
This article was downloaded by: [2.36.106.147] On: 30 August 2021, At: 07:19
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A New Algorithm for the Single Source Weber Problem
with Limited Distances
Giovanni Righini

To cite this article:
Giovanni Righini (2021) A New Algorithm for the Single Source Weber Problem with Limited Distances. Transportation Science

Published online in Articles in Advance 27 Aug 2021

. https://doi.org/10.1287/trsc.2021.1083

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2021.1083
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

A New Algorithm for the Single Source Weber Problem with
Limited Distances
Giovanni Righinia

aDepartment of Computer Science, University of Milan, Milan 20122, Italy
Contact: giovanni.righini@unimi.it, https://orcid.org/0000-0001-9830-7454 (GR)

Received: April 16, 2020
Revised: January 26, 2021; April 10, 2021
Accepted: June 3, 2021
Published Online in Articles in Advance:

https://doi.org/10.1287/trsc.2021.1083

Copyright: © 2021 INFORMS

Abstract. The single source Weber problemwith limited distances (SSWPLD) is a continu-
ous optimization problem in location theory. The SSWPLD algorithms proposed so far are
based on the enumeration of all regions of �2 defined by a given set of n intersecting cir-
cumferences. Early algorithms require O(n3) time for the enumeration, but they were re-
cently shown to be incorrect in case of degenerate intersections, that is, when three or more
circumferences pass through the same intersection point. This problem was fixed by a
modified enumeration algorithm with complexity O(n4), based on the construction of
neighborhoods of degenerate intersection points. In this paper, it is shown that the com-
plexity for correctly dealing with degenerate intersections can be reduced to O(n2logn) so
that existing enumeration algorithms can be fixedwithout increasing theirO(n3) time com-
plexity, which is due to some preliminary computations unrelated to intersection degener-
acy. Furthermore, a new algorithm for enumerating all regions to solve the SSWPLD is
described: its worst-case time complexity is O(n2logn). The new algorithm also guarantees
that the regions are enumerated only once.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2021.1083.

Keywords: Weber problem • depth-first-search

1. The Problem
The single source Weber problem with limited dis-
tances (SSWPLD), also known as the facility loca-
tion problem with limited distances, is a continuous
optimization problem in location theory. A set N �
{1, 2, : : : ,n} of circumferences in �2 is given. For
each circumference i ∈N , a center in position Oi, a
radius ri ≥ 0, and a weight wi ≥ 0 are given. The
problem consists of optimally locating a point X in
�2 minimizing the weighted sum of cost terms de-
pending on its distances from the centers of the cir-
cumferences. The cost term for each circumference
i ∈N is the minimum of the distance between X and
Oi and the radius ri. The objective function is as fol-
lows:

z � min
X∈�2

∑
i∈N

wimin d(Oi,X), ri
{ }{ }

,

where d() indicates the Euclidean distance in�2.
Drezner, Mehrez, and Wesolowsky (1991) pro-

poses an algorithm to solve the SSWPLD as an unre-
stricted single-source location problem for each
region of the partition of �2 induced by the circum-
ferences. A region is defined by the subset of circum-
ferences including it. Hence, the objective can be
restated as follows:

z � min
Q⊆N ,X∈�2

∑
i∈Q

wi d(Oi,X) +
∑
i∉Q

wiri : d(Oi,X) ≤ ri ∀ i ∈Q
{ }

:

The constraint d(Oi,X) ≤ ri ∀ i ∈Q can be dropped be-
cause any solution (Q,X) : ∃i ∈Q,d(Oi,X) > ri is domi-
nated by another solution (Q′,X)withQ′ �Q\{i}.

Indicating with R the set of regions of �2 induced
by the circumferences, the SSWPLD can be reformu-
lated as

z � min
Q∈R,X∈�2

∑
i∈Q

wi d(Oi,X) +
∑
i∉Q

wiri
{ }

:

If an algorithm is available to compute the optimal lo-
cation X∗(Q) for each region Q ∈ R with the corre-
sponding optimal value z∗(Q), then the problem is

z �min
Q∈R

z∗(Q) +∑
i∉Q

wiri
{ }

,

and it can be solved by enumerating the regions in R,
as suggested by Drezner, Mehrez, and Wesolowsky
(1991).

The single-source optimal location problem, or one-
median problem, can be solved by the classical infinite
algorithm proposed by Weiszfeld (1937) or one of its
variations (e.g., Ostresh 1978).

1

TRANSPORTATION SCIENCE
Articles in Advance, pp. 1–15

ISSN 0041-1655 (print), ISSN 1526-5447 (online)http://pubsonline.informs.org/journal/trsc

August 27, 2021

mailto:giovanni.righini@unimi.it
https://orcid.org/0000-0001-9830-7454
https://doi.org/10.1287/trsc.2021.1083
https://orcid.org/0000-0001-9830-7454
http://pubsonline.informs.org/journal/trsc

In this paper, the focus is on the complexity of the
region enumeration algorithm, building upon the pa-
pers by Drezner, Mehrez, and Wesolowsky (1991) and
Venkateshan (2020).

The algorithm proposed by Drezner, Mehrez, and
Wesolowsky (1991) relies upon a theorem stating that
n circumferences in �2 induce up to 2n(n− 1) distinct
regions. Therefore, the single-source optimal location
algorithm must be executed a quadratic number of
times to find the optimum of the SSWPLD. The enu-
meration algorithm of Drezner, Mehrez, and Weso-
lowsky (1991) is based on the observation that each
intersection point between two circumferences is adjacent
to four regions. For each intersection point P between
two distinct circumferences i ∈N and j ∈N , the set SP of
circumferences different from i and j that cover P is com-
puted inO(n). Then, a set RP of four regions is generated:
RP � {SP,SP⋃{i},SP⋃{j},SP⋃{i, j}}. This procedure,
repeated for all intersection points, that is, O(n2)
times, generates the whole set of regions R � ⋃

P
RP in

O(n3) time.
Unfortunately, this algorithm does not work cor-

rectly with “pathological” instances. One possible
reason is the presence of circumferences entirely in-
cluded in one another or disjoint from all the others.
Aloise, Hansen, and Liberti (2012) show how to cor-
rect the algorithm in order to cope with instances with
this structure. The complexity of their algorithm is
O(n3) like that of Drezner, Mehrez, and Wesolowsky
(1991).

More recently, Venkateshan (2020) pointed out the
need for a further correction that is needed because of
instances in which more than two circumferences pass
through the same intersection point. In the Venkate-
shan (2020) algorithm, given an intersection point P
between circumferences, a subset SP is defined as the
subset of circumferences strictly covering P, and a sub-
set TP is defined as the subset of circumferences pass-
ing through P. A “small enough” neighborhood is
constructed around P, and the intersections of the cir-
cumferences in TP with the frontier of the neighbor-
hood are computed. Then, following the frontier of
the neighborhood, one can correctly enumerate the set
of all relevant subsets of TP, that correspond to the re-
gions with a vertex in P. The construction and analysis
of the neighborhood requires O(n4), suggesting that
the need to take into account the possible occurrence
of degenerate intersections increases the complexity of
the region enumeration problem.

In this paper, in Section 2, it is shown that this is not
the case, because the same result obtained by Venkate-
shan’s (2020) method can be achieved with better
computational complexity without actually construct-
ing the neighborhoods but just distinguishing the two
sides of the circumferences in TP, that is, the interior
and the exterior, and sorting the directions of their

tangent lines accordingly. In this way, the enumera-
tion of all relevant subsets takes O(n2logn). However,
after this improvement, the bottleneck of the overall
enumeration algorithm is still the computation of all
subsets SP, that requires O(n3) in all algorithms de-
vised so far.

In Section 3, a new region enumeration algorithm is
illustrated: it does not require computing the subsets
SP, and it allows enumerating all regions in
O(n2logn).

It must be remarked that the true bottleneck in the
solution of the SSWPLD is the need of running the
single-source optimal location algorithm for as many
times as the number of regions that are enumerated.
A remarkable feature of the new algorithm is that it
guarantees to enumerate all regions only once.

2. An Improvement to
Existing Algorithms

Preprocessing: A generic SSWPLD instance can be
preprocessed for at least two purposes: (i) merging
pairs of circumferences i ∈N and j ∈N with Oi � Oj

and ri � rj in a unique circumference with the same
center, the same radius, and weight wi +wj; (ii) elimi-
nating circumferences with radius r � 0 or weight
w � 0 because they have no effect on the value of any
solution. Such preprocessing takes O(nlogn) and it is
not a computational complexity bottleneck.

In the remainder, the term “multiple intersection
point” (m.i.p.) is used to indicate a point in �2 at
which two or more circumferences intersect.

Given an m.i.p. P and the corresponding subset TP

of circumferences that intersect in P, the enumeration
method proposed in Venkateshan (2020) is based on
the construction of a small enough circular neighbor-
hood of P such that there is no intersection other than
P between the circumferences of TP within the
neighborhood.

A neighborhood with this property certainly exists
because there are no two circumferences in TP with
the same center and the same radius owing to
preprocessing.

Given an m.i.p. P and a small enough neighborhood
of P with the preceding property, let us indicate its ra-
dius with ρP and its frontier with FP. For the definition
of small enough neighborhood and because ρP is
guaranteed to be strictly positive, the following obser-
vation holds.

Observation 1. Given an m.i.p. P and a small enough
neighborhood of P with frontier FP, the intersection
points of the circumferences in TP with FP are all
distinct.

Assume scanning FP according to an arbitrary ori-
entation (e.g., counterclockwise) starting from an

Righini: Single Source Weber Problem
2 Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS

arbitrary direction (e.g., the positive x semiaxis). Then,
there exists a unique cyclic order in which the inter-
section points with the circumferences in TP are en-
countered along FP. By cyclic order, we mean a
sequence in which the successor of the last element is
the first one and the predecessor of the first element is
the last one. Two cyclic orders are defined to be equal
when they contain the same elements and each ele-
ment has the same predecessor and successor in both.

Let us indicate by ēi and l̄i the directions from P to
the intersection points between FP and each circumfer-
ence i ∈ TP as shown in Figure 1. Assuming scanning
FP counterclockwise, the intersection point corre-
sponding to ēi is encountered when “entering”
circumference i ∈N , and the intersection point corre-
sponding to l̄i is encountered when “leaving” it.

Obviously, the cyclic order of the intersection points
is equal to the cyclic order of the corresponding direc-
tions ē and l̄. We indicate such a cyclic order by L̄P.
Note that L̄P does not depend on ρP although the posi-
tion of the intersection points on FP does because, by
definition, any small enough neighborhood does not
contain intersections between the circumferences in
TP apart from P.

The cyclic order of the intersection points along FP
is the piece of information needed to correctly enu-
merate the regions around P as shown by Venkate-
shan (2020). Here, we observe that the same cyclic
order can be computed in a slightly different way just
by sorting the directions of the tangent lines in P.

Let us call gi the direction from P to the center Oi of
each circumference i ∈ TP. We can easily obtain the di-
rections of the lines tangential to circumference i in P
corresponding to entering (ei) and leaving (li) the

circumference when F is scanned counterclockwise:
ei � gi − π

2 and li � gi + π
2, where all angles are comput-

ed modulo 2π.
Because FP is continuous and the circumferences

are continuous, when ρP tends to zero the intersection
points on FP tend to P, and then ēi tends to ei and l̄ i
tends to li for each i ∈ TP. Therefore, there exists a cy-
clic order LP of the directions e and l that coincides
with L̄P, that is, these two properties hold: (i) LP can
be obtained from L̄P by replacing ēi with ei and l̄ i with
li for each i ∈ TP; (ii) LP is one of the possible cyclic or-
ders in which directions e and l can be sorted
counterclockwise.

Ties do not exist in the cyclic order of directions ē
and l̄ by Observation 1, but they can occur in cyclic or-
ders of directions e and l because distinct circumfer-
ences in TP can have coincident tangent lines. This can
occur only when gi � gj6π or when gi � gj. When ties
occur, the unique cyclic order of the tangent lines that
corresponds to L̄P must be determined. This is ob-
tained by two simple tie-break criteria.

Tie-break criterion 1: For any i≠ j ∈ TP such that ei �
lj and ej � li, lj precedes ei and li precedes ej.

Tie-break criterion 2: For any i≠ j ∈ TP such that li �
lj and ei � ejwith ri > rj, lj precedes li and ei precedes ej.

Both criteria rely upon basic properties of tangent
circumferences, illustrated in Figure 2. Tie-break crite-
rion 1 solves ties occurring when gi � gj6π, and it is il-
lustrated in Figure 2 on the left; tie-break criterion 2
solves ties occurring when gi � gj, and it is illustrated
in Figure 2 on the right. The two criteria allow sorting
the directions e and l in a uniquely defined cyclic
order LP equal to the unique cyclic order L̄P of the di-
rections ē and l̄. In turn, this allows computing LP
without computing L̄P and obtaining from LP the same
piece of information that can be obtained from L̄P.

Venkateshan (2020) describes an algorithm to obtain
the set of distinct regions around an m.i.p. P once the
cyclic order L̄P of the intersection points on its neigh-
borhood frontier has been obtained. Here, an alterna-
tive algorithm is described to achieve the same result
from LP. This enumeration algorithm is outlined in Al-
gorithm 1. The procedure Scan is called for each
m.i.p. P; its input is a sequence VP, defined hereafter,
and the set SP of circumferences strictly covering P as
defined in Venkateshan (2020). Its effect is to call the
single-source optimal location algorithm Evaluate for
each region around P. For this purpose, the cyclic or-
der LP of the directions from P is represented as a se-
quence VP of 2c elements with c � |TP|. The sequence
is obtained starting from an arbitrary element of LP
and replacing ei with +i and li with –i for each i ∈ TP.

In Scan, the sequence VP is scanned twice. At any
point during the execution, a current subset Q of cir-
cumferences in TP is kept. Q is initialized at the empty
set (line 2). When VP is scanned for the first time (lines

Figure 1. An Intersection Point P Between Two Circumfer-
ences; Its Neighborhood; the Intersections Along Its Frontier
FP; and the Directions ē, l̄, e, and l

Note. In this example, L̄P � {l̄ j, ē i, ē j, l̄ i}.

Righini: Single Source Weber Problem
Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS 3

3–8), for each element, a circumference index in
{1, : : : ,n} is inserted in Q or deleted from Q: when the
entering point of circumference i is encountered (line 4),
then i is inserted in Q (line 5); when the leaving point of
circumference i is encountered, if i ∈Q (line 7), then it is
deleted (line 8). It is trivial to prove that, at the end of
the first scan, Q contains all indices i ∈ TP for which –i
precedes +i in VP and no index i ∈ TP for which +i pre-
cedes –i in VP. Therefore,Q correctly represents the sub-
set of circumferences in TP covering the points of FP
between the last element of VP and the first one. This
provides a correct initialization for the second scan.
During the second scan (lines 9–14), the same inser-
tion/deletion rule is applied with the guarantee that i ∈
Q whenever –i is encountered. In this way all regions
around P are correctly identified, and a single-source
optimal location problem is solved for each of them.

Algorithm 1 (The Enumeration Algorithm to Be Executed
for Each m.i.p. P)

1: procedure Scan(VP,SP)
2: Q←∅
3: for t � 1, : : : , |VP| do
4: if VP[t] > 0 then
5: Q←Q

⋃{VP[t]}
6: else
7: if (−VP[t] ∈Q) then
8: Q←Q\{−VP[t]}
9: for t � 1, : : : , |VP| do
10: ifVP[t] > 0 then
11: Q←Q

⋃{VP[t]}
12: else
13: Q←Q\{−VP[t]}
14: Evaluate(Q⋃

SP)
Three examples are provided in Online Appendix A

to show how the algorithm works in full detail.

2.1. Computational Complexity
To establish the asymptotic worst-case time complexi-
ty of the region enumeration algorithm, it is necessary
to distinguish three main steps. In step 1, one must
compute the intersection points for all pairs of distinct
circumferences, and one must detect when some of
them coincide; the output is a list of m.i.p. In step 2,
for each m.i.p. P, one must compute the set SP of cir-
cumferences that strictly cover P. In step 3, all regions
with a vertex in P are enumerated for each m.i.p. P,
and a single-source optimal location algorithm is run
for each detected region. Hereafter, the worst-case
time complexity of each of these three steps is
analyzed.

2.1.1. Step 1. The set of intersection points between
circumferences can be computed in O(n2). To detect
coincident intersections, intersection points can be
sorted so that coincident intersection points turn out
to be consecutive in the ordering. For instance, one
can sort the intersection points in lexicographical or-
der according to the x value, using the y value as a
secondary criterion in case of identical x values. The
intersection points are O(n2), and ordering a list of
O(n2) elements requires O(n2logn) time. After that, all
subsets TP for each m.i.p. P can be identified in O(n2)
by scanning the ordered list of O(n2) elements and it-
eratively merging consecutive elements of the list
when their positions coincide. Each merge operation
takes O(1) because it requires checking whether two
circumferences already belong to TP and inserting
them if they are not already in TP; insertion takes
constant time if subsets are represented by their bina-
ry characteristic vectors. Hence, the asymptotic worst-
case time complexity of step 1 is O(n2logn).

Figure 2. Tie-Break Criteria

Notes. Tie-break criterion 1 (left): When leaving a circumference j and entering a circumference iwith gi � gj6π, direction l̄ j is encountered before
ē i. Tie-break criterion 2 (right): When leaving circumferences i and j with gi � gj and ri > rj, direction l̄ j is encountered before l̄ i; when entering
them, ē i is encountered before ē j.

Righini: Single Source Weber Problem
4 Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS

2.1.2. Step 2. For each m.i.p. P, listing the subset SP of
circumferences strictly covering it requires O(n);
therefore, step 2 has asymptotic worst-case time com-
plexity O(n3). This is indeed the complexity of the re-
gion enumeration algorithms proposed by Drezner,
Mehrez, and Wesolowsky (1991) and Aloise, Hansen,
and Liberti (2012).

2.1.3. Step 3. This is the step on which we focus our
study because it is the bottleneck step in Venkate-
shan’s (2020) algorithm. We show that its complexity
can be reduced from O(n4) to O(n2logn).

Consider an m.i.p. P and the corresponding subset
TP of c circumferences intersecting in P. Computing
all directions gi from P to Oi ∀ i ∈ TP takes O(c). Com-
puting all directions ei and li takes O(c). Sorting the
sequence LP with 2c angle values takes O(clog c). Scan-
ning LP to enumerate all regions around P with Algo-
rithm 1 takes O(c) because insertion and deletion
operations on lines 5, 8, 11, and 13 of Scan can be im-
plemented as O(1) operations on a binary array
(whose initialization takes O(c)), and the number of
iterations of the loops in Scan is bounded by 2c.

Procedure Scan must be repeated for all m.i.p. The
number of m.i.p. grows as O(n2). Therefore, the as-
ymptotic worst-case complexity of step 3, based on
sorted tangent lines, is not worse than O(n3logn),
which is already an improvement with respect to the
O(n4) complexity of the algorithm based on the explic-
it construction of the neighborhood.

However, it is also possible to further refine the
complexity analysis of step 3 to prove a better bound.
In an m.i.p. P in which c > 2 circumferences intersect,
a number of intersections coincide. This number is the
triangular number

∑c−1
h�1h � c(c− 1)=2. Therefore, de-

generation actually decreases the computational com-
plexity of the region enumeration problem because a
quadratic number of intersection points is treated in a
single point at the expense of a less-than-quadratic
overhead. To express this formally, we need to estab-
lish the following theorem.

Theorem 1. Consider the multigraph M � (V,E) defined
by n intersecting circumferences, in which V is the set of
m.i.p. and E is the set of circumference arcs between them.
Then, |E| grows as O(n2).

Two proofs are given.

Proof 1. Consider the multigraph M̃ � (Ṽ , Ẽ) obtained
by a small perturbation of the circumferences at the
m.i.p. at which more than two circumferences inter-
sect so that no degenerate intersections occur in M̃.
Then, all vertices in M̃ have degree four. The number
of pairs of distinct circumferences is n(n− 1)=2, and
for each pair, at most two intersection points exist.
Hence, the number of vertices in M̃ is not larger than
n(n− 1). Because in M̃ all vertices have degree four,

the total degree in M̃ is bounded by 4n(n− 1). Be-
cause each edge has two endpoints, then
|Ẽ | ≤ 2n(n− 1). By construction, all edges of M have a
counterpart in M̃ although the converse does not
hold: hence, |E| ≤ |Ẽ |. Therefore, the number of edges
inM is also bounded above by 2n(n− 1).
Proof 2. For any given planar multigraph M � (V,E)
inducing a set of regions R in �2, Euler formula
holds: |E| + 2 � |V| + |R|. By the Drezner, Mehrez, and
Wesolowsky (1991) theorem, |R| is O(n2). Because |V|
is also O(n2), then |E| is O(n2).
Corollary 1. The total degree of the vertices in V grows as
O(n2).

This immediately follows from Theorem 1 because
the total degree is twice the number of edges.

The asymptotic worst-case time complexity of
step 3 is given by O(∑K

k�1cklog ck), where K in-
dicates the number of m.i.p. and ck the number
of circumferences intersecting in each m.i.p.
k � 1, : : : ,K. Because ck ≤ n ∀ k � 1, : : : ,K, and hence,
log ck ≤ logn ∀ k � 1, : : : ,K, a valid worst-case
bound is O(logn∑K

k�1ck). The sum
∑K

k�1ck is half the
total degree of the vertices of the multigraph M
defined earlier. For Corollary 1, such a total degree
grows as O(n2). Therefore, an aymptotic worst-
case bound for step 3 is O(n2logn).

The main conclusion of this complexity analysis is
that degenerate intersections in the SSWPLD can be
dealt with without worsening the O(n3) worst-case
time complexity of the enumeration algorithms pro-
posed so far that did not take degeneracy into ac-
count. The computational complexity bottleneck in
the enumeration is not a result of degenerate intersec-
tions (affecting steps 1 and 3), but rather of the need
of checking whether each given circumference covers
each m.i.p. in step 2. All algorithms proposed so far
require O(n3) time complexity for this crucial step.
The next section describes a new enumeration algo-
rithm that does not require this step and has
O(n2logn) complexity.

3. A New Algorithm
A set of intersecting circumferences induces one or
more planar multigraphs in �2. Their vertices are
m.i.p., that is, subsets of intersection points between
pairs of circumferences. When two or more intersec-
tion points coincide, they belong to the same vertex.
We call edges the circumference arcs between adjacent
vertices. We further remark that the multigraphs in-
duced by the circumferences are planar by definition,
that is, there is no other intersection between edges
apart from vertices.

The new algorithm runs in four steps. In step 1, all
intersection points are enumerated, and they are

Righini: Single Source Weber Problem
Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS 5

sorted to find coincident intersections; they are the
vertices of a set of planar multigraphs. In step 2, the
vertices occurring along each circumference are sorted
according to a given orientation, and this allows iden-
tifying all edges of the multigraphs and computing
the star of each vertex. In step 3, the circumference
arcs incident to each vertex are sorted so that the star
of each vertex can be scanned according to a given ori-
entation. In step 4, each planar multigraph is visited
with a depth-first-search algorithm, and all regions
are enumerated.

3.1. Step 1: Enumeration of Vertices
First of all, in order to compute the planar multi-
graphs mentioned, it is necessary to find their vertices,
that is, all subsets of coincident intersection points.
For the sake of clarity, the description of this step is
broken into three substeps.

3.1.1. Step 1.1: Enumeration of Intersection Points.
The first substep of the algorithm is the enumeration
of all intersection points between pairs of distinct cir-
cumferences, and it is described in Intersections in Al-
gorithm 2.

Algorithm 2 (The Algorithm that Enumerates All Inter-
section Points and All Enclosing Circumferences)

1: procedure Intersections IN:O, r. OUT:Ω, f ,Λ
2: for i � 1, : : : ,n do
3: f (i) ← false
4: Ω(i) ← ∅
5: Λ←∅
6: for i � 1, : : : ,n− 1 do
7: for j � i+ 1, : : : ,n do
8: if (d(Oi,Oj) < |ri − rj|) then
9: if ri > rj then
10: Ω(j) ←Ω(j)⋃{i}
11: else
12: Ω(i) ←Ω(i)⋃{j}
13: else
14: if (d(Oi,Oj) ≤ ri + rj) then
15: [P(i, j),P(j, i)] ← Intersect(i, j)
16: f (i) ← true
17: f (j) ← true
18: tΛ←Λ

⋃{[i, j,x(P(i, j)),y(P(i, j))], [j, i,x
(P(j, i)),y(P(j, i))]}

Algorithm Intersections has three main effects: first,
a subset Ω(i) of enclosing circumferences is computed
for each circumference i ∈N ; second, a flag f(i) is set
for each circumference i ∈N , stating whether the
circumference intersects at least another one or it is
isolated; third, a list Λ of all intersection points is
produced by considering all pairs of distinct
circumferences.

All sets Ω are initially empty. When the test on line
8 succeeds, then one of the two circumferences i and j
is strictly enclosed in the other; then, the subset Ω of
the smallest circumference is updated to include the
largest circumference, and no intersection point is
computed.

All flags f are initially set to false. If the test on line
8 fails and the test on line 14 succeeds, then circumfer-
ences i and j have two (possibly coincident) intersec-
tion points; therefore, their flags f(i) and f(j) are set to
true. The two intersection points are identified as P(i,
j) and P(j, i) for each pair of circumferences i and j
with i < j. Assume all circumferences are followed
counterclockwise. Then, as shown in Figure 3, P(i, j) is
where circumference i enters circumference j and cir-
cumference j leaves circumference i, and the converse
occurs in P(j, i). The coordinates of the two intersec-
tion points are computed in constant time by a suit-
able function Intersect() (line 15). Then, they are
added to the list Λ of all intersection points (line 18).
Each element of Λ is a record with four fields [i, j,x,y],
representing the entering circumference, the leaving
circumference, and the coordinates of the intersection
point.

If both tests fail, then circumferences i and j are dis-
joint, and no update occurs toΩ, f, and Λ.

The complexity of Intersections is O(n2) because of
the two nested loops (lines 6 and 7) that contain O(1)
operations.

3.1.2. Step 1.2: Ordering the Intersection Points. Step
1.2 is quite simple to describe, but it turns out to be a
bottleneck of the whole region enumeration algo-
rithm. It consists of ordering the list Λ of the intersec-
tion points according to any arbitrary criterion so that
coincident points occur in consecutive positions in the
ordered list. In this way, it is possible to enumerate
the vertices of the multigraphs induced by the inter-
secting circumferences.

For instance, the points in Λ can be sorted by non-
decreasing values of x, and ties can be broken by sort-
ing them by nondecreasing values of y.

Figure 3. Intersection Points Between Two Circumferences

Righini: Single Source Weber Problem
6 Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS

Because |Λ| is O(n2), the complexity of sorting the
intersection points is O(n2logn).

3.1.3. Step 1.3: Enumeration of Vertices. For notation-
al convenience, we assume here that the sorted list Λ
is transformed into an array. The sorted array Λ is
scanned to find the vertices; this is done by
FindVertices, illustrated in Algorithm 3. Indices t′ and
t′′ are used to find the first and last positions of the el-
ements in each subset of coincident points. The integer
v indicates the number of vertices found.

Algorithm 3 (The Algorithm that Enumerates the
Vertices of the Multigraphs)

1: procedure FindVertices. IN:Λ. OUT: x, y, T, v
2: v← 0
3: t′ ← 1
4: while t′ ≤ |Λ| do
5: t′′ ← t′ + 1
6: while (t′′ ≤ |Λ|)� (Λ[t′′]:x �Λ[t′]:x)� (Λ[t′′]:

y �Λ[t′]:y) do
7: t′′ ← t′′ + 1
8: v← v+ 1
9: x(v) ←Λ[t′]:x
10: y(v) ←Λ[t′]:y
11: T(v) ← ∅
12: for h � t′, : : : , t′′ − 1 do
13: T(v) ← T(v)⋃{Λ[h]:i,Λ[h]:j}
14: t′ ← t′′

For each vertex k � 1, : : : ,v, x(k) and y(k) are its coor-
dinates, and T(k) is the set of all circumferences pass-
ing through it. Each set T(k) can be implemented as a
balanced tree: in this way, duplicates can be detected
so that each circumference appears only once in it.
This implies that inserting an element in T(k) (line 13
of FindVertices) has O(logn) complexity.

Because |Λ| is O(n2), the complexity of FindVertices
is O(n2logn).

Therefore, the overall worst-case time complexity of
step 1 is O(n2logn).

3.2. Step 2: Enumeration of Edges
In step 2, vertices are sorted according to the order in
which they are encountered when moving along each
circumference counterclockwise. For the sake of clari-
ty, the description of step 2 is broken into three
substeps.

3.2.1. Step 2.1: Enumeration of the Vertices Along
Each Circumference. For each circumference i ∈N , a
set W(i) of vertices is computed. This is done by
EnumerateVertices, illustrated in Algorithm 4. The list
of all vertices k � 1, : : : ,v is scanned: for each circum-
ference i ∈N that occurs in T(k), an element k is in-
serted in the subsetW(i).

Algorithm 4 (The Algorithm that Enumerates All Vertices
Along Each Circumference)

1: procedure EnumerateVertices. IN: T, v. OUT:W
2: for i ∈N do
3: W(i) ← ∅
4: for k � 1, : : : ,v do
5: for i ∈ T(k) do
6: W(i) ←W(i)⋃{k}
Every time a vertex is found to belong to a circum-

ference, it contributes by an amount of two to the total
degree of the multigraphs. Because the total degree of
the multigraphs is O(n2), the insertion on line 6 is
done O(n2) times, and therefore, the time complexity
of EnumerateVertices is also O(n2).

3.2.2. Step 2.2: Sorting the Vertices Along Each Cir-
cumference. Each circumference i ∈N is examined
separately. For each vertex k in W(i), the direction
from Oi to the point of coordinates (x(k),y(k)) is con-
sidered, and the corresponding angle α(i,k) is comput-
ed. Function arctan () is assumed to return a value in
[0, 2π) computed counterclockwise from the positive x
semiaxis (line 4). Then, the subset W(i) is sorted by in-
creasing values of α. No tie can occur in the order be-
cause, by construction, all vertices are distinct, and
distinct points along a circumference are guaranteed
to produce distinct values of α. Step 2.2 is executed by
SortVertices illustrated in Algorithm 5.

Algorithm 5 (The Algorithm That Sorts the Vertices
Along Each Circumference)

1. procedure SortVertices. IN:W. OUT:W
2. for i � 1, : : : ,n do
3. for k ∈W(i) do
4. α(i,k) ← arctan (Oi, (x(k),y(k)))
5. W(i) ← Sort(W(i))
As already shown in Section 3.2.1, the number of (i,

k) pairs in the multigraphs is O(n2). Therefore, the
number of calls to arctan () is O(n2). The time com-
plexity bottleneck is given by the sorting operation:
sorting the vertices takes O(|W(i)|log |W(i)|) for each
circumference i ∈N . Because |W(i)| ≤ 2(n− 1) ∀ i ∈N
and

∑n
i�1|W(i)| ≤ 2n(n− 1), the time complexity of

SortVertices is O(n2logn). As for step 1.2, this is a
computational complexity bottleneck of the new enu-
meration algorithm.

3.2.3. Step 2.3: Building Vertex Stars. The structure of
the multigraphs is finally produced by connecting the
vertices with circumference arcs. Once the list of verti-
ces along each circumference has been sorted in
step 2.2, this information is used to build a suitable
data-structure H for each vertex, representing the star
of the vertex, that is, the ordered set of edges with an
endpoint in that vertex. For a generic vertex k, each

Righini: Single Source Weber Problem
Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS 7

element in its star H(k) is a triplet (i,γ,h), where i is
the index of a circumference passing through the ver-
tex, γ is a bit representing “counterclockwise” with
one and “clockwise” with zero, and h is the index of
the vertex that is reached from vertex k following cir-
cumference i in direction γ.

The pseudo-code of BuildStar is shown in Algo-
rithm 6. The set H(k) is initialized to the empty set for
each vertex k (line 3). Then, each circumference is con-
sidered, and each pair of consecutive vertices k′ and
k′′ is considered along it, scanning W(i) as a circular
list so that also the last element and the first one form
a consecutive pair (line 6). Finally, the edge between
k′ and k′′ is inserted in H(k′) as a counterclockwise
edge entering k′′ and in H(k′′) as a clockwise edge en-
tering k′. As a special case, it is possible that W(i) con-
tains a single vertex k. In this case, two edges are
inserted in H(k) with opposite directions γ and with
the second endpoint equal to k.

Algorithm 6 (The Algorithm that Builds the Star of Each
Vertex)

1. procedure BuildStar. IN:W. OUT:H
2. for k � 1, : : : ,v do
3. H(k) ← ∅
4. for i ∈N do
5. for k′ ∈W(i) do
6. k′′ ← succ(k′)
7. H(k′) ←H(k′)⋃{(i, 1,k′′)}
8. H(k′′) ←H(k′′)⋃{(i, 0,k′)}
The complexity for scanning all the W subsets is

O(n2) as already observed. The total number of ele-
ments in subsets H is twice the total number of edges
in the multigraphs because each edge is inserted in
two stars. Hence, the time complexity of BuildStar is
O(n2).

3.3. Step 3: Sorting Vertex Stars
The subsetsH computed in step 2 indicate which edges
of the multigraphs are incident to each vertex. The aim
of step 3 is to sort the stars so that consecutive edges be-
long to the frontier of a same region, owing to the pla-
narity of the multigraphs. This step is necessary to enu-
merate the regions while visiting the multigraphs.

For the sake of clarity, the description of step 3 is
broken into two substeps.

3.3.1. Step 3.1: Computing Edge Directions. A direc-
tion β(k, i,γ) is associated with each edge along a
circumference i ∈N and belonging to H(k) for some
vertex k � 1, : : : ,v: it is the direction of the line tangent
to the circumference i in vertex k, oriented from the
vertex in direction γ. The tangent certainly exists be-
cause preprocessing guarantees that all circumfer-
ences have a strictly positive radius. As before, angles
are computed counterclockwise starting from the

direction of the positive x semiaxis. The computation
is done by ComputeDirections, shown in Algorithm 7.
The effect of this procedure is to add a fourth field β
to the three-field records (i,γ,h) in the subset H(k) ∀
k � 1, : : : ,v (line 8).

Algorithm 7 (The Algorithm that Computes a Direction
for Each Edge in Each Vertex Star)

1: procedure ComputeDirections. IN: H, O, (x, y).
OUT: β

2: for k � 1, : : : ,v do
3: for (i,γ,h) ∈H(k) do
4: if γ � 1 then
5: β← (arctan (Oi, (x(k),y(k))) +π=2)mod 2π
6: else
7: β← (arctan (Oi, (x(k),y(k))) −π=2)mod 2π
8: Replace (i,γ,h)with (i,γ,h,β)
Because the total number of elements in the subsets H

isO(n2), the complexity ofComputeDirections isO(n2).

3.3.2. Step 3.2: Sorting the Edges. For each vertex
k � 1, : : : ,v, its star H(k) is sorted counterclockwise,
according to the values of the angle β of each inci-
dent edge. However, ties may occur because it may
happen that two or more circumferences have the
same tangent lines in their intersection points. In
these cases, the following criteria are used to
break ties.

Tie-break criterion 3: Given a tie between two edges
(i, 0,β) and (j, 1,β), (i, 0,β)must precede (j, 1,β) inH(k).

Tie-break criterion 4: (a) Given a tie between two
edges (i, 0,β) and (j, 0,β) with ri < rj, (i, 0,β) must pre-
cede (j, 0,β) in H(k). (b) Given a tie between two edges
(i, 1,β) and (j, 1,β) with ri < rj, (j, 1,β) must precede
(i, 1,β) inH(k).

These criteria are quite similar to those illustrat-
ed in Section 2, and they have the same meaning.
Their justification is trivial, and it is illustrated in
Figure 4.

The resulting sorted list H(k) for each k � 1, : : : ,v is
managed as a circular array so that the successor of
the last element is the first one.

The effect of step 3 is to sort the edges in H(k) in
the same order as they would be encountered mov-
ing counterclockwise along the frontier of a small
enough neighborhood of vertex k. Consequently,
consecutive edges in H(k) belong to the contour of a
same region.

There are O(n2) vertices and |H(k)| edges in each
vertex star. The complexity for sorting all vertex stars
is O(∑v

k�1|H(k)|log |H(k)|). Because |H(k)| ≤ 2n ∀ k �
1, : : : ,v and

∑v
k�1|H(k)| ≤ 4n(n− 1), the time complexi-

ty of step 3.2 is O(n2logn). Together with the sorting
steps 1.2 and 2.2, this is the third computational com-
plexity bottleneck of the new algorithm.

Righini: Single Source Weber Problem
8 Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS

3.4. Step 4: Region Enumeration
Besides multigraphs, the set of given circumferences
of an SSWPLD instance may also contain isolated
circumferences, that is, circumferences with no intersec-
tions with others. It is also possible that some multi-
graphs or isolated circumferences are completely
enclosed in other multigraphs or isolated circumfer-
ences. In order to correctly deal with all these cases,
we need some preliminary observations.

We define a connected component to be either a multi-
graph or an isolated circumference. Each circumfer-
ence belongs to exactly one connected component. We
indicate by φ(i) ⊆N the connected component of cir-
cumference i; it exists, and it is unique for each i ∈N .
With this definition, an isolated circumference is just a
special case of a connected component made of a sin-
gle circumference.

As shown in the introduction, in order to correctly
solve the SSWPLD, it is necessary and sufficient to
enumerate all regions of �2 induced by all connected
components. The set of points not enclosed in any
connected component is of no interest because it can-
not contain the optimal solution. Actually, it is the set
of the worst solutions of the SSWPLD, in which z at-
tains its maximum value

∑
i∈Nwiri.

Nonoverlapping connected components induce dis-
joint sets of regions that can be enumerated indepen-
dently. Their union is the whole set of regions that
must be enumerated.

Step 4 visits the whole set of input circumferences,
one connected component at a time. If a connected
component is a multigraph, then it is completely visit-
ed, and all its internal regions are enumerated. The
pseudo-code of Components is shown in Algorithm 8.

Algorithm 8 (The Algorithm that Enumerates All Con-
nected Components)

1. procedure Components
2. N← SortCircles(N)
3. µ̄ ← 0
4. for k ∈ 1, : : : ,v do
5. µ(k) ← 0
6. whileN ≠ ∅ do
7. i∗ ← Rightmost(N)
8. Q←Ω(i∗)
9. if f (i∗) then
10. /* Multigraph */
11. k←W(i∗)1
12. µ̄ ← µ̄ + 1
13. µ(k) ← µ̄
14. ScanStar(k, i∗, 1)
15. else
16. /* Isolated circumference */
17. Flip(i∗)
18. Evaluate(Q)
19. N←N\{i∗}
A set N, implemented as a binary array, is initial-

ized to the set of all given circumferencesN . Then, ev-
ery time a connected component is examined, all its
circumferences are deleted from N as soon as they are
encountered during the visit (see line 19 of
Components and line 6 of ScanStar). The algorithm
terminates when N is empty (line 6 of Components).
This guarantees that all connected components are ex-
amined once. Algorithm SortCircles (line 2 of
Components) initially sorts the circumferences in N
by nonincreasing value of the abscissa of their right-
most point. In case of ties, the circumferences are
sorted by decreasing values of their radius. In the
case of a further tie, the selection is done at random.
At each iteration of the loop on lines 6–19 of
Components a rightmost unvisited circumference i ∈
N is selected by the function Rightmost (line 7 of
Components), and its connected component is
examined.

In this paragraph, we indicate by Ci the subset
made of a single circumference i ∈N , that is, Ci � {i}.
To indicate that a circumference encloses another
one or a whole connected component, we use the
symbol A. By “enclosing,” we mean “strictly cover-
ing.” For a circumference C and a connected compo-
nent φ, CAφ if and only if all points of φ are within
C and no point of C belongs to φ. Recall that
Ω(i) ⊂N , computed in step 1, is the subset of circum-
ferences that strictly enclose each circumference
i ∈N , that is, Ω(i) � {j ∈N : CjACi} ∀ i ∈N . With
these definitions, the set of all circumferences strictly
enclosing the connected component φ(i) is deter-
mined by the following property.

Figure 4. Sorting Edgeswith the Same Tangent Line in a Ver-
tex Star

Notes. Left: Tie-break criterion 3 is applied to break ties between
(i, 0,β) and (j, 1,β). Right: Tie-break criterion 4 is applied to break ties
between (i, 0,β) and (j, 0,β) and between (i, 1,β) and (j, 1,β).

Righini: Single Source Weber Problem
Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS 9

Theorem 2. If circumference i ∈N is the rightmost cir-
cumference in its connected component φ(i), then Ω(i) is
the set of circumferences that strictly enclose φ(i):

j ∈Ω(Rightmost(φ)) ⇔ CjAφ:

Proof.
i. Assume j ∈Ω(Rightmost(φ)). Then, Cj A Ci ∀ i ∈ φ.

Let i∗ � Rightmost(φ). So, in particular, Cj A Ci∗ . By con-
tradiction, assume that j ∈ φ. Then, Cj A Ci∗ implies that
j precedes i∗ in N, that is, i∗ cannot be Rightmost(φ).
Hence, it is proven by contradiction that
(j ∈Ω(Rightmost(φ))) ⇒ j ∈ φ. If j ∈ φ and Cj A Ci∗ with
i∗ � Rightmost(φ), then Cj A φ because φ is connected,
and it cannot intersect circumference j.

ii. Assume CjAφ. Then, Cj A Ci ∀ i ∈ φ. In particular,
Cj A Ci∗ for i∗ � Rightmost(φ). Therefore, j ∈
Ω(Rightmost(φ)).

Theorem 2 justifies the initialization of the current
region Q (more on it later) on line 8 of Components: Q
is initialized as the set of circumferences enclosing
the current connected component φ(i∗) with i∗ �
Rightmost(N). They belong to all regions enumerated
while the connected component φ(i∗) is visited.

Once a rightmost circumference i∗ ∈N has been de-
tected, two cases may occur, depending on whether
the circumference has intersections or not: this is indi-
cated by the flag f (i∗) (line 9 of Components) comput-
ed in step 1. If circumference i∗ has intersections, then
its multigraph is visited (lines 11–14 of Components);
if circumference i∗ has no intersections, then it is di-
rectly processed (lines 17–19 of Components).

Multigraphs: In order to visit multigraphs, an addi-
tional data structure is needed. An integer µ(k) is asso-
ciated with each vertex k � 1, : : : ,v to indicate the se-
quence in which the vertices are visited. It is
initialized at zero (meaning “not visited”) in the loop
on lines 4 and 5 of Components. A counter µ̄ of visited
vertices is kept. It starts from zero (line 3 of
Components); every time a vertex k is visited for the
first time µ̄ is increased by one and µ(k) is set to µ̄ (see
lines 12 and 13 of Components and lines 9 and 10 of
ScanStar).

When the test on line 9 of Components succeeds, a
depth-first-search algorithm is initialized. By construc-
tion, the first vertex in the sorted subset W(i) is the
first vertex that is encountered moving along circum-
ference i counterclockwise starting from its rightmost
point. This vertex is indicated by W(i∗)1 on line 11 of
Components. The multigraph is visited by recursive
calls to the procedure ScanStar, shown in Algorithm
9. The initial call for each multigraph occurs on line 14
of Components. The depth-first-search algorithm that
visits a multigraph is described in Section 3.4.1.

Isolated circumferences: When φ(i∗) consists of an
isolated circumference, the internal region is comput-
ed by adding element i∗ to subset Q (line 17 of
Components) by flipping its component i∗ as ex-
plained in the remainder. Then, the internal region is
enumerated, that is, the single-source optimal location
algorithm Evaluate is called (line 18); finally, i∗ is de-
leted from N (line 19).

3.4.1. Depth-First-Search Visit to Multigraphs. In the
circular array H(k), representing the sorted star of
each vertex k � 1, : : : ,v, each edge incident to k has a
successor (see line 4 of ScanStar). Exploiting this or-
dering, it is possible to visit all edges of the planar
multigraphs induced by a set of intersecting circum-
ferences. The visit is done with a depth-first-search al-
gorithm. Every time a vertex is reached for the first
time, its star is scanned counterclockwise starting
from the successor of the edge from which the vertex
has been reached. Each edge in the star of the vertex is
traversed. If and only if the other endpoint of the edge
has not yet been visited, then a recursive call is made
to scan its star. This guarantees that each star is
scanned at most once, and therefore, each edge is tra-
versed at most twice.

The recursive procedure ScanStar uses three pa-
rameters: the first parameter, k, indicates the vertex
whose star must be scanned; the second parameter, i,
indicates the circumference of the edge traversed to
reach vertex k; the third parameter, γ, indicates the di-
rection in which circumference i has been traversed to
reach vertex k: one stands for counterclockwise, and
zero stands for clockwise. These three parameters are
passed by value; that is, they are local to each instance
of ScanStar, which means that a copy is created for
each call to ScanStar.

When ScanStar is called the first time in
Components on line 14, the second parameter is the
circumference with the rightmost point of the multi-
graph, the first parameter is the first vertex along it
(the start vertex in the remainder), and the third pa-
rameter indicates counterclockwise.

Algorithm 9 (The Recursive Procedure that Scans the
Star of a Vertex of a Multigraph)

1: procedure ScanStar(k, i,γ)
2: t← FindEdge(k, i, 1− γ)
3: for p � 1, : : : , |H(k)| − 1 do
4: t← tmod |H(k)| + 1
5: (j,γ′,h) ←H(k)[t]
6: N←N\{j}
7: if µ(h) � 0 then
8: /* Forward edge */
9: µ̄ ← µ̄ + 1
10: µ(h) ← µ̄
11: ScanStar(h, j,γ′)

Righini: Single Source Weber Problem
10 Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS

12: else
13: /* Backtrack edge */
14: Flip(j)
15: if (µ(h) < µ(k))�((µ(h) � µ(k))� (γ′ � 1)) then
16: /* First traversal */
17: Evaluate(Q)
When ScanStar(k, i,γ) is executed, the circular array

H(k) is searched with procedure FindEdge (line 2) to
find the position t that corresponds to the edge that
has been traversed to reach vertex k: it is the edge
leaving vertex k along circumference i in a direction
opposite to γ. Such an edge certainly exists and is
unique because, by construction, H(k) contains exactly
two records (i, 0, ∗) and (i, 1, ∗) for each circumference i
passing through vertex k.

Then, all the other |H(k)| − 1 edges in the star of ver-
tex k are sequentially scanned in the loop on lines
3–17. Each edge in H(k) is represented by a triple
(j,γ′,h), where j is the index of the circumference to
which the edge belongs, γ′ indicates the direction
along which the edge is traversed from vertex k to the
other endpoint, and h is the index of the other end-
point (line 5).

Three cases can occur. If µ(h) � 0 (line 7), then ver-
tex h has not yet been visited; in this case, ScanStar is
recursively called to scan the star of vertex h (line 11).
Otherwise, the algorithm backtracks from h to k, and
the current region Q is updated as explained in the re-
mainder (line 14). If the test on line 15 succeeds, then
the edge from k to h has been traversed for the first
time (as explained later); in this case, a region is enu-
merated (line 17). Otherwise, the edge had already
been traversed before, and the second traversal has no
effect.

In all cases, when the algorithm backtracks to node
k, it proceeds to the next edge in the star of vertex k
counterclockwise (line 4).

3.4.1.1. Traversing the Edges. The following obser-
vations characterize some useful properties of the
depth-first-search algorithm that traverses the edges
of a multigraph.

Observation 2. Because vertex stars are completely
scanned and because each multigraph is, by defini-
tion, connected, all vertices in the multigraphs are vis-
ited, and all edges in the multigraphs are traversed.

Observation 3. The depth-first-search algorithm de-
fines an orientation of the edges that indicates the di-
rection in which each edge is traversed the first time.
Because all edges are traversed, all edges are oriented.

Consider a directed multigraph defined by the ori-
entation of its edges, and let us distinguish between
forward edges and backtrack edges. Consider a generic
edge traversed by depth-first-search for the first time.

Let us call k its tail vertex and h its head vertex. If
µ(h) � 0, then the edge is a forward edge; otherwise, it
is a backtrack edge.

Observation 4. Because all vertices of the multigraph
are reached for the first time once, then each vertex
has one forward edge entering it with the only excep-
tion of the start vertex, which has none.

Observation 5. Forward edges cannot form directed
circuits because µ(h) > µ(k) for all forward edges from
k to h.

Theorem 3. The set of forward edges forms a spanning ar-
borescence rooted at the starting vertex.

Proof. The proof directly follows from Observations 4
and 5.

3.4.1.2. Updating the Current Region. Let us indicate
with right(e) and left(e) the regions on the right and
left sides of a generic edge e according to its orienta-
tion. “Right” and “left” are well defined owing to the
planarity of multigraphs and the unique orientation of
all edges.

The algorithm uses a global variable, namely, a sub-
set Q, representing the current region. The subset is as-
sumed to be represented by a binary vector so that
inserting or deleting an element is done in O(1) by
flipping the corresponding bit. This is done by the
procedure Flip (see line 17 of Components and line 14
of ScanStar).

Observation 6. Two adjacent regions separated by an
edge belonging to circumference j correspond to sub-
sets that differ only by the component j.

Hence, flipping Q[j] corresponds to moving from
the region on one side of an edge belonging to circum-
ference j ∈N to the region on the other side.

The algorithm updates the current region Q accord-
ing to rule 1: Q[j] is flipped if and only if a backtrack
occurs on an edge along circumference j ∈N (line 14
of ScanStar).

3.4.1.3. Detecting Second Traversals. No attempt is
made to traverse forward edges for the second time
because the star H(k) of the head vertex k of a forward
edge e is scanned only up to the edge preceding e (see
line 3 of ScanStar).

On the contrary, backtrack occurs twice on each
backtrack edge because each backtrack edge is tra-
versed twice by the depth-first-search algorithm,
However, for the analysis of the algorithm presented
hereafter it is necessary to detect when a backtrack
edge is traversed for the first time and when not.

For this purpose, let us define a vertex as open once
it has been reached by a forward edge and closed
when its star has been completely scanned. Let us

Righini: Single Source Weber Problem
Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS 11

indicate by current vertex the vertex k when an edge
from k to h is traversed. By definition of depth-first-
search, the following observation holds.

Observation 7. The current vertex is the vertex with
maximum value of µ among all open vertices.

Theorem 4. If a backtrack edge is traversed the first time
and its orientation is from vertex k to vertex h, then
µ(h) ≤ µ(k).
Proof. When an edge from k to h is traversed the first
time, k is the current vertex. Because the edge belongs
also to H(h) and it has not yet been traversed from h to
k, this implies that h is also open. Therefore, by Obser-
vation 7, µ(k) ≥ µ(h).

As a consequence of Theorem 4, when the two end-
points of a backtrack edge are different, the second
traversal of the edge can be easily detected by com-
paring the µ values of its endpoints: if µ(h) < µ(k),
then the backtrack edge from k to h is traversed the
first time; if µ(h) > µ(k), then the backtrack edge from
k to h is traversed the second time. When µ(h) � µ(k),
the edge is a self-loop.

Observation 8. The unique vertex k of a self-loop on a
circumference i ∈N cannot be reached from any for-
ward edge within circumference i.

This immediately follows from the observation that
the rightmost point of the multigraph cannot be in the
circumference. Therefore, when H(k) is scanned coun-
terclockwise, the edge corresponding to traversing the
self-loop counterclockwise is always encountered be-
fore the edge corresponding to traversing the self-
loop clockwise. This is also illustrated by the example
shown in Figure B.2 in Online Appendix B. Hence, the
test for detecting when a self-loop is traversed the first
time is γ′ � 1.

Justified by Theorem 4 and Observation 8, the tests
on lines 7 and 15 of ScanStar correspond to rule 2:
The current region Q is enumerated if and only if it is
on the left side of a backtrack edge traversed the first
time (line 17 of ScanStar).

3.4.1.4. Enumerating the Regions. Exploiting the
planarity property of the multigraphs, the depth-first-
search algorithm transforms the guarantee of travers-
ing all edges into the guarantee of enumerating all
regions within them. To prove the properties of the al-
gorithm, we need some preliminary definitions and
observations.

Let us define forward moves and backward moves, oc-
curring, respectively, when the depth-first-search al-
gorithm traverses an edge and when it backtracks
along an edge. Let us associate a natural number ν
with each move corresponding to the order in which
moves occur during the visit of the multigraph. Let us

indicate with e(ν) the edge along which move ν oc-
curs. Let us indicate with right(ν) and left(ν) the re-
gions on the right and left sides with respect to the
move. Note that right(ν) � right(e(ν)) and left(ν) �
left(e(ν)) if and only if e(ν) is traversed for the first
time, according to its orientation, and right(ν) �
left(e(ν)) and left(ν) � right(e(ν)) if and only if e(ν) is
traversed for the second time, opposite to its
orientation.

Let us indicate with R(ν) the set of regions enumer-
ated by the depth-first-search algorithm up to move ν
and by Q(ν) the current region when move ν is done.
For initialization purposes, we introduce R(0) to indi-
cate the region surrounding the current multigraph
(for which there is no need to call Evaluate). We ob-
serve that R(ν′) ⊆ R(ν′′) ∀ ν′ < ν′′ because R is only
subject to insertions, not deletions.

Theorem 5. For each forward move ν, Q(ν) � right(ν) ∈
R(ν− 1) (right property). For each backward move ν,
Q(ν) � left(ν) ∈ R(ν) (left property).
Proof. The proof is by induction. We assume that the
two properties hold for all moves up to move ν− 1,
and we prove that they must hold for move ν.

The basis of the induction is that the right property
holds for ν � 1. By the initialization of Q, Q(1) �Ω(i),
where Ω(i) is the external region surrounding the cur-
rent multigraph. By construction, the external region
is guaranteed to be the region on the right side of the
first traversed edge, that is, Ω(i) � right(e(1)). The edge
traversed by move ν � 1 is certainly traversed for the
first time; hence, right(1) � right(e(1)). By the initializa-
tion, R(0) �Ω(i). Hence, the right property holds for
the first forward move.

To prove the induction step, we distinguish four
cases, depending on ν− 1 and ν being forward or
backward moves.

Case I: Move ν− 1 is forward, andmove ν is forward.
In this case, e(ν− 1) and e(ν) belong to the star of a
same vertex k, and e(ν− 1) is the forward edge entering
k. Because edge e(ν− 1) is a forward edge, then k is
reached for the first time when it is reached along edge
e(ν− 1). Therefore, edges incident to k are not traversed
by any move ν′ < ν− 1. Then, e(ν− 1) and e(ν) are tra-
versed according to their orientations: right(ν− 1) �
right(e(ν− 1)) and right(ν) � right(e(ν)). Edge e(ν) is the
edge next to e(ν− 1) in H(k) counterclockwise. Hence,
right(e(ν)) � right(e(ν− 1)) (see Figure 5). By the induc-
tion hypothesis, Q(ν− 1) � right(ν− 1) ∈ R(ν− 2). By
rule 1, Q(ν) �Q(ν− 1). By construction, R(ν− 2) ⊆
R(ν− 1). The combination of these equations implies
Q(ν) � right(ν) ∈ R(ν− 1). So, the right property holds
for the forward move ν.

Case II: Move ν− 1 is forward, and move ν is back-
ward. In this case, e � e(ν− 1) � e(ν) is a backtrack edge.
If e is traversed for the first time, right(ν− 1) � right(e)

Righini: Single Source Weber Problem
12 Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS

and left(ν) � left(e). By the induction hypothesis,
Q(ν− 1) � right(ν− 1). By rule 1, component e is
flipped: hence, Q(ν− 1) � right(e) implies Q(ν) � left(e).
The combination of these equations implies Q(ν) �
left(ν) (see Figure 6). By rule 2, if e is traversed for the
first time, Q(ν) is inserted in R(ν). Hence,
Q(ν) � left(ν) ∈ R(ν).
If e is traversed for the second time, then
right(ν− 1) � left(e), left(ν) � right(e). By the induction
hypothesis, the right property holds up to ν− 1, that is,
Q(ν− 1) � right(ν− 1) ∈ R(ν− 2). By rule 1, component e
is flipped: hence, Q(ν− 1) � left(e) implies
Q(ν) � right(e). The combination of these equations im-
plies Q(ν) � left(ν). If e � e(ν− 1) is visited for the sec-
ond time, there exists a forward move ν′ < ν− 1 such
that e � e(ν′). By the induction hypothesis,
Q(ν′) � right(ν′) ∈ R(ν′ − 1); moreover, right(ν′) �
right(e) because ν′ is a forward move traversing e for
the first time. By rule 2, R(ν) � R(ν− 1). Therefore,
Q(ν) � left(ν) � right(e) � right(ν′) ∈ R(ν′ − 1) ⊆ R(ν).
So, in both cases, the left property holds for the back-
ward move ν.

Case III: Move ν− 1 is backward, and move ν is for-
ward. In this case, e(ν− 1) and e(ν) belong to the star of
a same vertex k, and e(ν) is next to e(ν− 1) inH(k) coun-
terclockwise. Hence, left(ν− 1) � right(ν) (independent-
ly of the orientation of the edges). For the induction
hypothesis, Q(ν− 1) � left(ν− 1), and by rule 1
Q(ν) �Q(ν− 1). Hence, Q(ν) �Q(ν− 1) � left(ν− 1) �
right(ν) (see Figure 7). For the induction hypothesis,
Q(ν− 1) ∈ R(ν− 1). Hence, Q(ν) �Q(ν− 1) ∈ R(ν− 1).
So the right property holds for the forward move ν.

Case IV: Move ν− 1 is backward, and move ν is
backward. In this case, e(ν− 1) and e(ν) belong to the
star of a same vertex k, e(ν) is the forward edge entering
k, and it is next to e(ν− 1) in H(k) counterclockwise.
Hence, left(ν− 1) � left(ν) (independently of the orien-
tation of e(ν− 1)). For the induction hypothesis,
Q(ν− 1) � left(ν− 1) ∈ R(ν− 1). By rule 1,
Q(ν) �Q(ν− 1), and hence, Q(ν) � left(ν) (see Figure 8).
By rule 2, R(ν) � R(ν− 1), and hence, Q(ν) ∈ R(ν). So
the left property holds for the backwardmove ν.

Observation 9. Because forward edges do not form
circuits, every region must have at least one backtrack
edge along its contour.

Theorem 6. All regions are enumerated.

Proof. If a region is on the left side of a backtrack
edge, then it is enumerated when the backtrack edge
is traversed for the first time. If a region is on the
right-hand side of a backtrack edge e, then it must
also be on the left side of another backtrack edge e′
traversed for the first time before e because, for
Theorem 5, when e is traversed for the first time the
region, right(e) must have been already enumerated.
Because all backtrack edges are traversed, all regions
are guaranteed to be enumerated.

Now we can prove that duplicate enumerations do
not occur.

Lemma 1. The number of backtrack edges is equal to the
number of internal regions of the multigraph.

Figure 5. Case I: BothMoves ν− 1 and νAre Forward
Moves: right(ν− 1) � right(ν) andQ(ν− 1) �Q(ν)

Figure 6. Case II: Move ν− 1 Is Forward andMove ν Is Back-
ward Along the Same Edge e: left(ν− 1) � left(ν),
right(ν− 1) � right(ν), and {e} Is the Symmetric Difference Be-
tweenQ(ν− 1) andQ(ν)

Figure 7. Case III: Move ν− 1 Is Backward andMove ν Is
Forward: left(ν− 1) � right(ν) andQ(ν− 1) �Q(ν)

Figure 8. Case IV: BothMoves ν− 1 and νAre Backward:
left(ν− 1) � left(ν) andQ(ν− 1) �Q(ν)

Righini: Single Source Weber Problem
Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS 13

Proof. Let us indicate by Efw the number of forward
edges, by Ebt the number of backtrack edges, by |R| the
number of regions, and by v the number of vertices of
a directed planar multigraph. By the Euler formula,
E+ 2 � v+ |R|, where E � Efw +Ebt. By Proposition 3,
Efw � v− 1. Therefore, Ebt � |R| − 1. Because R includes
the external region that is unique, then |R| − 1 is the
number of internal regions of the multigraph.

Theorem 7. Each region is enumerated once.

Proof. The proof relies on the preceding propositions:
(i) all internal regions are enumerated at least once by
Theorem 6, (ii) every internal region is enumerated if
and only if it is found on the left side of a backtrack
edge traversed the first time by rule 2, and (iii) there
are as many backtrack edges as the number of internal
regions by Lemma 1. Combining (i)–(iii), the theorem
follows.

3.4.2. Computational Complexity. To establish the
worst-case time complexity of step 4, let us consider
Components first. Sorting the n elements of N with
SortCircles takes O(nlogn).

Initializing µ takes constant time for each vertex,
that is, O(n2).

The while loop (lines 6–19) is executed O(n) times
because at least one circumference is deleted from N
at each iteration. Therefore, all constant-time opera-
tions in the loop have an overall O(n) time
complexity.

The total time complexity of the executions of
Rightmost (line 7) is O(n2) because a sorted list of car-
dinality O(n) produced by SortCircles must be
scanned O(n) times.

Initializing Q takes O(n) for each component φ;
therefore, its overall contribution is O(n2). The overall
contribution of all constant time flip operations need-
ed to update Q (line 17 of Components and line 14 of
ScanStar) is trivially bounded by twice the number of
edges in the multigraphs, that is, O(n2).

The overall contribution of deletions (line 19 of
Components and line 6 of ScanStar) is O(n) because
|N| � n, and each deletion takes constant time when N
is implemented as a binary array.

Finally, let us examine the time complexity of
ScanStar.

The time complexity of all executions of FindEdge
is O(∑v

k�1|H(k)|), that is, O(n2) because FindEdge is ex-
ecuted only once for each vertex when the vertex is
reached for the first time. Therefore, the total number
of steps required by FindEdge is bounded by the total
degree of the multigraphs, which is O(n2) (see Theo-
rem 1).

The total number of iterations of the loop (lines
3–17) in all executions of ScanStar is also bounded by

the total degree of the multigraphs, that is, O(n2), and
the loop includes only constant time operations.

Therefore, the overall worst-case time complexity of
step 4 is O(n2).

This allows establishing that the overall complexity
of the new region enumeration algorithm is
O(n2logn). The bottlenecks are the three sorting pro-
cedures in Steps 1.2, 2.2, and 3.2. This complexity anal-
ysis does not take into account the time taken by
O(n2) calls to Evaluate that imply the execution of a
single-source optimal location algorithm. However,
the number of calls is exactly equal to the number of
regions to be enumerated with no duplicates.

4. Conclusions
The possible occurrence of coincident intersection
points requires correcting the SSWPLD algorithm pro-
posed by Drezner, Mehrez, and Wesolowsky (1991)
and a similar algorithm devised by Aloise, Hansen,
and Liberti (2012) as pointed out by Venkateshan
(2020). However, the occurrence of such pathological
cases does not increase, but rather decreases the com-
putational effort needed to enumerate all the regions
induced by n circumferences in �2. Coincident inter-
section points can be detected and correctly taken into
account without increasing the O(n3) time complexity
of the enumeration algorithms (Drezner, Mehrez, and
Wesolowsky 1991, Aloise, Hansen, and Liberti 2012).

Furthermore, the computational bottleneck of these
algorithms can be eliminated by enumerating the re-
gions in a different way. The new algorithm is based
on the depth-first-search visit of a set of (possibly
nested) planar multigraphs, whose vertices and edges
are identified by suitable sorting procedures. This pro-
vides O(n2logn) time complexity for enumerating all
regions. Even more important, duplicate enumera-
tions are avoided with no additional complexity, al-
lowing executing the single-source optimal location
algorithm a minimum number of times.

The algorithm presented here can be easily extend-
ed to enumerate regions induced by closed curves of
many other types, such as ellipses, Cartesian ovals,
and in general any kind of closed curves for which it
is possible to efficiently sort points along the contour
(step 2.2) and the tangent line is always defined along
the contour (step 3.2).

Some interesting questions remain open for further
developments.

4.1. Finite Precision Arithmetics
Devising implementations in finite precision ma-
chines, preserving correctness and complexity, is an
issue common to almost all geometrical algorithms be-
cause they typically require computing and compar-
ing irrational numbers (in equality and inequality

Righini: Single Source Weber Problem
14 Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS

tests). The critical point in the new algorithm, as in
previous ones, is the ability to detect when intersec-
tion points coincide.

The problem with the algorithm by Drezner, Meh-
rez, and Wesolowsky (1991), corrected by Venkate-
shan (2020), occurs when intersection points are found
to coincide. Numerical approximations tend to make
this unlikely: intersections that would coincide in infi-
nite precision computations may be found noncoinci-
dent in finite precision arithmetics. In this case,
numerical approximations may cause a degenerate
multigraph to be analyzed as a nondegenerate one,
playing the same role of small perturbations intro-
duced on purpose as suggested by Venkateshan
(2020). This would not produce wrong solutions be-
cause no region of the degenerate multigraph would
be disregarded. Moreover, it would not affect the
O(n2logn) worst-case time complexity of the new al-
gorithm, which is the same for degenerate and nonde-
generate multigraphs.

On the other side, it is also possible (although
extremely unlikely) that very close but noncoincident
intersection points are treated as coincident in finite pre-
cision arithmetics. However, all SSWPLD algorithms
considered in this paper and its references can be made
robust to these occurrences by checking the following
transitive property: if two intersection points P(i, j) and
P(j, k) coincide, then also P(k, i) must coincide with
them. If this does not occur, then a “numerically crit-
ical” triple of circumferences (i, j, k) is detected, and fur-
ther suitable tests (with increased numerical accuracy,
for instance) can be done to determine whether they in-
tersect in the same point or not. Anyway, it should be
noted that the values of d(X,Oi) for each circumference
i ∈N would not be affected by more than the rounding
error itself, that is, by a negligible amount.

4.2. Implementations
Implementing the new algorithm to evaluate its com-
putational performances is also a possible topic for fu-
ture research. This can lead to the development of

further algorithmic ideas. For instance, instead of eval-
uating the regions in the order they are enumerated, it
may be profitable to evaluate them following the re-
verse order, that is, starting from the innermost to the
outermost regions. This is because the innermost re-
gions are more likely to contain the optimal solution
than the outermost regions. It is possible to prove that
the order in which regions are enumerated by the new
algorithm in each multigraph corresponds to a path in
the dual multigraph. This property can be exploited to
record only the bit to be flipped from one region to
the next one in a last-in, first-out stack, allowing for
the efficient evaluation of the regions in the reverse or-
der. Another idea is to early terminate the single-
source optimal location algorithm, which iteratively
updates a current point according to gradient infor-
mation when the current point leaves the region to be
evaluated. A third possible idea is to directly skip
some region by computing a corresponding lower
bound based on centers, radii, and weights without
running the single-source optimal location algorithm.

Acknowledgments
Detailed and constructive comments from two anonymous
referees were very useful to improve both the content and
the presentation.

References
Aloise D, Hansen P, Liberti L (2012) An improved column genera-

tion algorithm for minimum sum-of-squares clustering. Math.
Programming 131(1–2):195–220.

Drezner Z, Mehrez A, Wesolowsky GO (1991) The facility
location problem with limited distances. Transportation
Sci. 25(3):183–187.

Ostresh LM Jr. (1978) On the convergence of a class of iterative
methods for solving the Weber location problem. Oper. Res.
26(4):597–609.

Venkateshan P (2020) A note on “The Facility Location Problem
With Limited Distances.” Transportation Sci. 54(6):1439–1445.

Weiszfeld A (1937) Sur le point pour lequel la somme des distances
de n points donnés est minimum. Tohoku Math. J. (2) 34:355–
386.

Righini: Single Source Weber Problem
Transportation Science, Articles in Advance, pp. 1–15, © 2021 INFORMS 15

	s1
	s2
	s2A
	s2A1
	s2A2
	s2A3
	s3
	s3A
	s3A1
	s3A2
	s3A3
	s3B
	s3B4
	s3B5
	s3B6
	s3C
	s3C7
	s3C8
	s3D
	s3D9
	s3D9a
	s3D9b
	s3D9c
	s3D9d
	s3D10
	s4
	s4A
	s4B

