The problem The algorithm Example
000000 000000 0000000

Minimum cost spanning r-arborescence
Doctoral course “Optimization on graphs” - Lecture 2.1

Giovanni Righini

January 15tM, 2013

UNIVERSITA DEGLI STUDI DI MILANO



The problem

The algorithn
®00000

Definitions

A digraph D = (N, A) is a spanning rooted out-arborescence
(r-arborescence, for short) if and only if there is a unique directed
path from its root node r € N to all the other nodes in A\ {r} and no
directed path from any node in M'\{r} tor.
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The problem

Problem data:
e adigraph D = (N, A),
e anoder € N,
e acostfunctionc: A — R..

Problem (Minimum Cost Spanning r-Arborescence Problem).
Find a spanning r-arborescence of minimum cost.
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Counter-example

The algorithms for the MSTP do not work.
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A mathematical programming model

min z = Z CaXa

acA

st Y xa>1 VS C M\{r}
aesn(s)
Xa € {0,1} Vvae A

Integrality conditions are redundant.
We call r-cuts all arc subsets §"(S) corresponding to all node
subsets S not containing r.
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The dual model

min z = Z CaXa

acA

S xa>1 VS C M\{r}
aeéln )
Xa >0 Vae A

This linear program has a dual.

maxw =Y s
SCN\{r}

s.t. Z ys < Ca Vaec A
SCA\{r}:acon(s)
ys >0 VS C M\{r}

Example
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Complementary slackness conditions

Primal C.S.C.: Xa(Ca — Xscan fr}acon(s)Ys) =0 Vae A
Dual C.S.C.: ys(3aesn(sy)Xa —1) =0 VS CNM\{r}

The initial primal solution x, = 0 Va € A is primal infeasible (and
super-optimal).

The corresponding dual solution ys = 0 VS C M\{r} is dual feasible
(and sub-optimal).
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Edmonds algorithm

This algorithm is due to Chu and Liu (1965), Edmonds (1967), Bock
(1971).

Let us define Ay = {a € A : cq = 0}. If Ap contains a spanning
r-arborescence B, then B is a minimum cost spanning
r-arborescence. Otherwise there is a s.c.c. K in the digraph (N, Ag)
such that

er¢K

e Cy > 0Va e §"(K).
Let us define a = min{c, : a € §"(K)}. Modify the costs in this way:
c, :=Cy —aVa € §"(K) and ¢} := c, otherwise. Then search for a

minimum cost spanning r-arborescence B with respect to the new
cost function c’.
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Edmonds algorithm: correctness

It is always possible to choose B such that it contains only one arc
entering K, since K is strongly connected.

If B N §"(K)| > 2, then there exists a redundant arc a € B N §"(K)
such that B\{a} U A still contains an r-arborescence B’, with
c/(B’) <c¢’(B) —c, < c/(B).

The optimal r-arborescence B chosen in this way is also optimal with
respect to the original cost function c. For each other r-arborescence
B’, we have ¢(B’) > c¢(B):
e ¢(B’) =c’(B’) + a|B’ N §"(K)| by definition of the cost update
procedure;
e |[B’NJ§"(K)| > 1 because of B’ is a spanning r-arborescence;

e c/(B’) > c/(B), because B is optimal with respect to the modified
costs ¢’;

e ¢'(B) + a = c(B), because B contains only one arc entering K.
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Edmonds algorithm: complexity (1)

The algorithm has complexity O(nm), because it requires at most 2n
iterations and each of them has complexity O(m).

Let k be the number of s.c.c. in the digraph (N, Ao). Let kg be the
number of s.c.c. of (V,.A4p) with no zero-cost entering arcs.

At each iteration k + ko decreases by at least 1: if K remains a s.c.c.,
it now has at least one entering arc with zero cost, hence kg
decreases; if K is merged with another s.c.c., then k decreases.

Initially k = n — 1 and ko = n — 1. Therefore the iterations are at most
2(n—1).
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Edmonds algorithm: complexity (2)

In O(m) time it is possible to compute the set S of nodes that are not
reachable from r in (N, Ap).

In O(m) time it is possible find the s.c.c. in the subgraph induced by

S, sorting S in pre-topological order, so that its first node belong to a
s.c.c. with no zero-cost entering arcs.

Therefore each iteration has time complexity O(m).

Tarjan (1977): implementation in O(min{n?, m logn}) time.
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Dual ascent algorithms

A dual ascent algorithm iteratively does the following:

e Dual iteration: a violated primal constraint is selected (an r-cut
S); the corresponding dual variable ys enters the basis and is
increased as much as possible, to activate a dual constraint
corresponding to a primal variable x5 (an arc);

e Primal iteration: the corresponding primal variable x, enters the
basis and it is increased as little as possible in order to repair the
infeasibility of the selected primal constraint (an r-cut).
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Dual ascent

When a dual variable is increased (w improves), how much is “as
much as possible?

Dual feasibility requires > g\ (r}.acsin(s) Ys < Ca Va € A.
Therefore for each node subset S, the maximum value that the
corresponding dual variable ys can take is equal to the minimum
reduced cost among all the arcs in the r-cut 6™(S).

When a primal variable is increased (z worsens), how much is “as
little as possible?

The value 1 is the minimum amount to make at least one more primal
constraint Zaeém(s) Xa > 1 active. It is useless (sub-optimal) to give
primal variables values larger than 1.
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Edmonds algorithm: an example

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3}{4}{5}{6} k=5
S.C.Co {2}{3}{4}{5}{6} ko=5

k+k0=10

w = 0.
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Example: dual iteration 1

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3}{4}{5}{6} k=5
S.C.Co {2}{3}{4}{5}{6} ko=5

k + ko = 10.

Scan  {2}{3}{4}{5}{6}
End  {2}{3}{4}{5}{6}

x =0.
z=0. S ={6}
5(8)121 {(1,6),(2,6),(4.6)}

w =Yy =11.



The problem The algorithm Example
000000 000000 [e]e] lele]ele

Example: primal iteration 1

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3}{4}{5}{6} k=5
S.C.Co {2}{3}{4}{5} ke=4

k+k0:9.
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Example: dual iteration 2

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3}{4}{5}{6} k=5
S.C.Co {2}3M4}{5} ko=4

k+k0:9.

Scan  {2}{3}{4}{6}{5}
End {2}{3}{6}{4}{5}

S ={5}
5(3)72 {(3,5),(4,5)}

W =Ye +Yys = 18.
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Example: primal iteration 2

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3}{4}{5}{6} k=5
S.C.Co {2}{3}{4} ko =3

k+k0:8.

W =Yg + Y5 = 18.

X46 = X35 = 1.
Z = Cyp + C35 = 18.
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X46 = X35 = 1.
Z = Cyg6 + C35 = 18.
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Example: dual iteration 3

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3}{4}{5}{6} k=5
S.C.Co {2}{3}{4} ko =3

k+k0:8.

Scan  {2}{3}{5}{4}{6}
End {2}{5}{3}{6}{4}

S = {4)
5(3)2= {(2,4),(3,4),(5,4)}

W =Yg + Y5+ Ys = 20.
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Example: primal iteration 3

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3}{4}{5}{6} k=5
S.C.Co {2}{3} ko = 2

k+k0:7.

W =Ye + Y5+ Yya = 20.

X46 = X35 = X34 = 1.
Z = C4p + C35 + C3s = 20.
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X46 = X35 = X34 = 1.
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Example: dual iteration 4

k+k0:7.

Scan  {2}{3}{4
End {2}{6}{4

Z = C46 + C35 + C34 = 20. S ={3}

3(8) ={(2,3),(4,3),(5,3)}

a=1.

W =Ye +Ys5+Yys+Yys=2L

Example
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Unreachable from 1: {2,3,4,5,6}.

S.CC. {2}{3}{4}{5}{6} k=5

S.C.Co {2}{3} =2
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Example: primal iteration 4

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3,5}{4}{6} k=4
S.C.Co {2}{3,5} ko = 2

k+k0:6

W =Ye+Ys+Yys+ys=2L

X46 = X35 = X34 = X53 = 1.
Z = Cyp + C35 + C34 + Cs3 = 21.
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Example: dual iteration 5

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3,5}{4}{6} k=4
S.C.Co {2}{3,5} Ko =2

k+k0:6

Scan  {2}{3,5}{4}(6)

End {2}{6}{4}{3,5}
X46 = X35 = X34 = Xs3 = 1.

Z = C46 + C35 + C34 + C53 = 21. 82{3,5}
6(S) ={(2.3),(4,3),(4,5)}
a =4,

W = Y6 + Y5 +Ya+ Y3+ Y35 = 25.
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Example: primal iteration 5

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3,4,5}{6} k=3
S.C.Co {2}{3,4,5} ko =2

k+k0:5.

W =Yg + Y5 + Y4 + Y3 + Y35 = 25.

X4 = X34 = X53 = Xg5 = 1.
Z = C4p + C34 + Cs3 + C45 = 25.

X35 = O is replaced by x45 = 1
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Example: dual iteration 6

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3,4,5}{6} k=3
S.C.Co {2}{3,4,5} ko =2

k+k0:5.

Scan {2}{3,4,5}{6}
End {2}{61{3,4,5}

X4 = X34 = X53 = Xg5 = 1.

Z = C4p + C34 + Cs3 + C45 = 25. S ={3,4,5}
6(S) ={(2,3),(2,4)}
Either x,3 or x,4 enters the basis. o = 20.

W =VYe+Ys+Ya+ Y3+ Yss + Yass
=45,
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Option 1: Xx,3 enters the basis

X4 = X34 = X45 = Xp3 = 1. X46 = X34 = X35 = Xp3 = 1.
Z = C4p + C34 + C45 + C23 = 49. Z = C46 + C34 + C35 + C23 = 45.
Wrong! Right!

Why?
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Option 1: Xx,3 enters the basis

X46 = X34 = Xg5 = X3 = L. X46 = X34 = X35 = X3 = 1.
Z = Cya6 + C3a + Cy5 + Cp3 = 49. Z = Cs6 + Caa + C35 + Cp3 = 45.
Wrong! Right!

Because y35 = 4 and dual C.S.C. impose Y35(X23 + Xa3 + X45 — 1) =0
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Option 2: x,4 enters the basis

X4 = Xo4 = X45 = Xs3 = 1.
Z = C4p + C24 + C45 + Cs3 = 45.

X34 IS replaced by xo4.
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Example: primal iteration 6

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3,4,5}{6} k=3
S.CCo {2} ko=1

k+k0:4.

W =Yg+ Y5 + Y4+ Y3+ Y3+ Yas
= 45,

X46 = X34 = X35 = Xp3 = 1.

Z = Cy6 + C34 + C35 + Co3 = 45.

We choose option 1.
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Example: dual iteration 7
Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2}{3,4,5}{6} k=3
S.C.C.o {2} ko=1

k +ko = 4.

Scan {2}{3,4,5}{6}
End {6}{3,4,5}{2}

S ={2}
X46 = X34 = X35 = Xpo3 = 1. 5(8) = {(17 2)v (37 2)7 (6a 2)}
Z = Cy46 + C34 + C35 + Co3 = 45. a=13.

W =VYe+Ys+Ya+Ys+ Y35+ Yaas+
+Yy2 = 58.
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Example: primal iteration 7

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2,3,4,5/{6} k=2
S.C.Co {2,3,4,5} ko =1

k+k0:3.

W =VYe+Ys+Ya+Ys+ Y35+ Yaas+

+y, = 58.
X46 = X34 = X35 = Xp3 = X32 = L.

Z = C46+C34+C35+Cp3+C32 = 58.
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Example: dual iteration 8

Unreachable from 1: {2,3,4,5,6}.

S.C.C. {2,3,4,5}{6} k=2
S.C.Co {2,3,4,5) ko =1

k+k0:3.

Scan {2,3,4,5,6}{6}

End {6}{2,3,4,5}

X46 = X34 = X35 = Xp3 = X32 = L.

Z = Cy46+C34 4 C35 4+ Co3 +C32 = 58. S =1{2,3,4,5}

5(8) = {(1,2), (6.2)}

o =5.

W =VYe+Ys+Ys+Ys+Yyss+Ysas+
+Y2 + Y2345 = 63.
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Example: primal iteration 8

Unreachable from 1: {2,3,4,5,6}.

SC.C. {23,456} k=1
S.C.Co {23,456} k=1

k+k0:2.

W =VYe+Ys+Ys+Ys+Yyss+ Yzt
+Y2 + Y2345 = 63.

X46 = X34 = X35 = X23 = X2 = 1.
Z = C4p+C34+C35+Ca3+Cp2 = 63.

Xg2 replaces xso.
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Example: dual iteration 9
Unreachable from 1: {2,3,4,5,6}.

SC.C. {23,456} k=1
S.C.Co {2,3,4,56} ko=1

k+k0:2.

Scan {2,3,4,5,6}
End {2,3,4,5,6}

S ={2,3,4,5,6}
X46 = X34 = X35 = X23 = X2 = 1. 6(S) ={(1,2),(1,6)}
Z = C46+C34+C35+ Co3+Cg2 = 63. a=09.

W = Y6 +Y5+Ya+Y3+Y35+ Y5+
+Y2 + Y2345 + Y3456 = 72.
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Example: primal iteration 9

\ S.C.C.
70) | S.CCyo

/ k+k0:0.

K 11(0)// Algorithm termination.

W =VYe+Ys5+Ya+Ys+Yss+Yast

+Y2 + Y2345 + Yozas6 = 72.
X34 = X35 = X23 = X2 = X156 = 1.

Z = C34+C35+Co3+Ce2+C16 = 72.

X16 replaces xg6.

Example
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Example: optimal solution

ye =11
ys =7

Y4 =2
ys=1
Y35 =4
Y345 = 20
Yo = 13
Y2345 =5
Y23456 = 9

X34 = X35 = X23 = Xg2 = X16 = 1. W =Y6+Ys5+Ya+Y3+Ys5 +Yasst+
Z = C3s+C35+C23+Ce2+C16 = 72. +Y2 + Y2345 + V23456 = 72.

The reduced cost of each arc is the difference between the original
cost and the sum of all dual variables corresponding to the s.c.c.
reached by the arc.
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