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Abstract The objective in the continuous facility location problem with limited
distances is to minimize the sum of distance functions from the facility to the custom-
ers, but with a limit on each of the distances, after which the corresponding function
becomes constant. The problem has applications in situations where the service pro-
vided by the facility is insensitive after a given threshold distance. In this paper, we
propose a global optimization algorithm for the case in which there are in addition
lower and upper bounds on the numbers of customers served.
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1 Introduction

The continuous minisum single facility problem is one of the most fundamental prob-
lems in location theory. The objective is to locate a single facility in the plane so
that the sum of distances from the facility to a set of demand points is minimized.
The problem is often referred to in the literature as the Weber (or Fermat—Weber)
problem [4,16,18]. It traces back to Fermat in the 17¢h century who posed a purely
geometrical version of the problem with only three points. Torricelli, in 1647, is cred-
ited to prove that the circles circumscribing the equilateral triangles constructed on
the sides of the triangle formed by the three given points intersect in the fourth point
sought (see [24,26] for a historical survey).

Drezner, Mehrez and Wesolowsky investigated in [13] the Weber problem for the
case in which the distance functions are constant after given threshold values, which
they call the facility location problem with limited distances. This problem has applica-
tions in situations where the service provided by the facility is insensitive after a given
threshold time/distance. For instance, consider the problem of locating a fire station.
In this context, each property has a distance limit after which the service provided by
the firemen is useless, and the property is completely destroyed. An example of this
operations research application is provided in [13]. The authors suppose a situation
where a certain damage occurs in a property located in p; fori = 1, ..., n at zero dis-
tance from the fire station (located at y € R?), and that this damage linearly increases
up to a distance A; where the damage is 100 %. By denoting d(p;, y) the distance
between point p; and the facility located at y, and €2 the proportion of damage at zero
distance, the proportion of damage in p; is given by Q2 + (1 — Q)d(p;, y)/A; in the
case d(p;,y) < Ai, and 1 otherwise. The corresponding facility location problem is
then expressed as

n .
. min{d (pi, y), Ai}
min Q+(1-Q)———————— (1
yeR2 ; A
The first term of the summation is constant and (1 — £2) is irrelevant to the second term.
By introducing binary variables v;, that select between d(p;, y) and 4;, to the sum-
mation of the objective function, we end up with the following minimization problem

i ilm ) +d(pi. V) @)
yeRZIEIerio,l}” = i i K pi e

Real examples for the application of this location model also include other types of
emergency services (e.g. ambulances, police calls). For example, a person suffering
from a heart attack has more chances to survive if he/she is quickly treated, and will
certainly die if help does not come after a given period of time. In the case of a police

call, criminals would be likely untraceable after a time limit.
In this work, we study the version of the problem for which there are lower
and upper bounds on the number of demand points that can be served within the
distance limits. This is indeed a natural extension to the model presented in [13]. In
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practical applications, a lower bound in the number of served points may be used to
justify the installation of a facility (e.g. it is not reasonable to construct a fire station
that can save only a few properties nearby), while an upper bound may express the
capacity limitations of the service to maintain an acceptable quality level.

Another extension to the facility location problem with limited distances formu-
lated in [13] is presented by Drezner, Wesolowsky and Drezner in [15]. In this paper,
the authors formulate a problem in which the distance function from the demand point
is equal to zero up to a first threshold value /, linear between / and a second threshold
distance value u, and constant after #. The model is equivalent to that of [13] when
! = 0. In one hand, the mathematical developments presented here cannot be used to
help solving the global optimization problem presented in [15], at least not straight-
forwardly. On the other hand, adding the side constraints to the model of [15] would
require a considerable effort on investigating new lower and upper bounds to be used
in a specialized branch-and-bound. We decided to work on an extension to the model
of [13] by means of convex exact reformulations in the sense of [20]. This yielded an
enumerative algorithm based only on the resolution of convex problems.

An adjacent facility location problem to the one approached here is the Maximal
Covering Location Problem(MCLP) [8,9,21] which maximizes the number of demand
points covered within a specified critical distance or time by a fixed number of facil-
ities. Although these models also incorporate facility distance limitations, they deal
with a covering objective function which is mathematically distinct from the mini-
sum objective. Covering problems are a chapter apart in the facility location theory
(see [3,22,14] for a survey).

The mathematical formulation of the problem approached in this paper is given in
the next section. A global optimization algorithm for it is described in Sect. 3. Com-
putational results on synthesized instances and on a real-life problem are reported in
Sect. 4 and compared with those of the literature. Finally, conclusion are given in the
last section.

2 Problem definition

Let us denote || p1 — p2ll4 the £,-distance between points py and p, in the plane.
Given n service points in the plane p1, p2, ..., p, with threshold distances A; > 0
and weights w; > 0 fori = 1, ..., n, the Limited Distance Minisum Problem with
Side Constraints (LDMPSC) can be expressed by:

n
min w; (A (1 —=v;)+pi —yllqvi
yeRz,ve{O,l}”; 1( i i Pi — Vlg 1)

subject to
Ipi = yllgvi <A fori=1,....n (3)

n
L §ZU,‘ <U.
i=1
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The second set of constraints defines bounds L and U in the number of variables v;
which can be equal to 1. The first set of constraints assures that v; can be equal to
1 only if the distance between p; and the facility located at y is inferior (or equal)
to the distance limit A;. This avoids the attribution v; = 1 only to satisfy constraint
> '_;vi > L. The objective function of (3) as well as its feasible set are non convex
which demands more sophisticated solution methods.

The objective function of (3) can still be rewritten thereby removing its constant
terms. It is then expressed as

n n
> wiki +min > willpi — yllg — Ai)vi. “
i=1 i=l

3 Optimization algorithm

From the formulation above, we have that for a given location y, v; may be equal to 1
onlyif || p; —yllg < A;.1f g = 2, thisis geometrically equivalent in the plane to the con-
dition that v; may be equal to 1 only if y belongs toadisc D; = {y|||pi—yl2 < Xi}(.e.,
adisc withradius A; centered at p;). Analogously, if ¢ = 1, this is equivalent to the con-
dition that v; may be equal to 1 only if y belongs to a square S; = {y|||pi —yl1 < Ai}
with sides making a 45 (or -45) degree angle with the axes (i.e., a 45° rotated square
with diagonal 2A; centered at p;).

A branch-and-bound algorithm based on the vector v would consider implicitly all
2" subproblems generated by branching on binary variables v; fori = 1, ..., n, while
adding constraints || p; — yllg < A; and || p; — yllg > A; to the resulting subproblems.
Another possibility is to focus on components v; of v which might be equal to 1 at the
same time. When g = 2, these components are directly associated to convex regions
generated by intersections of discs (see Fig. 1). For instance, for the region indicated
by the bullet in Fig. 1, only the components v1, v and v3 can be equal to 1.

Hence, we can solve (3) by solving subproblems of the following type:

min wi(lpi — yllg — Ai)vi
SR e (0,18 Z illpi — Yllg i)Vi

ieS
subject to
lpi —yllg =2i Vi €S, (&)
L < Z v <U
ieS
where S C {1, 2, ..., n} is a non-empty set. Each one of the subproblems of type (5)

is associated to a distinct region in the plane. For instance, we have a subproblem with
S = {1, 2, 3} for the region indicated by the bullet in Fig. 1. The number of these
convex regions for ¢ > 1 was proved to be quadratically bounded in the number of
points in [13].!

! The proof omits a case. We completed the proof for ¢ = 2 in [1].
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Fig. 1 Intersection of discs

Problem (5) contains (nonconvex) bilinear terms in the objective function, so that
its continuous relaxation is not necessarily easy to solve. To address this issue we
propose the following reformulation of (5): we add variables z; € [—A;, 0] for all
i € S, we replace the objective function with > ;_¢ w;z;, and adjoin the following
constraints:

VieS llpi—yllg—2i <z (6)
VieS zi+ iiv; >0. (7)

IA

\

We remark that the original constraints Vi € S (||p; — yll; < A;) are also part of
the reformulation, as well as bound and integrality constraints on y, v. The resulting
reformulation:

MmNy R2 ye(o, 13151 Z:,g w;Zi
IAS

VieS|pi—ylg—2i <z
VielS zi +Aiv; >0 ®)
Vies lpi —yllg <A

L<>v<U

ieS

VielS zi € [—A;, 0].

is an exact reformulation of (5), i.e. the optima of (8) can be mapped surjective-
ly onto the optima of (5) [20], as shown in Prop. 1. We also remark that (8) is a
convex Mixed-Integer Nonlinear Program (MINLP), as it involves continuous and
integer variables as well as nonlinear terms, and its continuous relaxation is a convex
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Nonlinear Program (NLP). This is because: (i) all norms are convex functions [7,
p. 73], (ii) adding a linear function to a convex one results in a convex function, and
(iii) bounding convex functions from above defines a convex set.

Proposition 1 Prob. (8) is an exact reformulation of Prob. (5).

Proof Let (y*, v*, z*) be an optimal solution of (8). Fori € §,if v} = 0 then, because
i — y*llg < Ai, the left hand side of (6) is nonpositive; hence, by (7), zF > 0 is
the most stringent constraint. By the upper bound constraint on z, we have z7 = 0.
If vl?" = 1, (7) implies zf > —);, which is redundant with respect to the lower bound
constraint on z. Hence, by (6), we have z7 > || p; —y*||; —A;, and the objective function
direction enforces z* = || p; — y*Il4 — A;. Thus, the optimal objective function value of
(8) is the same as that of (5) at the optimum (y*, v*) of (5). As concerns surjectivity,
it is easy to remark that for each feasible (y, v) in (5) there exist a corresponding z
such that (y, v, z) is feasible in (8): simply define z; = (||p; — ¥l — Ai)v;. Hence,
the projection operator of the optima of (8) onto the variables of (5) is surjective on
the optima on (5) and certifies that the reformulation is exact.

For g = 1, Prob. (8) is a Mixed Integer Linear Program (MILP); this follows by a clas-
sical exact reformulation of convex constraints involving absolute values |x| < r into
pairs of constraints —r < x < r.Forexample, || p;i —y|l1 = |pi, = y1|+|pi, —y2| < A
is initially replaced by:

Piy = Y1 =Ai —Ipin —y2l  and  pi; —y1 = |pi, — Y2 — A
Then, each of the constraints above is replaced by two others, yielding the constraints:

Yi+y2 = pip+ pip, —Ai
Y1 — Y2 = Piy — Pi, — Ai
Yi—=y2 = piy — Pi, T Ai
yi+y2 = piy +pi, + i

For g = 2, Prob. (8) is a convex MINLP. Due to the presence of the square root term
in the Euclidean norm, the problem is not everywhere differentiable. Specifically, this
sometimes causes floating-point errors in local NLP solvers, but there exist practically
efficient convex MINLP solvers for this type of problems (e.g. Bonmin [5]).

Proposition 2 shows that the resolution of subproblems can still be further simpli-
fied, allowing to solve simpler subproblems whenever their size (i.e., | S|) is not greater
than U.

Proposition 2 There exists a solution (y*, v*) optimal to (5) such that V* = {i|v} =1}
has cardinality equal to f = min{|S|, U}.

Proof The proof is done by construction. Let us assume y™* as the optimal facility loca-
tion and consider an initial solution (y*, v*) with V* = {i|v} = 1} = @. This solution
can be improved by choosing an element i’ = argmin;cs{w;(||pi — yillg — A}
and making v}, = 1. Since [|p; — y*|l; — A < 0 and w; > 0, the new solution is
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better (or equal) than the initial one. This procedure can be continuously repeated by
choosing anew element i” = argmin;cs, igv+{w; (| pi — y*Ilg — A} until [V*| = |S]
or |[V*| = |U]|. The final solution (y*, v*) constructed in this way is optimal since
inserting elements to V* is no longer possible as well as removing elements from V*
is not profitable. O

Proposition 2 ensures that the optimal solution of (5), and its exact reformulation (8),
has all decision variables v equal to 1 whenever |S| < U. In this case, subproblems
can be expressed by

ieS
subject to
zi = llpi = yllg = 2i Vies 9)
lpi —yllg < Ai Vies
zi € [—2,0] Vies

which is an LP for ¢ = 1 and a convex NLP for g = 2.

Algorithm 1 enumerates the sets S corresponding to regions delimited by convex
figures (i.e., rotated squares when ¢ = 1, discs when ¢ = 2). This algorithm exe-
cutes in O(n?1) time where 7 is the time required for solving each subproblem in
steps 4 and 7. This time is larger when (8) is solved instead of (9).

Algorithm 1

1. Enumerate all intersection points of convex figures in the plane as well as all con-
vex figures whose boundary does not intersect any other one. Let L and L, be
the corresponding lists.

2. For each intersection point p € L defined by convex figures centered at points
pi and p;, find the set S of all k such thatk # 7, j and ||px — pllg < Ak-

3. Consider the four sets: S, S U {i}, SU{j},and S U {i, j}.

4. For each one of these sets, if |S| > L, solve the associated subproblem of type (8)
if | S| > U. Otherwise, solve subproblem of type (9).

5. Update the best solution if an improving one is found.

6. For each convex figure in L, find the set S composed of its own index and the
indices of all convex figures containing it.

7. For each one of these sets S, if |S'| > L, solve the associated subproblem of
type (8) if |S’| > U. Otherwise, solve subproblem of type (9).

8. Update the best solution if an improving one is found.

Step 1 in Algorithm 1 relies on the solution of a geometric problem consisting in
enumerating all intersection points between pairs of convex figures in the plane. For
q = 1, a possible approach for enumerating the intersection points of rotated squares
is to use the popular sweep line algorithm [11], since a square can be decomposed
into four distinct linear segments. For ¢ = 2, a pair of circles may intersect in a
single degenerate point or in two distinct points (two identical circles coincide in an
uncountable number of points, but this case occurs with probability 0 and is therefore
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omitted). An algorithm for enumerating all the intersection points for a set of circles
can be found at [12]. For ¢ > 2, the delimited regions are convex, but finding the
intersection points for a pair of regions involves the solution of a nonlinear system of
two equations.

We remark that for ¢ = oo, the convex regions defined by ||p; — yllco < A;, for

i = 1,...,n are squares whose sides are orthogonal with the coordinate axes, and
subproblems (8) can be reformulated as:

> wiz

min
yeR2,ve{0,1}!S] =

S

subject to
Zi >t — A Vies
zi +vir; >0 VielS
ti < A Vies (10)
ti > piy — )1 VielS
li = piy — y2 Vies§
L < Zvi <U

ieS
zi € [—4i, 0] Vi € S,

which is a MILP problem.

4 Computational experiments

Our experiments are designed to assess the performance of Algorithm 1 on random
instances, as well as compare it with respect to existing state-of-the-art noncon-
vex MINLP solvers, such as Couenne [2] and Baron [25]. These are two different
implementations of the spatial Branch-and-Bound (sBB) algorithm [19]. Much like
a Branch-and-Bound (BB) algorithm for MILPs, sBB explores the feasible space
exhaustively but implicitly, finding a guaranteed e-approximate solutions for any given
& > (0 in finite (worst-case exponential) time. Unlike MILPs, whose continuous relax-
ation is a Linear Program (LP), and unlike convex MINLPs, whose continuous relax-
ation is a convex NLP, the continuous relaxation of a nonconvex MINLP is generally
difficult to solve. To address this issue, sBB algorithms form and solve convex relax-
ations of the given MINLP (the most common approach to build such relaxations is
by using symbolic reformulation techniques [23]). The convexity gap between the
original MINLP and its convex relaxation therefore stems from two factors: the relax-
ation of the integrality constraints, as well as the relaxation of the nonconvex terms
appearing in the MINLP. Accordingly, sBB algorithms may branch on both integer
and continuous variables, when the latter occur in a nonconvex term.

Algorithm 1 iteratively solves subproblems of form (8). For the case g = 2, these
are convex MINLPs, which we solve using Bonmin [5]. This is a software frame-
work for convex MINLP, which implements different types of algorithms based on
combining Outer Approximation (OA) with Branch-and-Bound techniques [6].
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Table 1 Threshold distance

values (1) for ¢ — 1 % n=10 n =100 n = 1,000
P=10"3 300.36 117.15 37.85
P=10"° 329.93 145.68 47.79
P=10"° 342.79 167.98 55.94

Table 2 Threshold distance % =10 = 100 = 1,000

values (A) forg =2
P=10"3 239.66 93.47 30.19
P=10"° 263.25 116.24 38.13
P=10"° 273.51 134.03 44.63

Problem instances were artificially generated from an uniform distribution in a
square with sides equal to 1,000, in order to evaluate the performance of Algorithm 1.
The instances so obtained were created by stochastically controlling the number of
intersections among the convex figures associated to each point p;, fori =1, ..., n.
In £>-norm, if there exists a pair of points p;, and p;, for which || p;; — pi, |2 < 2, then
their associated discs D;, and D;, intersect. Consequently, if there is a disc D; asso-
ciated to a point p; that does not intersect any other disc D; for j = 1,...,n, j # 1,
then no other point p; can be generated inside the disc Di = {yllly — pilla < 21}. The
area of D; is equal to 7(20)% = 4722, Hence, considering an uniform distribution,
the probability P that a region D; centered at p; does not intersect another region
associated to any of n — 1 points generated in a plane of dimension d X d is given by

d? — 4ma2\" !
—) (11)

Using the same reasoning in £;-norm, the following probability formula is obtained

d? —8x2\"!
(T) . (12)

By means of eqs. (11) and (12), one can derive threshold distance values for instances
of (3) as a function of the desired probability of intersection among discs, for g = 2,
and squares, for g = 1.

Tables 1 and 2 present the values of threshold distances A obtained from Eqs. (11)
and (12) for ¢ = 1 and ¢ = 2, respectively, considering different values of P and
different number of points n.

Eighteen different instance categories were generated based on the scenarios pre-
sented in Tables 1 and 2; nine for ¢ = 1 and nine for ¢ = 2. For these instance cate-
gories, the threshold distance values are taken from the values presented in Tables 1
and 2 plus a perturbation obtained from a normal distribution with mean 0 and vari-
ance equal to 10, 5, and 2 for the instances with n = 10, 100, and 1,000, respectively.
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They are named according to the norm used, the number n of points and the prob-
ability P used to create each one of them. Thus, £;_10_1073 refers to the category
composed by instances of 10 points, uniformly distributed in a 1,000 x 1,000 square
with threshold £1-distances A; € N (u = 300.36, o= 10), fori =1,...,n.

Ten distinct instances were generated in each category, totalizing 18 - 10 = 180
instances. For this set of instances, all the points have unitary weights (i.e., w; = 1, for
i =1,...,n). The instances used here can be found at http://www.gerad.ca/~aloise/
publications.html.

Computational experiments were performed on a Pentium Quad Core Xeon X3353
with a 2.66 GHz clock and 24 Gigabytes of RAM memory. Algorithm 1 was imple-
mented in C++ and compiled by gcc 4.4. Table 3 presents the computational results
for the generated instances. Its first column contains the category identifiers. The sec-
ond and third columns present the lower (L) and upper (U) bounds values used in
the execution of each instance category. The fourth column presents average optimum
solution values of the 10 instances in each category. The fifth, sixth, seventh and eighth
columns report the average and standard deviations of CPU times (in seconds) spent
by Couenne and Baron. The two solvers are executed in the same platform aforemen-
tioned, except for Baron executions of instances with 1,000 points, for which we used
the NEOS server [10] due to size limitation in our academic version. The platform
used in the NEOS server was a Xeon X5660 with 2.80 Ghz clock and RAM memory
capped to 3 Gigabytes per job. The ninth and tenth columns show, respectively, average
CPU times and standard deviations of CPU times spent by Algorithm 1. Finally, the
11th and 12th columns report the average and standard deviations of the number of
subproblems (8) solved within Algorithm 1. The subproblems were solved by CPLEX
12.1.0 for the case ¢ = 1, and by Bonmin [5] for g = 2.

Results in Table 3 show that the optimum solution values increase with the thresh-
old distances values A (see Table 1). Let us consider two instances /; and I, formed
by the same set of points with distinct threshold distance values A1 and Aj, respec-
tively, for all of their points such that A; < A. Consequently, any feasible solution
for I; is also feasible /,. Furthermore, that solution has greater cost in I, since for
all terms i = 1, ..., n for which v; = 0, the associated contribution in the objective
function is A2 (> A1). For the terms i for which v; = 1, the value of the associated
contribution in the objective function (i.e., || p; — y||1) remains unchanged. Despite
that, if two instances share the same set of points, we cannot state that the one with
the largest threshold distance has the largest optimal solution value (the trivial case is
an infeasible location problem with A1, which becomes feasible by using A7).

The results in Table 3 also reveal that:

(i) Standard deviation values presented in the table are sometimes large. This dem-
onstrates that CPU times spent by the tested algorithms in a category depend
considerably on the distribution of points in the space. This observation did not
invalidate what observed in (ii)—(v).

(i) Couenne outperforms Baron in the £1-norm categories, and is outperformed by
the latter in the £2-norm categories with larger A values.

(iii)) Algorithm 1 increases its execution time as the threshold distance value (X)
increases. Indeed more CPU time is spent for instances with large values of A.
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Table 4 CPU times (in seconds) of Algorithm 1, Couenne and Baron as a function of lower bound in ten
£1-norm distinct instances with 50 random points

L Algorithm 1 Couenne Baron

CPU time (s) SD # subs SD CPU time (s) SD CPU time (s) SD
5 8.57 1.67 3,651.9 399.47 45.14 15.82  116.481 119.90
10 3.29 1.32 1,374.0 54496  41.87 7.64  125.83 120.57
15 035 0.73 133.2  263.26  26.08 9.91 35.86 16.83

This is due to the fact that when X is large, more intersections of convex regions
are likely to exist in the instance, and consequently, more subproblems have
to be solved in order to optimize (3). Couenne execution times also appear to
be influenced by A augmentation, though they increase in a slower rate than
Algorithm 1. Baron seems to be the algorithm affected the least by A, and
for this reason, likely the best option when A is large and there are too many
subproblems for Algorithm 1 to solve.

(iv) Algorithm 1 outperforms Couenne and Baron in all £1-norm categories. Partic-
ularly for category £1_1,000_10°, Algorithm 1 is approximately 2,000 times
faster than Couenne and 20,000 times faster than Baron.

(v) Algorithm 1 outperfoms Couenne and Baron in the £>-norm categories with
1,000 points, but is outperfomed by them in the £;-norm categories with 100
points. As observed in (ii), CPU times spent by Algorithm 1 depend largely
on the number of subproblems to be solved. At first glance, this could not be
explained only by the values shown in Table 3. For example, the average number
of subproblems solved in category £>_1,000_1 0%1s 14,459.3 while the average
number of subproblems solved in category £>_100_10"7 is 4,878.6. However,
Algorithm 1 is, in average, approximately 26 faster in the first category. The
reason for this fact lies on the number of subproblems of type (9) solved within
Algorithm 1: in average, 344.5 for the instances in category 62_100_10_9, and
0.4 for those in category 62_100_10’9.

Our next set of experiments focus on how parametes L and U influence the per-
formance of Algorithm 1. The number of subproblems solved within Algorithm 1 is
directly related to the lower bound value L in (3). Subproblems with size smaller than
L are not even considered for resolution since their associated region cannot lodge
the optimal facility location. Hence, as the value of L increases, less CPU time is
spent by Algorithm 1. As subproblem resolution becomes more complex, the value of
parameter L turns out to be even more weighty for Algorithm 1 performance.

Tables 4 and 5 present computing times (in seconds) spent by Algorithm 1, Cou-
enne and Baron for solving 20 instances with 50 random points uniformly distrib-
uted in a 1,000 x 1,000 square. The threshold distance values are made the same
for all points; A; = A = 300,Vi = 1,...,n for the ten £1-norm instances and
Ai = A = 250,Vi = 1,...,n for the other ten £;-norm instances. The tables
report, varying only the lower bound value L (in this set of experiments U = 4-00),
the average and the standard deviation of the CPU time spent by Algorithm 1,
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Table 5 CPU times (in seconds) of Algorithm 1, Couenne and Baron as a function of lower bound in ten
£>-norm distinct instances with 50 random points

L Algorithm 1 Couenne Baron

CPU time (s) SD # subs SD CPU time (s) SD CPU time (s) SD
5 392.80 116.01 3,998.0 381.78 319.61 295.17  33.49 12.99
10 84.67 55.96 1,799.0 586.56 264.92 299.82  33.85 12.89
15 5.38 10.60 2246 313.11 105.25 224.00  30.10 8.39

Couenne and Baron on solving the generated instances. Regarding Algorithm 1, the
tables also report the average and the standard deviation of the number of subproblems
solved.

We notice from Tables 4 and 5 that Algorithm 1 improves considerably its perfor-
mance as L augments and the number of subproblems decreases. The same is also
observed for Couenne, though in a smaller rate. For this experiment, Algorithm 1 is
clearly the best approach for the ¢ instances, but became the best option for the £
instances only after L was increased to 15 and the number of subproblems decreased
enough. The reason for this performance difference while solving ¢; and ¢>-norm
instances relies on the complexity of the subproblems of type (8): linear for £1-norm
instances and convex non-linear for £>-norm ones. Furthermore, Baron does not appear
to be influenced by L as much as the other algorithms are. For the £;-norm instances
with L = 5, 10, Baron outperforms Algorithm 1 and Couenne.

The last set of experiments addresses the influence of parameter U on Algorithm 1
performance. For that purpose, the algorithm was used to solve the same 20 instances
of the last experiment, but this time for different combinations of L and U values.
Tables 6 and 7 report, the average computing times, and its standard deviations, spent
by Algorithm 1. Moreover, the average and standard deviation of the number of sub-
problems of type (8) and (9) solved within the algorithm are presented. The tables also
present the average and the standard deviation of the CPU times spent by Couenne
and Baron on solving (3) for the 10 instances of each norm.

From these last results, we notice that the performance of Algorithm 1 is improved
as U augments. Whenever the size of a subproblem is smaller or equal to U, a sub-
problem of type (9) is solved instead of a more difficult subproblem of type (8).
For example, when U increases from 15 to 20 in Table 7, the average number of
subproblems of type (8) that becomes solvable by model (9) within Algorithm 1 is
135.1 — 4.1 = 131.1. Consequently, the average CPU time spent by the algorithm
drops from 145.49 to 86.55 seconds.

Furthermore, we observe from Table 7 that Algorithm 1 always outperforms Cou-
enne, but is outperformed by Baron with parameters L = 10, U = 15 and L =
10, U = 20. Indeed if the total number of subproblems is large, the decomposition
approach of Algorithm 1 may not be the best strategy to choose. Although the sub-
problems solved by Algorithm 1 are smaller and require less computing time, they
may be too numerous so that the total time spent on solving all them is greater than
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solving the original problem (3) directly. This fact was not observed in the results of
Table 6 because the £1-subproblems are easier to solve than those in the £, norm.

Finally, it is worthy mentioning that standard deviations of computing times and
the number of subproblems for Algorithm 1 and Couenne are due to the presence of
instances with different hardness degrees. In particular, one instance was noticed to be
much harder than the others for Algorithm 1 and Couenne. If the same was removed
from the experiment with £>-norm instances, the average CPU time of Algorithm 1
would be 85.61 seconds with parameters L = 10 and L = 15 (SD 57.34), 68.49
seconds with L = 10 and U = 20 (SD 54.56), and 1.87 seconds with L = 15 and
U = 20 (SD 2.08). For Couenne, the corresponding average CPU times would be:
221.39 (SD 161.95), 231.36 (SD 192.00), and 28.43 s (SD 24.94). This demonstrates
that the points distribution in the space plays a key role in the performance of our
algorithm. Indeed it directly influences the number and the type of the subproblems
to be solved.

4.1 Application to a real-life problem

We report computational results obtained on a real-life problem provided by the Natal
Police Department in Brazil. The data consists of 586 sites in Natal, Brazil where crim-
inal activities were recorded in the period from 01/01/09 to 09/30/2009. It contains,
for each site, its coordinates in UTM scale, which are approximated to the Euclidean
space, and the number of recorded crimes in the analyzed period, which are used to
weight the demand of that site for a police station close-by. The objective for this
problem is to locate a new police station close to where the police demand is high,
but also respecting lower capacity constraints which are useful to better distribute the
police coverage over the city.

Our tests used A = 1 km (estimated in [17]) in £;-norm for all sites. Besides, no
upper bound capacity U is used due to the nature of the application. Two different
scenarios were tested by varying the value of L scenario A uses L = 10, and scenario
B uses L = 25. We solved the corresponding LDMPSC problem using Algorithm 1,
Couenne and Baron. The optimal solutions in scenarios A and B are shown in Fig. 2,
where the problem is geographically represented.

Algorithm 1 outperforms Couenne and Baron in both scenarios. Algorithm 1 solves
scenario A in 102.30 seconds, Couenne is not able to solve it within 1 hour, and Baron
solves it in 1,614.38. Regarding scenario B, Algorithm 1 solves it in 10.72 seconds,
Couenne is again not able to solve the problem within 1 hour, and Baron solves it in
1,715.37.

5 Conclusions

The introduction of side constraints while locating a facility in the plane with limited
distances may serve to justify its installation or to describe service limitations. Our
work extends that of Drezner, Mehrez and Wesolowsky [13], adapting it to the pres-
ence of side constraints. This approach leads to subproblems having products of the
continuous location variable with assignment binary variables. The subproblem model
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Fig. 2 Geographic distribution
of criminal records in the city of
Natal, Brazil from 01/01/2009 to
09/30/2009. The size of the
plotted points is proportional to
the number of criminal records
of the corresponding site. Thus,
the smallest points represent
sites where the number of
criminal records was between

0 and 50, and the largest points
represent sites where the number
of records was greater than
1,000. The optimal locations for
positioning a police unity in
scenarios A and B are
represented by a yellow and a
red star, respectively

solution with L=25
*
solution with L=10

> 1000
[ ]
501-1000
[ ]
201-500
®
101-200
L
51-100
®

0-50

is then reformulated in order to ease its resolution. In summary, the performance of
the presented algorithm is influenced by:

(i) the complexity of the subproblems—e.g. subproblem (8) is a MILP if ¢;-dis-
tances are used, and a non-differentiable convex MINLP for ¢,-distances;
(i) the number of subproblems to be solved—this is linked with the threshold dis-

tances values;

(iii) the lower bound of service—this allows to disregard the resolution of some

subproblems;

(iv) the upper bound of service—easier subproblems to solve due to removing inte-

ger decision variables.

Finally, it is important to remark that the proposed algorithm can be straightfor-
wardly parallelized, since no dependence exists among the solved subproblems.
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