
Minimum cost bipartite matching
Complements of Operations Research

Giovanni Righini
Università degli Studi di Milano

Definitions

Given a graph G = (V , E) a matching is an edge subset M ⊆ E such
that it is not incident to any vertex more than once.

A matching is maximal if and only if there is no other matching
containing it.

A matching has maximum cardinality if and only if it contains the
maximum number of edges of E .

A graph G = (V , E) is bipartite when V is formed by two disjoint
subsets S and T and all edges [i, j] ∈ E have an endpoint in S and
the other in T .

A bipartite graph G = (S, T , E) is complete when there are all
possible edges between S and T , i.e. E = S × T .

The problem

We consider the problem of finding the matching of maximum
cardinality and minimum cost between two vertex subsets S and T
defining a weighted bipartite graph.

Data:
• a bipartite graph G = (S, T , E),
• a cost function c : E 7→ ℜ.

Problem (Minimum Cost Bipartite Matching Problem). Find a
minimum cost matching between S e T among all those with
maximum cardinality.

Graph pre-processing

We assume:
• the two partitions are balanced: |S| = |T | = n
• the graph is complete: E = S × T .

Observation. If these conditions do not hold, it is always possible to
reformulate the problem in an equivalent way on a complete balanced
bipartite graph.

Graph pre-processing
Balancing the graph.
If the given bipartite graph is not balanced, we insert dummy vertices
in the partition of smaller cardinality, to make it balanced.

No matching is affected by this operation.

Completing the graph.
If the given graph is not complete, we insert dummy edges with a very
large cost (“Big-M”) to make it complete.

Infeasible matchings are now feasible but they have very large cost.
Maximum cardinality feasible matchings in the original graph
correspond to matchings with the smallest number of dummy edges
in the new graph.
Among them, optimality only depends on the costs of the original
edges.

The reformulated problem

After pre-processing, we can reformulate the problem as follows.

Minimum Cost Bipartite Matching Problem (reformulated). Find a
minimum cost complete matching between the two vertex subsets of
a given weighted bipartite graph.

Every solution is represented by an assignment matrix where S is the
row set and T is the column set.

An assignment matrix is a binary square matrix with exactly one entry
equal to 1 for each row and each column.

Linear Assignment Problem. Find a minimum cost assignment in a
given square matrix.

Reformulation as a flow problem

A “trivial” way of solving the problem is to transform it into a min cost
max flow problem.

s1

s2

s3

s4

t1

t2

t3

t4

s t

Cost=c, Cap=∞

Cost=0, Cap=1 Cost=0, Cap=1

Figure: Network flow reformulation.

A mathematical model (ILP)
We use a binary variable xij for each edge [i, j] ∈ E , to indicate
whether the edge is in the solution or not.

minimize z =
∑

i∈S

∑

j∈T

cijxij

s.t.
∑

j∈T

xij = 1 ∀i ∈ S

∑

i∈S

xij = 1 ∀j ∈ T

xij ∈ {0, 1} ∀i ∈ S, ∀j ∈ T .

Does it have the integrality property?

A mathematical model (ILP)
We use a binary variable xij for each edge [i, j] ∈ E , to indicate
whether the edge is in the solution or not.

minimize z =
∑

i∈S

∑

j∈T

cijxij

s.t.
∑

j∈T

xij = 1 ∀i ∈ S

∑

i∈S

xij = 1 ∀j ∈ T

xij ∈ {0, 1} ∀i ∈ S, ∀j ∈ T .

• The constraint matrix is totally unimodular.
• The right-hand sides are integer numbers.

Hence all solutions of the linear relaxation have integer coordinates.

A mathematical model (LP)

Relaxing the integrality constraints, the following model is obtained:

minimize z =
∑

i∈S

∑

j∈T

cijxij

s.t.
∑

j∈T

xij = 1 ∀i ∈ S

∑

i∈S

xij = 1 ∀j ∈ T

0 ≤ xij ≤ 1 ∀i ∈ S, ∀j ∈ T .

Upper bounds xij ≤ 1 are redundant because assignment constraints
and non-negativity constraints imply them.

A mathematical model (LP)

So we are left with the following model:

minimize z =
∑

i∈S

∑

j∈T

cijxij

s.t.
∑

j∈T

xij = 1 ∀i ∈ S

∑

i∈S

xij = 1 ∀j ∈ T

xij ≥ 0 ∀i ∈ S, ∀j ∈ T .

This is a LP problem, hence it has a dual problem and it forms a
strong dual pair with it.

The primal-dual pair
Primal problem:

minimize z =
∑

i∈S

∑

j∈T

cijxij

s.t.
∑

j∈T

xij = 1 ∀i ∈ S

∑

i∈S

xij = 1 ∀j ∈ T

xij ≥ 0 ∀i ∈ S, ∀j ∈ T .

Write the dual.

The primal-dual pair
Primal problem:

minimize z =
∑

i∈S

∑

j∈T

cijxij

s.t.
∑

j∈T

xij = 1 ∀i ∈ S

∑

i∈S

xij = 1 ∀j ∈ T

xij ≥ 0 ∀i ∈ S, ∀j ∈ T .

Dual problem:

maximize w =
∑

i∈S

ui +
∑

j∈T

vj

s.t. ui + vj ≤ cij ∀i ∈ S ∀j ∈ T .

The dual problem

maximize w =
∑

i∈S

ui +
∑

j∈T

vj

s.t. ui + vj ≤ cij ∀i ∈ S ∀j ∈ T .

Dual variables u and v are unrestricted in sign.

The dual slack variables (primal reduced costs) are:

c ij = cij − ui − vj .

For optimality, complementary slackness conditions impose that:

c ijxij = 0 ∀i ∈ S ∀j ∈ T .

Partial assignments and primal feasibility

We call partial assignment an assignment satisfying
∑

j∈T

xij ≤ 1 ∀i ∈ S

∑

i∈S

xij ≤ 1 ∀j ∈ T .

Primal infeasibility is measured by the number of missing
assignments.

CSCs impose that in each primal/dual pair of base solutions we may
have xij > 0 only for edges [i, j] for which c ij = 0.

We call admissible cells of the assignment matrix those where c ij = 0.

Primal-dual algorithms
A primal-dual algorithm solves linear programming problems
exploiting duality theory and in particular the CSCs.

The algorithm is initialized with a dual feasible solution and a
corresponding primal solution (in general, infeasible) satisfying the
CSCs.

After every iteration the algorithm keeps a pair of primal (infeasible)
and dual (feasible) solutions, satisfying the CSCs.

The algorithm alternates two types of iterations, and it monotonically
decreases primal infeasibility until it achieves primal feasibility.
• Primal iteration: keeping the current dual feasible solution fixed,

find a primal solution minimizing primal infeasibility among those
satisfying the CSCs;

• Dual iteration: keeping the current primal solution fixed, modify
the dual solution, keeping it feasible and the CSCs satisfied.

Hungarian algorithm (Kuhn 1955)

The hungarian algorithm is a primal-dual algorithm.

• Primal iteration: keeping ui and vj fixed, and hence c ij fixed,
determine x maximizing the number of assignments (xij = 1),
using only admissible cells;

• Dual iteration: update ui and vj , keeping c ij = 0 where xij = 1
and making some inadmissible cells admissible.

Hungarian algorithm: pseudo-code

Begin
Step 1: Dual initialization of u and v ;
Step 2: Primal initialization of x ;
while (x is infeasible) do

Step 3.1: Path initialization
Path:=nil;
while (Path = nil) do

while (Path = nil) ∧ (L 6= ∅) do
Step 3.2: Labeling procedure

end while
if Path = nil then

Step 4: Dual iteration: Modify u and v ;
end if

end while
Step 5: Primal iteration: Modify x ;

end while
End

Hungarian algorithm: visualization

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate nil nil nil nil 0

Initially: x = 0, z = 0, Card = 0.

c t1 t2 t3 t4 u
s1 15 22 13 4 0
s2 12 21 15 7 0
s3 16 20 22 6 0
s4 6 11 8 5 0
v 0 0 0 0 0

The values in the bottom-right
corners are:

z =
∑

[i,j]∈E

cijxij .

w =
∑

i∈S

ui +
∑

j∈T

vj .

Initially: u = v = 0, c = c, w = 0.

Step 1: Dual initialization
This can be done with a dual ascent procedure.

Begin Step 1
for i ∈ S do

ui :=minj∈T {cij};
end for
for j ∈ T do

vj :=mini∈S{cij − ui};
end for
End Step 1

The dual variables are raised one at a
time from 0 up to the minimum value that
makes a dual constraint active.

This guarantees that the dual solution
remains feasible.

Complexity: O(n2).

Visualization of Step 1

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate nil nil nil nil 0

x = 0, Card = 0.

c t1 t2 t3 t4 u
s1 15 22 13 4 0
s2 12 21 15 7 0
s3 16 20 22 6 0
s4 6 11 8 5 0
v 0 0 0 0 0

Visualization of Step 1

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate nil nil nil nil 0

x = 0, Card = 0.

c t1 t2 t3 t4 u
s1 11 18 9 0 4
s2 5 14 8 0 7
s3 10 14 16 0 6
s4 1 6 3 0 5
v 0 0 0 0 22

Visualization of Step 1

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate nil nil nil nil 0

x = 0, Card = 0.

c t1 t2 t3 t4 u
s1 11 18 9 0 4
s2 5 14 8 0 7
s3 10 14 16 0 6
s4 1 6 3 0 5
v 0 0 0 0 22

Visualization of Step 1

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate nil nil nil nil 0

x = 0, Card = 0.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32

Step 2: Primal initialization
Begin Step 2
for k ∈ S ∪ T do

Mate(k):=nil;
end for
Card := 0;
while (∃[i, j] : (cij−u(i)−v(j) = 0)∧(Mate(i) = nil)∧(Mate(j) = nil))
do

xij := 1;
Card := Card + 1;
Mate(i) := j; Mate(j) := i;

end while
End Step 2

A maximal partial matching is computed, using only admissible cells.
This requires scanning a square (n × n) matrix.

Complexity: O(n2).

Visualization of Step 2

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate nil nil nil nil 0

x = 0, Card = 0.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32

There are 7 admissible cells.

Scanning them in lexicographic
order by rows and columns, edge
[1, 4] is chosen first.

Visualization of Step 2

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate nil nil nil 1 4

x14 = 1, Card = 1.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32

We still have three admissible
cells: edge [4, 1] is chosen next.

Visualization of Step 2

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32

No admissible cells are left on
unmatched rows and columns.
The current partial matching is
maximal.

Primal feasibility test

It consists of counting how many edges have been inserted into the
primal solution (partial matching).

Primal feasibility test: ??.

Primal feasibility test

It consists of counting how many edges have been inserted into the
primal solution (partial matching).

Primal feasibility test: Card = n.

Step 3: Search for an augmenting path
Step 3 consists of searching for an augmenting path, which is also an
alternating path since the graph is bipartite. This is a path a unit of
flow can follow to go from s to t .

Step 3: Search for an augmenting path
Step 3 consists of searching for an augmenting path, which is also an
alternating path since the graph is bipartite. This is a path a unit of
flow can follow to go from s to t .

Every time an s-t path is found, the cardinality of the current partial
matching can be increased by 1 (primal iteration). To find the s-t path
it may be necessary to execute at most O(n) dual iterations, because
each of them allows to reach one more node in T .

Step 3: Search for an augmenting path
Step 3 consists of searching for an augmenting path, which is also an
alternating path since the graph is bipartite. This is a path a unit of
flow can follow to go from s to t .

Every time an s-t path is found, the cardinality of the current partial
matching can be increased by 1 (primal iteration). To find the s-t path
it may be necessary to execute at most O(n) dual iterations, because
each of them allows to reach one more node in T .

The path starts from s; every node in S and T that can be reached is
labeled. Label of a node is its predecessor.
L is the set of labels to be used to generate others.

Vector p stores the minimum reduced cost value for each unlabeled
column among those in labeled rows.
Vector π stores the corresponding row.

Step 3.1: Path initialization

Begin Step 3.1
L:=∅;
for k ∈ S ∪ T do

Label(k):=nil;
end for
for j ∈ T do

p(j):=∞; π(j):=nil;
end for
for i ∈ S : (Mate(i) = nil) do

Label(i):=s;
L:=L ∪ {i};
for j ∈ T : (Label(j) = nil) do

if c(i, j) − u(i) − v(j) < p(j) then
p(j):=c(i, j) − u(i)− v(j); π(j):=i;

end if
end for

end for
End Step 3.1

Complexity: O(n2).

Visualization of Step 3.1

s1

s2

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p ∞ ∞ ∞ ∞
π nil nil nil nil

There are two unmatched nodes
in S.

Visualization of Step 3.1

s1

(s)

s3

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p 4 8 5 0
π s2 s2 s2 s2

Insert L = {s2}.

Visualization of Step 3.1

s1

(s)

(s)

s4

t1

t2

t3

t4

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p 4 8 5 0
π s2 s2 s2 s2

Insert: L = {s2, s3}.

Step 3.2: Label propagation
Begin Step 3.2
Extract k from L;
if k ∈ S then

Step 3.2.A: Propagation from k ∈ S to T
else

if (Mate(k) 6= nil) then
Step 3.2.B: Propagation from k ∈ T to S

else
Path := k ;

end if
end if
End Step 3.2

Propagation stops when an unmatched node k ∈ T is labeled.

Each node is inserted/extracted in/from L at most once.

Step 3.2.A: Label propagation from S to T

Begin Step 3.2.A
for j ∈ T : (Label(j) = nil) ∧ (c(k , j)− u(k)− v(j) = 0) do

Label(j):=k ;
L := L ∪ {j};

end for
End Step 3.2.A

Propagation from k ∈ S to T occurs along edges that:
• correspond to admissible cells;
• do not belong to the current partial matching.

Complexity: O(n).

Step 3.2.B: Label propagation from T to S

Begin Step 3.2.B
if (Label(Mate(k)) = nil) then

Label(Mate(k)):=k ;
L := L ∪ {Mate(k)};
for j ∈ T : (Label(j) = nil) do

if c(Mate(k), j)− u(Mate(k))− v(j) < p(j) then
p(j) := c(Mate(k), j)− u(Mate(k))− v(j);
π(j) := Mate(k);

end if
end for

end if
End Step 3.2.B

Propagation from k ∈ T to S occurs along edges of the partial
matching.

Complexity: O(n).

Visualization of Step 3.2

s1

(s)

(s)

s4

t1

t2

t3

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p 4 8 5 0
π s2 s2 s2 s2

Extract: L = {s2, s3}.
Insert: L = {s3, t4}.

Visualization of Step 3.2

s1

(s)

(s)

s4

t1

t2

t3

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p 4 8 5 0
π s2 s2 s2 s2

Extract: L = {s3, t4}.
Insert: L = {t4}.

Visualization of Step 3.2

(4)

(s)

(s)

s4

t1

t2

t3

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p 4 8 5 0
π s2 s2 s2 s2

Extract: L = {t4}.
Insert: L = {s1}.

Visualization of Step 3.2

(4)

(s)

(s)

s4

t1

t2

t3

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p 4 8 5 0
π s2 s2 s2 s2

Extract: L = {s1}.
Insert: L = {}.

No s-t path has been found.
Nodes s1, s2, s3, t4 are labeled.
Nodes s4, t1, t2, t3 are not.

Step 4: Dual iteration

Begin Step 4
δ := minj∈T {p(j) : Label(j) = nil};
for i ∈ S : Label(i) 6= nil do

u(i) := u(i) + δ;
end for
for j ∈ T : Label(j) 6= nil do

v(j) := v(j)− δ;
end for
for j ∈ T : Label(j) = nil do

p(j) := p(j) − δ;
end for
for j ∈ T : (Label(j) = nil) ∧ (p(j) = 0) do

Label(j) := (π(j));
L := L ∪ {j};

end for
End Step 4

The value δ is the minimum
reduced cost in the
sub-matrix of labeled rows
and unlabeled columns.
However, owing to the
vector p, finding δ takes
O(n) instead of O(n2).

Updating u takes O(n).
Updating v takes O(n).
Updating p takes O(n).
Re-initializing L takes O(n).

At least one more cell
becomes admissible and it
is used to label one more
node in T .

Visualization of Step 4

(4)

(s)

(s)

s4

t1

t2

t3

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 10 12 6 0 4
s2 4 8 5 0 7
s3 9 8 13 0 6
s4 0 0 0 0 5
v 1 6 3 0 32
p 4 8 5 0
π s2 s2 s2 s2

We consider edges joining labeled
nodes in S with unlabeled nodes
in T .

We find δ = 4.

Visualization of Step 4

(4)

(s)

(s)

s4

(2)

t2

t3

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 4 1 0
π s2 s2 s2 s2

Increase u1, u2 and u3 by δ.
Decrease v4 by δ.
Decrease p1, p2 and p3 by δ.

Cell [4, 4] is no longer admissible.
Cell [2, 1] becomes admissible.

Label t1 from s2.
Re-initialize: L = {t1}.

Visualization of Step 3.2

(4)

(s)

(s)

(1)

(2)

t2

t3

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 0 0 0
π s2 s4 s4 s2

Extract: L = {t1}.
Insert: L = {s4}.

Visualization of Step 3.2

(4)

(s)

(s)

(1)

(2)

(4)

(4)

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 0 0 0
π s2 s4 s4 s2

Extract: L = {s4}.
Insert: L = {t2, t3}.

Visualization of Step 3.2

(4)

(s)

(s)

(1)

(2)

(4)

(4)

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1

Mate 4 nil nil 1 10

x14 = x41 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 0 0 0
π s2 s4 s4 s2

Extract: L = {t2, t3}.

t2 is not matched: an s-t path has
been found.

Step 5: primal iteration

Begin Step 5
j := Path;
repeat

i := Label(j);
Mate(j) := i; Mate(i) := j;
xij := 1; z := z + cij ;
Card := Card + 1;
j := Label(i);
if Label(i) 6= s then

xij := 0; z := z − cij ;
Card := Card − 1;

end if
until (j = s);
End Step 5

The path is reconstructed backward from t to s. It has O(n) edges.

Complexity: O(n).

Visualization of Step 5

(4)

(s)

(s)

(1)

(2)

(4)

(4)

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 2

Mate 4 4 nil 1 21

x14 = x41 = x42 = 1, Card = 3.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 0 0 0
π s2 s4 s4 s2

The predecessor of t2 is s4.

Visualization of Step 5

(4)

(s)

(s)

(1)

(2)

(4)

(4)

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 2

Mate nil 4 nil 1 15

x14 = x42 = 1, Card = 2.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 0 0 0
π s2 s4 s4 s2

The predecessor of s4 is t1.

Visualization of Step 5

(4)

(s)

(s)

(1)

(2)

(4)

(4)

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 1
s3 16 20 22 6 nil
s4 6 11 8 5 2

Mate 2 4 nil 1 27

x14 = x42 = x21 = 1, Card = 3.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 0 0 0
π s2 s4 s4 s2

The predecessor of t1 is s2.

Visualization of Step 5

(4)

(s)

(s)

(1)

(2)

(4)

(4)

(2)

s t

t1 t2 t3 t4 Mate
s1 15 22 13 4 4
s2 12 21 15 7 1
s3 16 20 22 6 nil
s4 6 11 8 5 2

Mate 2 4 nil 1 27

x14 = x42 = x21 = 1, Card = 3.

c t1 t2 t3 t4 u
s1 6 8 2 0 8
s2 0 4 1 0 11
s3 5 4 9 0 10
s4 0 0 0 4 5
v 1 6 3 -4 40
p 0 0 0 0
π s2 s4 s4 s2

The predecessor of s2 is s.

The primal solution has been
updated.

Card < n.

We are ready for another stage.

Hungarian algorithm: complexity

Begin
Step 1: Dual initialization;
Step 2: Primal initialization;
while [1] (x is infeasible) do

Step 3.1: Initialization
Path:=nil;
while [2] (Path = nil) do

while [3] (Path = nil) ∧ (L 6= ∅) do
Step 3.2: Labeling procedure

end while
if Path = nil then

Step 4: Dual iteration;
end if

end while
Step 5: Primal iteration;

end while
End

Step 1: O(n2).
Step 2: O(n2).
Loop 1: O(n) times.
Step 3.1: O(n).
Loop 2 (stage): O(n) times.
Loop 3: O(n) times.
Step 3.2: O(n) ∀ node, i.e.
O(n2) ∀ stage.
Step 4: O(n).
Step 5: O(n).

Overall complexity: O(n3).

