matches two of them.

Within each main iteration (search for an augmenting path) the
algorithm spends time

1. for contracting blossoms

2. for expanding blossoms

3. for other operations

Each blossom includes at least 3 vertices: then the number of active
vertices decreases by at least 2 after each contraction.

Then each main iteration includes at most n/2 contractions (and
expansions).

The number of pseudo-nodes is bounded by n/2 and the cardinality
of the adjacency lists by 3n/2 (still linear in n).



 

Complexity

1. Time spent for contracting blossoms.

Setting all neighbors of all vertices in the blossom to “unmarked”
sums up to O(n2) over all contractions, because every vertex appears
in a blossom at most once.

Updating the adjacency lists for all marked vertices, requires O(n) for
each contraction, i.e. O(n2) over all contractions.

Then, the time spent for contracting is O(n2) for each main iteration.



 

Complexity

2. Time spent for expanding blossoms.

In each main iterations no more than n/2 calls to ExpandPred are
required.

Each execution of ExpandPred requires O(n).

Then, the time spent for expanding blossoms is O(n2) for each main
iteration.



 

Complexity

3. Time spent for other operations.

In each main iteration, for each vertex i ∈ V ′

• active(i) is checked from each adjacent vertex: O(n);
• ExamineOdd(i) is executed: O(1);
• ExamineEven(i) is executed: O(E ′(i)), i.e. O(n) because
|E ′(i)| ≤ 3n/2.

Every vertex is examined at most once in a main iteration.

Then, the time spent for other operations is O(n2) for each main
iteration.



 

Complexity

Within each main iteration the algorithm also
• initializes the graph and the data-structures in O(n2);
• reconstructs the augmenting path in O(n);
• updates the matching in O(n).

Then, the complexity of each main iteration is O(n2).

The number of main iterations is O(n).

Therefore the complexity of the algorithm is O(n3).


