

The problem  
oooooo

The algorithm  
oooooo

Example  
ooooooo

# Minimum cost spanning $r$ -arborescence

## Doctoral course “Optimization on graphs” - Lecture 2.1

Giovanni Righini

January 15<sup>th</sup>, 2013



UNIVERSITÀ DEGLI STUDI DI MILANO

## Definitions

A digraph  $\mathcal{D} = (\mathcal{N}, \mathcal{A})$  is a **spanning rooted out-arborescence** ( $r$ -arborescence, for short) if and only if there is a unique directed path from its root node  $r \in \mathcal{N}$  to all the other nodes in  $\mathcal{N} \setminus \{r\}$  and no directed path from any node in  $\mathcal{N} \setminus \{r\}$  to  $r$ .

## The problem

Problem data:

- a digraph  $\mathcal{D} = (\mathcal{N}, \mathcal{A})$ ,
- a node  $r \in \mathcal{N}$ ,
- a cost function  $c : \mathcal{A} \rightarrow \mathbb{R}_+$ .

**Problem (Minimum Cost Spanning  $r$ -Arborescence Problem).**  
Find a spanning  $r$ -arborescence of minimum cost.

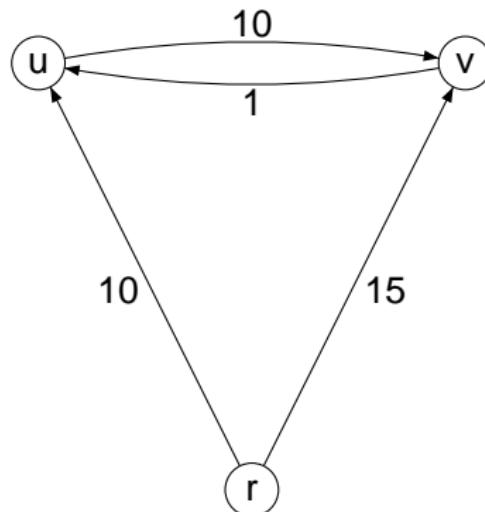
The problem  
○○●○○

The algorithm  
○○○○○

Example  
○○○○○○○

## Counter-example

The algorithms for the MSTP do not work.



## A mathematical programming model

$$\begin{aligned}
 \min z &= \sum_{a \in \mathcal{A}} c_a x_a \\
 \text{s.t.} \quad & \sum_{a \in \delta^{in}(S)} x_a \geq 1 \quad \forall S \subseteq \mathcal{N} \setminus \{r\} \\
 & x_a \in \{0, 1\} \quad \forall a \in \mathcal{A}
 \end{aligned}$$

Integrality conditions are redundant.

We call  $r$ -cuts all arc subsets  $\delta^{in}(S)$  corresponding to all node subsets  $S$  not containing  $r$ .

## The dual model

$$\min z = \sum_{a \in \mathcal{A}} c_a x_a$$

$$\text{s.t. } \sum_{a \in \delta^{in}(S)} x_a \geq 1 \quad \forall S \subseteq \mathcal{N} \setminus \{r\}$$

$$x_a \geq 0 \quad \forall a \in \mathcal{A}$$

This linear program has a dual.

$$\max w = \sum_{S \subseteq \mathcal{N} \setminus \{r\}} y_S$$

$$\text{s.t. } \sum_{S \subseteq \mathcal{N} \setminus \{r\}: a \in \delta^{in}(S)} y_S \leq c_a \quad \forall a \in \mathcal{A}$$

$$y_S \geq 0 \quad \forall S \subseteq \mathcal{N} \setminus \{r\}$$

## Complementary slackness conditions

**Primal C.S.C.:**  $x_a (c_a - \sum_{S \subseteq \mathcal{N} \setminus \{r\}: a \in \delta^{in}(S)} y_S) = 0 \quad \forall a \in \mathcal{A}$

**Dual C.S.C.:**  $y_S (\sum_{a \in \delta^{in}(S)} x_a - 1) = 0 \quad \forall S \subseteq \mathcal{N} \setminus \{r\}$

The initial **primal solution**  $x_a = 0 \quad \forall a \in \mathcal{A}$  is **primal infeasible** (and super-optimal).

The corresponding **dual solution**  $y_S = 0 \quad \forall S \subseteq \mathcal{N} \setminus \{r\}$  is **dual feasible** (and sub-optimal).

## Edmonds algorithm

This algorithm is due to Chu and Liu (1965), Edmonds (1967), Bock (1971).

Let us define  $\mathcal{A}_0 = \{a \in \mathcal{A} : c_a = 0\}$ . If  $\mathcal{A}_0$  contains a spanning  $r$ -arborescence  $B$ , then  $B$  is a minimum cost spanning  $r$ -arborescence. Otherwise there is a s.c.c.  $K$  in the digraph  $(\mathcal{N}, \mathcal{A}_0)$  such that

- $r \notin K$
- $c_a > 0 \ \forall a \in \delta^{in}(K)$ .

Let us define  $\alpha = \min\{c_a : a \in \delta^{in}(K)\}$ . Modify the costs in this way:  $c'_a := c_a - \alpha \ \forall a \in \delta^{in}(K)$  and  $c'_a := c_a$  otherwise. Then search for a minimum cost spanning  $r$ -arborescence  $B$  with respect to the new cost function  $c'$ .

## Edmonds algorithm: correctness

It is always possible to choose  $B$  such that it contains only one arc entering  $K$ , since  $K$  is strongly connected.

If  $|B \cap \delta^{in}(K)| \geq 2$ , then there exists a redundant arc  $a \in B \cap \delta^{in}(K)$  such that  $B \setminus \{a\} \cup \mathcal{A}_0$  still contains an  $r$ -arborescence  $B'$ , with  $c'(B') \leq c'(B) - c'_a \leq c'(B)$ .

The optimal  $r$ -arborescence  $B$  chosen in this way is also optimal with respect to the original cost function  $c$ . For each other  $r$ -arborescence  $B'$ , we have  $c(B') \geq c(B)$ :

- $c(B') = c'(B') + \alpha|B' \cap \delta^{in}(K)|$  by definition of the cost update procedure;
- $|B' \cap \delta^{in}(K)| \geq 1$  because of  $B'$  is a spanning  $r$ -arborescence;
- $c'(B') \geq c'(B)$ , because  $B$  is optimal with respect to the modified costs  $c'$ ;
- $c'(B) + \alpha = c(B)$ , because  $B$  contains only one arc entering  $K$ .

## Edmonds algorithm: complexity (1)

The algorithm has complexity  $O(nm)$ , because it requires at most  $2n$  iterations and each of them has complexity  $O(m)$ .

Let  $k$  be the number of s.c.c. in the digraph  $(\mathcal{N}, \mathcal{A}_0)$ . Let  $k_0$  be the number of s.c.c. of  $(\mathcal{N}, \mathcal{A}_0)$  with no zero-cost entering arcs.

At each iteration  $k + k_0$  decreases by at least 1: if  $K$  remains a s.c.c., it now has at least one entering arc with zero cost, hence  $k_0$  decreases; if  $K$  is merged with another s.c.c., then  $k$  decreases.

Initially  $k = n - 1$  and  $k_0 = n - 1$ . Therefore the iterations are at most  $2(n - 1)$ .

## Edmonds algorithm: complexity (2)

In  $O(m)$  time it is possible to compute the set  $S$  of nodes that are not reachable from  $r$  in  $(\mathcal{N}, \mathcal{A}_0)$ .

In  $O(m)$  time it is possible find the s.c.c. in the subgraph induced by  $S$ , sorting  $S$  in pre-topological order, so that its first node belong to a s.c.c. with no zero-cost entering arcs.

Therefore each iteration has time complexity  $O(m)$ .

Tarjan (1977): implementation in  $O(\min\{n^2, m \log n\})$  time.

## Dual ascent algorithms

A dual ascent algorithm iteratively does the following:

- **Dual iteration:** a **violated primal constraint** is selected (an  $r$ -cut  $S$ ); the corresponding **dual variable  $y_S$**  enters the basis and is increased as much as possible, to activate a **dual constraint** corresponding to a **primal variable  $x_a$**  (an arc);
- **Primal iteration:** the corresponding **primal variable  $x_a$**  enters the basis and it is increased as little as possible in order to repair the infeasibility of the selected **primal constraint** (an  $r$ -cut).

## Dual ascent

When a **dual variable** is increased (**w** improves), how much is “as much as possible”?

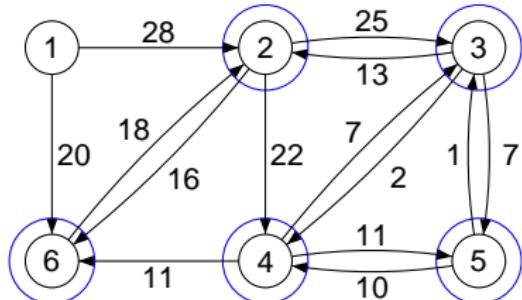
**Dual feasibility** requires  $\sum_{S \subseteq \mathcal{N} \setminus \{r\}: a \in \delta^{in}(S)} y_S \leq c_a \quad \forall a \in \mathcal{A}$ .

Therefore for each node subset  $S$ , the maximum value that the corresponding dual variable  $y_S$  can take is equal to the minimum reduced cost among all the arcs in the  $r$ -cut  $\delta^{in}(S)$ .

When a **primal variable** is increased (**z** worsens), how much is “as little as possible”?

The value 1 is the minimum amount to make at least one more primal constraint  $\sum_{a \in \delta^{in}(S)} x_a \geq 1$  active. It is useless (sub-optimal) to give **primal variables** values larger than 1.

## Edmonds algorithm: an example

Unreachable from 1:  $\{2, 3, 4, 5, 6\}$ .

S.C.C.  $\{2\}\{3\}\{4\}\{5\}\{6\}$   $k = 5$   
S.C.C.<sub>0</sub>  $\{2\}\{3\}\{4\}\{5\}\{6\}$   $k_0 = 5$

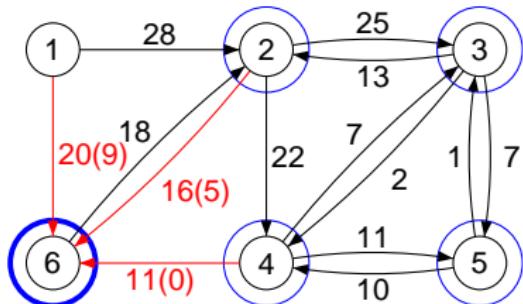
$$k + k_0 = 10.$$

$$w = 0.$$

$$x = 0.$$

$$z = 0.$$

## Example: dual iteration 1



$$x = 0.$$

$$z = 0.$$

Unreachable from 1:  $\{2, 3, 4, 5, 6\}$ .

S.C.C.  $\{2\}\{3\}\{4\}\{5\}\{6\}$   $k = 5$

S.C.C.<sub>0</sub>  $\{2\}\{3\}\{4\}\{5\}\{6\}$   $k_0 = 5$

$$k + k_0 = 10.$$

Scan  $\{2\}\{3\}\{4\}\{5\}\{6\}$

End  $\{2\}\{3\}\{4\}\{5\}\{6\}$

$$S = \{6\}$$

$$\delta(S) = \{(1, 6), (2, 6), (4, 6)\}$$

$$\alpha = 11.$$

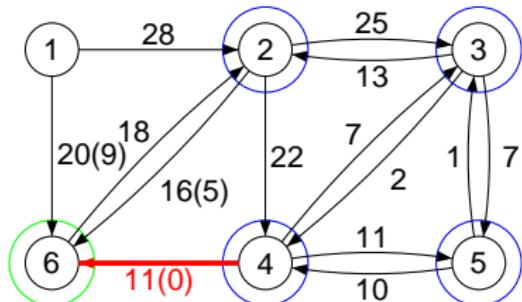
$$w = y_6 = 11.$$

The problem  
○○○○○

The algorithm  
○○○○○

Example  
○○●○○○○

## Example: primal iteration 1



Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C.  $\{2\}\{3\}\{4\}\{5\}\{6\}$   $k = 5$

S.C.C.<sub>0</sub>  $\{2\}\{3\}\{4\}\{5\}$   $k_0 = 4$

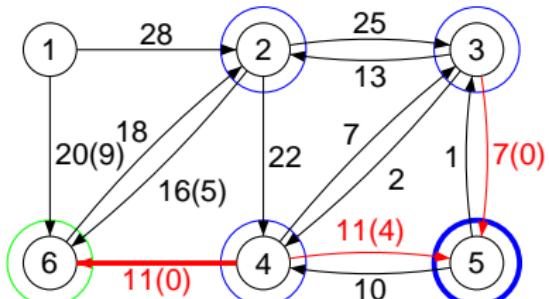
$k + k_0 = 9$ .

$w = y_6 = 11$ .

$x_{46} = 1$ .

$z = 11$ .

## Example: dual iteration 2



$$x_{46} = 1.$$

$$z = c_{46} = 11.$$

Unreachable from 1:  $\{2, 3, 4, 5, 6\}$ .

$$\text{S.C.C. } \{2\}\{3\}\{4\}\{5\}\{6\} \quad k = 5$$

$$\text{S.C.C.}_0 \quad \{2\}\{3\}\{4\}\{5\} \quad k_0 = 4$$

$$k + k_0 = 9.$$

$$\text{Scan } \{2\}\{3\}\{4\}\{6\}\{5\}$$

$$\text{End } \{2\}\{3\}\{6\}\{4\}\{5\}$$

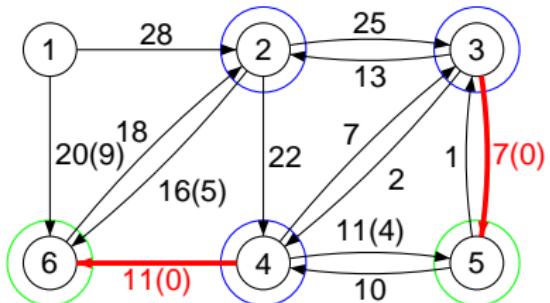
$$S = \{5\}$$

$$\delta(S) = \{(3, 5), (4, 5)\}$$

$$\alpha = 7.$$

$$w = y_6 + y_5 = 18.$$

## Example: primal iteration 2



Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6}  $k = 5$ S.C.C.<sub>0</sub> {2}{3}{4}  $k_0 = 3$ 

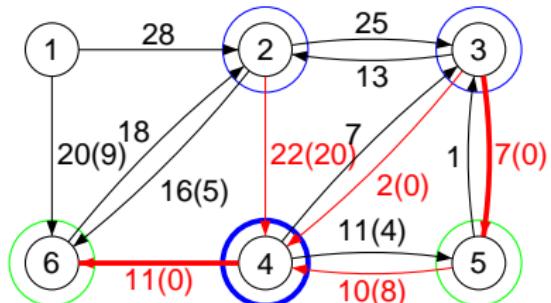
$$k + k_0 = 8.$$

$$w = y_6 + y_5 = 18.$$

$$x_{46} = x_{35} = 1.$$

$$z = c_{46} + c_{35} = 18.$$

## Example: dual iteration 3



$$x_{46} = x_{35} = 1.$$

$$z = c_{46} + c_{35} = 18.$$

Unreachable from 1: {2, 3, 4, 5, 6}.

$$\text{S.C.C. } \{2\}\{3\}\{4\}\{5\}\{6\} \quad k = 5$$

$$\text{S.C.C.}_0 \quad \{2\}\{3\}\{4\} \quad k_0 = 3$$

$$k + k_0 = 8.$$

$$\text{Scan} \quad \{2\}\{3\}\{5\}\{4\}\{6\}$$

$$\text{End} \quad \{2\}\{5\}\{3\}\{6\}\{4\}$$

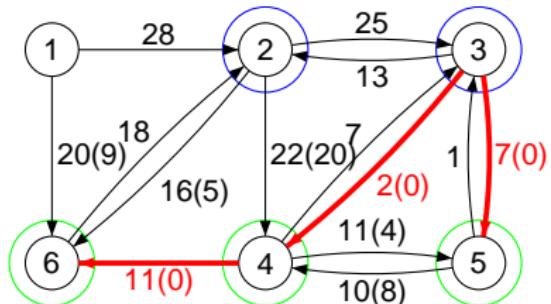
$$S = \{4\}$$

$$\delta(S) = \{(2, 4), (3, 4), (5, 4)\}$$

$$\alpha = 2.$$

$$w = y_6 + y_5 + y_4 = 20.$$

## Example: primal iteration 3



Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6}  $k = 5$   
S.C.C.<sub>0</sub> {2}{3}  $k_0 = 2$

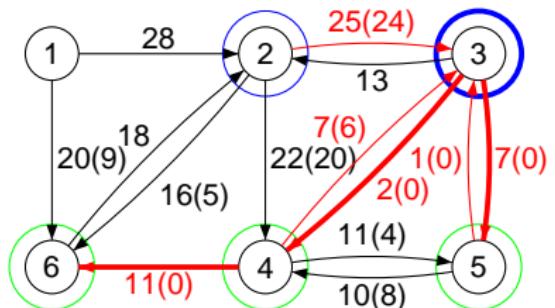
$$k + k_0 = 7.$$

$$w = y_6 + y_5 + y_4 = 20.$$

$$x_{46} = x_{35} = x_{34} = 1.$$

$$z = c_{46} + c_{35} + c_{34} = 20.$$

## Example: dual iteration 4



$$x_{46} = x_{35} = x_{34} = 1.$$

$$Z = c_{46} + c_{35} + c_{34} = 20.$$

Unreachable from 1: {2, 3, 4, 5, 6}.

$$\text{S.C.C.} \quad \{2\}\{3\}\{4\}\{5\}\{6\} \quad k = 5$$

$$\text{S.C.C.}_0 \quad \{2\}\{3\} \quad k_0 = 2$$

$$k + k_0 = 7.$$

$$\text{Scan} \quad \{2\}\{3\}\{4\}\{6\}\{5\}$$

$$\text{End} \quad \{2\}\{6\}\{4\}\{5\}\{3\}$$

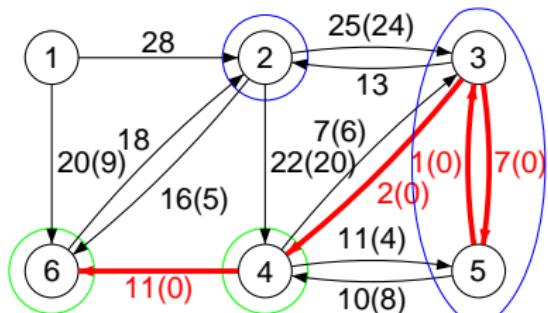
$$S = \{3\}$$

$$\delta(S) = \{(2, 3), (4, 3), (5, 3)\}$$

$$\alpha = 1.$$

$$w = y_6 + y_5 + y_4 + y_3 = 21.$$

## Example: primal iteration 4



Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C.  $\{2\}\{3, 5\}\{4\}\{6\}$   $k = 4$ S.C.C.<sub>0</sub>  $\{2\}\{3, 5\}$   $k_0 = 2$ 

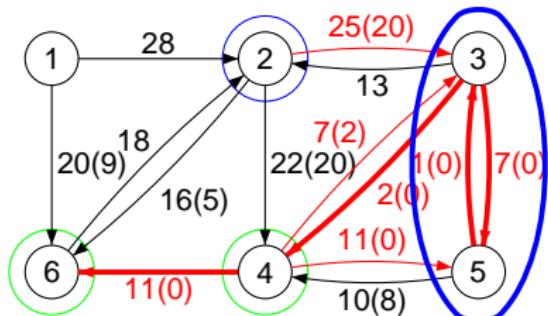
$$k + k_0 = 6.$$

$$w = y_6 + y_5 + y_4 + y_3 = 21.$$

$$x_{46} = x_{35} = x_{34} = x_{53} = 1.$$

$$z = c_{46} + c_{35} + c_{34} + c_{53} = 21.$$

## Example: dual iteration 5



Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 5}{4}{6}  $k = 4$ S.C.C.<sub>0</sub> {2}{3, 5}  $k_0 = 2$ 

$$k + k_0 = 6.$$

Scan {2}{3, 5}{4}{6}

End {2}{6}{4}{3, 5}

$$S = \{3, 5\}$$

$$\delta(S) = \{(2, 3), (4, 3), (4, 5)\}$$

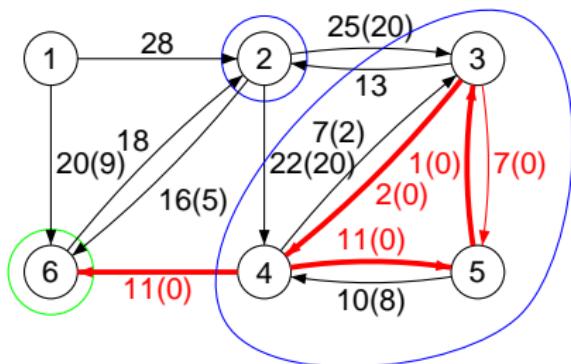
$$\alpha = 4.$$

$$w = y_6 + y_5 + y_4 + y_3 + y_{35} = 25.$$

$$x_{46} = x_{35} = x_{34} = x_{53} = 1.$$

$$z = c_{46} + c_{35} + c_{34} + c_{53} = 21.$$

## Example: primal iteration 5



Unreachable from 1: {2, 3, 4, 5, 6}.

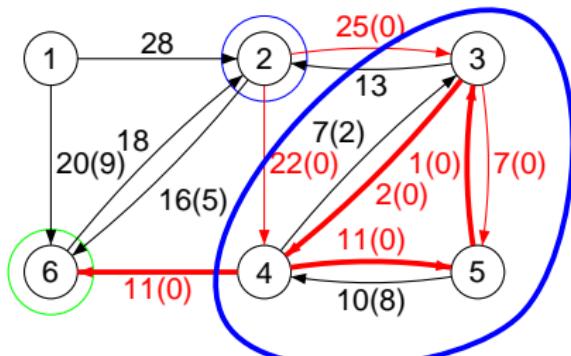
S.C.C. {2}{3, 4, 5}{6}  $k = 3$ S.C.C.<sub>0</sub> {2}{3, 4, 5}  $k_0 = 2$  $k + k_0 = 5.$  $w = y_6 + y_5 + y_4 + y_3 + y_{35} = 25.$ 

$$x_{46} = x_{34} = x_{53} = x_{45} = 1.$$

$$z = c_{46} + c_{34} + c_{53} + c_{45} = 25.$$

$x_{35} = 0$  is replaced by  $x_{45} = 1$

## Example: dual iteration 6



$$x_{46} = x_{34} = x_{53} = x_{45} = 1.$$

$$Z = c_{46} + c_{34} + c_{53} + c_{45} = 25.$$

Either  $x_{23}$  or  $x_{24}$  enters the basis.

Unreachable from 1: {2, 3, 4, 5, 6}.

$$\text{S.C.C. } \{2\}\{3, 4, 5\}\{6\} \quad k = 3$$

$$\text{S.C.C.}_0 \quad \{2\}\{3, 4, 5\} \quad k_0 = 2$$

$$k + k_0 = 5.$$

$$\text{Scan} \quad \{2\}\{3, 4, 5\}\{6\}$$

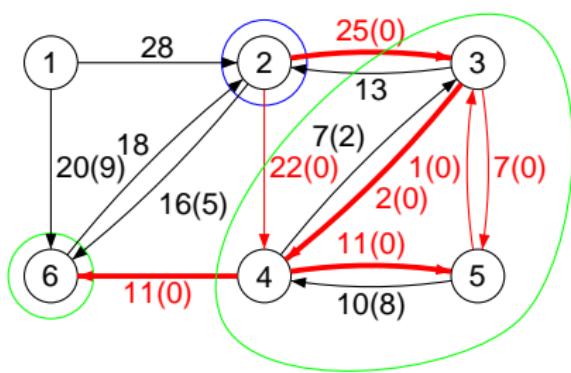
$$\text{End} \quad \{2\}\{6\}\{3, 4, 5\}$$

$$S = \{3, 4, 5\}$$

$$\delta(S) = \{(2, 3), (2, 4)\}$$

$$\alpha = 20.$$

$$W = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} = 45.$$

Option 1:  $x_{23}$  enters the basis

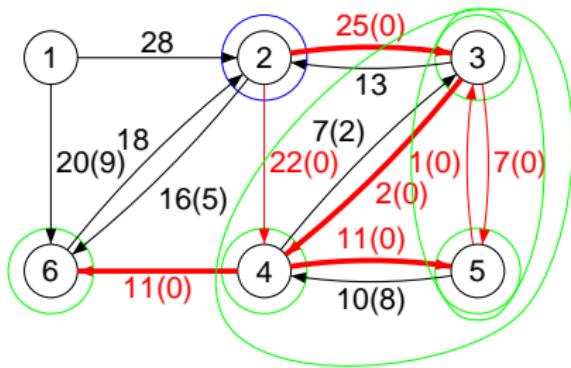
$$x_{46} = x_{34} = x_{45} = x_{23} = 1.$$
$$Z = c_{46} + c_{34} + c_{45} + c_{23} = 49.$$

Wrong!

Why?

$$x_{46} = x_{34} = x_{35} = x_{23} = 1.$$
$$Z = c_{46} + c_{34} + c_{35} + c_{23} = 45.$$

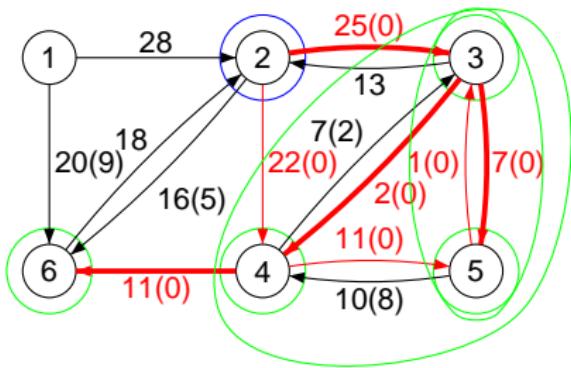
Right!

Option 1:  $x_{23}$  enters the basis

$$x_{46} = x_{34} = x_{45} = x_{23} = 1. \\ Z = c_{46} + c_{34} + c_{45} + c_{23} = 49.$$

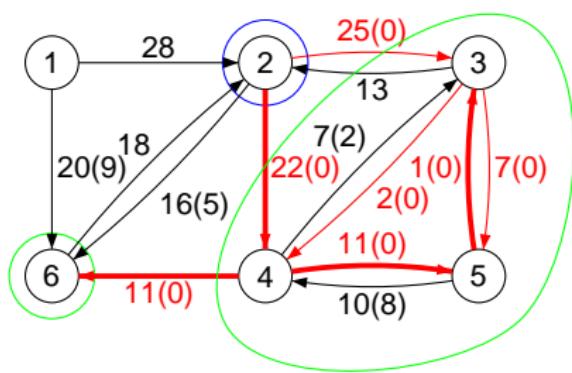
Wrong!

Because  $y_{35} = 4$  and dual C.S.C. impose  $y_{35}(x_{23} + x_{43} + x_{45} - 1) = 0$



$$x_{46} = x_{34} = x_{35} = x_{23} = 1. \\ Z = c_{46} + c_{34} + c_{35} + c_{23} = 45.$$

Right!

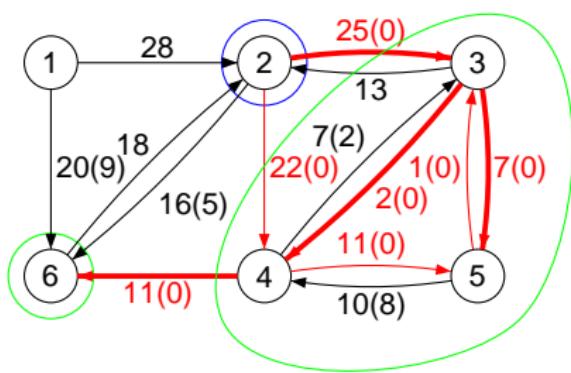
Option 2:  $x_{24}$  enters the basis

$$x_{46} = x_{24} = x_{45} = x_{53} = 1.$$

$$Z = c_{46} + c_{24} + c_{45} + c_{53} = 45.$$

$x_{34}$  is replaced by  $x_{24}$ .

## Example: primal iteration 6



Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 4, 5}{6}  $k = 3$ S.C.C.<sub>0</sub> {2}  $k_0 = 1$ 

$$k + k_0 = 4.$$

$$w = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} \\ = 45.$$

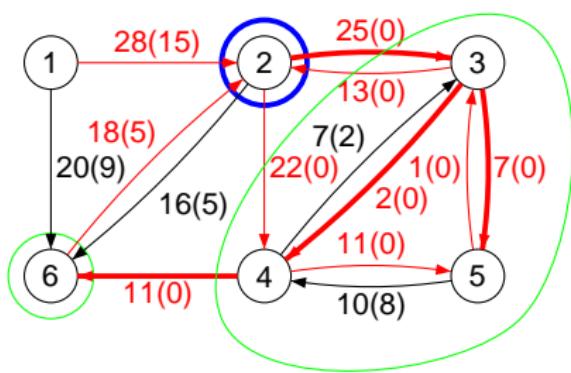
$$x_{46} = x_{34} = x_{35} = x_{23} = 1.$$

$$z = c_{46} + c_{34} + c_{35} + c_{23} = 45.$$

We choose option 1.

## Example: dual iteration 7

Unreachable from 1: {2, 3, 4, 5, 6}.



$$x_{46} = x_{34} = x_{35} = x_{23} = 1.$$

$$z = c_{46} + c_{34} + c_{35} + c_{23} = 45.$$

$$\text{S.C.C. } \{2\} \{3, 4, 5\} \{6\} \quad k = 3$$

$$\text{S.C.C.}_0 \quad \{2\} \quad k_0 = 1$$

$$k + k_0 = 4.$$

$$\text{Scan} \quad \{2\} \{3, 4, 5\} \{6\}$$

$$\text{End} \quad \{6\} \{3, 4, 5\} \{2\}$$

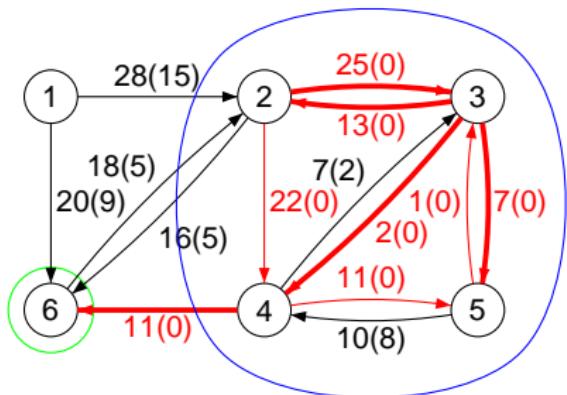
$$S = \{2\}$$

$$\delta(S) = \{(1, 2), (3, 2), (6, 2)\}$$

$$\alpha = 13.$$

$$w = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} + y_2 = 58.$$

## Example: primal iteration 7



Unreachable from 1: {2, 3, 4, 5, 6}.

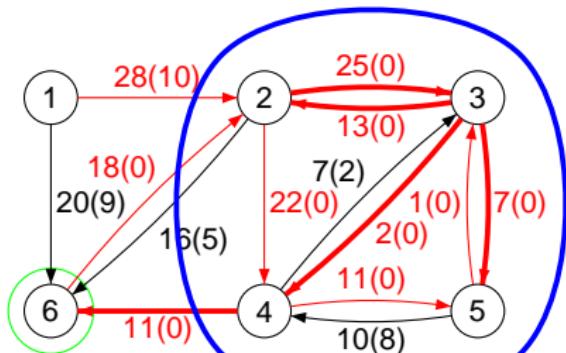
S.C.C.  $\{2, 3, 4, 5\} \{6\}$   $k = 2$ S.C.C.<sub>0</sub>  $\{2, 3, 4, 5\}$   $k_0 = 1$  $k + k_0 = 3$ .

$$w = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} + y_2 = 58.$$

$$x_{46} = x_{34} = x_{35} = x_{23} = x_{32} = 1.$$

$$z = c_{46} + c_{34} + c_{35} + c_{23} + c_{32} = 58.$$

## Example: dual iteration 8



$$x_{46} = x_{34} = x_{35} = x_{23} = x_{32} = 1.$$

$$Z = c_{46} + c_{34} + c_{35} + c_{23} + c_{32} = 58.$$

Unreachable from 1: {2, 3, 4, 5, 6}.

$$S.C.C. \quad \{2, 3, 4, 5\} \{6\} \quad k = 2$$

$$S.C.C. \quad \{2, 3, 4, 5\} \quad k_0 = 1$$

$$k + k_0 = 3.$$

$$Scan \quad \{2, 3, 4, 5, 6\} \{6\}$$

$$End \quad \{6\} \{2, 3, 4, 5\}$$

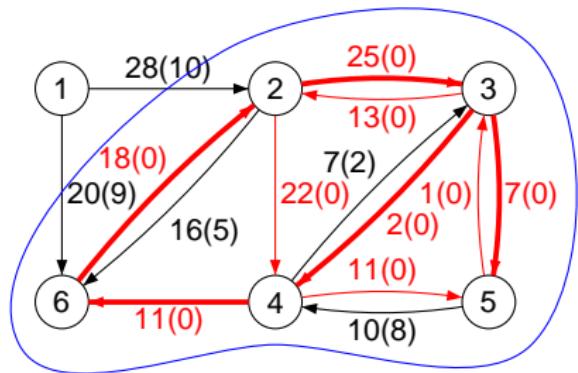
$$S = \{2, 3, 4, 5\}$$

$$\delta(S) = \{(1, 2), (6, 2)\}$$

$$\alpha = 5.$$

$$W = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} + y_2 + y_{2345} = 63.$$

## Example: primal iteration 8



Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2, 3, 4, 5, 6}  $k = 1$ S.C.C.<sub>0</sub> {2, 3, 4, 5, 6}  $k_0 = 1$  $k + k_0 = 2.$ 

$$w = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} + y_2 + y_{2345} = 63.$$

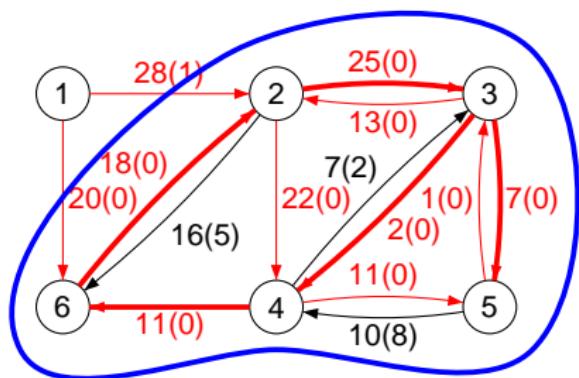
$$x_{46} = x_{34} = x_{35} = x_{23} = x_{62} = 1.$$

$$z = c_{46} + c_{34} + c_{35} + c_{23} + c_{62} = 63.$$

 $x_{62}$  replaces  $x_{32}$ .

## Example: dual iteration 9

Unreachable from 1: {2, 3, 4, 5, 6}.



$$x_{46} = x_{34} = x_{35} = x_{23} = x_{62} = 1.$$

$$z = c_{46} + c_{34} + c_{35} + c_{23} + c_{62} = 63.$$

S.C.C. {2, 3, 4, 5, 6}  $k = 1$ S.C.C.<sub>0</sub> {2, 3, 4, 5, 6}  $k_0 = 1$ 

$$k + k_0 = 2.$$

Scan {2, 3, 4, 5, 6}

End {2, 3, 4, 5, 6}

$$S = \{2, 3, 4, 5, 6\}$$

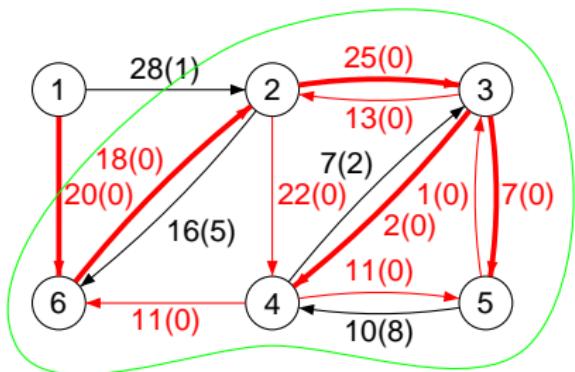
$$\delta(S) = \{(1, 2), (1, 6)\}$$

$$\alpha = 9.$$

$$w = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} +$$

$$+ y_2 + y_{2345} + y_{23456} = 72.$$

## Example: primal iteration 9



Unreachable from 1: {}.

S.C.C.

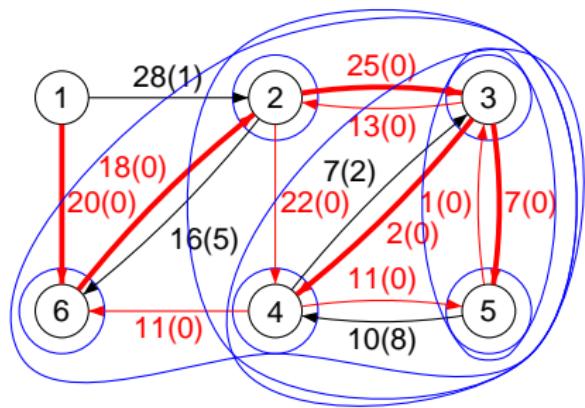
 $k = 0$ S.C.C.<sub>0</sub> $k_0 = 0$  $k + k_0 = 0.$ **Algorithm termination.**

$$w = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} + y_2 + y_{2345} + y_{23456} = 72.$$

$$x_{34} = x_{35} = x_{23} = x_{62} = x_{16} = 1. \\ z = c_{34} + c_{35} + c_{23} + c_{62} + c_{16} = 72.$$

 $x_{16}$  replaces  $x_{46}$ .

## Example: optimal solution



$$\begin{aligned}
 y_6 &= 11 \\
 y_5 &= 7 \\
 y_4 &= 2 \\
 y_3 &= 1 \\
 y_{35} &= 4 \\
 y_{345} &= 20 \\
 y_2 &= 13 \\
 y_{2345} &= 5 \\
 y_{23456} &= 9
 \end{aligned}$$

$$x_{34} = x_{35} = x_{23} = x_{62} = x_{16} = 1.$$

$$z = c_{34} + c_{35} + c_{23} + c_{62} + c_{16} = 72.$$

$$\begin{aligned}
 w = y_6 + y_5 + y_4 + y_3 + y_{35} + y_{345} + \\
 + y_2 + y_{2345} + y_{23456} = 72.
 \end{aligned}$$

The reduced cost of each arc is the difference between the original cost and the sum of all **dual variables** corresponding to the **s.c.c.** reached by the arc.