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Definitions

A digraph D = (N ,A) is a spanning rooted out-arborescence
(r -arborescence, for short) if and only if there is a unique directed
path from its root node r ∈ N to all the other nodes in N\{r} and no
directed path from any node in N\{r} to r .
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The problem

Problem data:

• a digraph D = (N ,A),

• a node r ∈ N ,

• a cost function c : A → ℜ+.

Problem (Minimum Cost Spanning r -Arborescence Problem).
Find a spanning r -arborescence of minimum cost.
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Counter-example

The algorithms for the MSTP do not work.
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A mathematical programming model

min z =
∑

a∈A

caxa

s.t.
∑

a∈δin(S)

xa ≥ 1 ∀S ⊆ N\{r}

xa ∈ {0, 1} ∀a ∈ A

Integrality conditions are redundant.
We call r -cuts all arc subsets δin(S) corresponding to all node
subsets S not containing r .
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The dual model

min z =
∑

a∈A

caxa

s.t.
∑

a∈δin(S)

xa ≥ 1 ∀S ⊆ N\{r}

xa ≥ 0 ∀a ∈ A

This linear program has a dual.

max w =
∑

S⊆N\{r}

yS

s.t.
∑

S⊆N\{r}:a∈δin(S)

yS ≤ ca ∀a ∈ A

yS ≥ 0 ∀S ⊆ N\{r}
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Complementary slackness conditions

Primal C.S.C.: xa(ca −
∑

S⊆N\{r}:a∈δin(S) yS) = 0 ∀a ∈ A

Dual C.S.C.: yS(
∑

a∈δin(S) xa − 1) = 0 ∀S ⊆ N\{r}

The initial primal solution xa = 0 ∀a ∈ A is primal infeasible (and
super-optimal).
The corresponding dual solution yS = 0 ∀S ⊆ N\{r} is dual feasible
(and sub-optimal).
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Edmonds algorithm

This algorithm is due to Chu and Liu (1965), Edmonds (1967), Bock
(1971).

Let us define A0 = {a ∈ A : ca = 0}. If A0 contains a spanning
r -arborescence B, then B is a minimum cost spanning
r -arborescence. Otherwise there is a s.c.c. K in the digraph (N ,A0)
such that

• r 6∈ K

• ca > 0 ∀a ∈ δin(K ).

Let us define α = min{ca : a ∈ δin(K )}. Modify the costs in this way:
c′

a := ca − α ∀a ∈ δin(K ) and c′
a := ca otherwise. Then search for a

minimum cost spanning r -arborescence B with respect to the new
cost function c′.
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Edmonds algorithm: correctness

It is always possible to choose B such that it contains only one arc
entering K , since K is strongly connected.

If |B ∩ δin(K )| ≥ 2, then there exists a redundant arc a ∈ B ∩ δin(K )
such that B\{a} ∪ A0 still contains an r -arborescence B′, with
c′(B′) ≤ c′(B)− c′

a ≤ c′(B).

The optimal r -arborescence B chosen in this way is also optimal with
respect to the original cost function c. For each other r -arborescence
B′, we have c(B′) ≥ c(B):

• c(B′) = c′(B′) + α|B′ ∩ δin(K )| by definition of the cost update
procedure;

• |B′ ∩ δin(K )| ≥ 1 because of B′ is a spanning r -arborescence;

• c′(B′) ≥ c′(B), because B is optimal with respect to the modified
costs c′;

• c′(B) + α = c(B), because B contains only one arc entering K .
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Edmonds algorithm: complexity (1)

The algorithm has complexity O(nm), because it requires at most 2n
iterations and each of them has complexity O(m).

Let k be the number of s.c.c. in the digraph (N ,A0). Let k0 be the
number of s.c.c. of (N ,A0) with no zero-cost entering arcs.

At each iteration k + k0 decreases by at least 1: if K remains a s.c.c.,
it now has at least one entering arc with zero cost, hence k0

decreases; if K is merged with another s.c.c., then k decreases.

Initially k = n − 1 and k0 = n − 1. Therefore the iterations are at most
2(n − 1).
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Edmonds algorithm: complexity (2)

In O(m) time it is possible to compute the set S of nodes that are not
reachable from r in (N ,A0).
In O(m) time it is possible find the s.c.c. in the subgraph induced by
S, sorting S in pre-topological order, so that its first node belong to a
s.c.c. with no zero-cost entering arcs.

Therefore each iteration has time complexity O(m).

Tarjan (1977): implementation in O(min{n2,m log n}) time.
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Dual ascent algorithms

A dual ascent algorithm iteratively does the following:

• Dual iteration: a violated primal constraint is selected (an r -cut
S); the corresponding dual variable yS enters the basis and is
increased as much as possible, to activate a dual constraint
corresponding to a primal variable xa (an arc);

• Primal iteration: the corresponding primal variable xa enters the
basis and it is increased as little as possible in order to repair the
infeasibility of the selected primal constraint (an r -cut).
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Dual ascent

When a dual variable is increased (w improves), how much is “as
much as possible”?

Dual feasibility requires
∑

S⊆N\{r}:a∈δin(S) yS ≤ ca ∀a ∈ A.
Therefore for each node subset S, the maximum value that the
corresponding dual variable yS can take is equal to the minimum
reduced cost among all the arcs in the r -cut δin(S).

When a primal variable is increased (z worsens), how much is “as
little as possible”?

The value 1 is the minimum amount to make at least one more primal
constraint

∑
a∈δin(S) xa ≥ 1 active. It is useless (sub-optimal) to give

primal variables values larger than 1.
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Edmonds algorithm: an example

1 2 3

6 4 5
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x = 0.
z = 0.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3}{4}{5}{6} k0 = 5

k + k0 = 10.

w = 0.
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Example: dual iteration 1

1 2 3

6 4 5

28

20(9)

25

22
16(5)

13

2
7

7
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11(0)

1
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18

x = 0.
z = 0.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3}{4}{5}{6} k0 = 5

k + k0 = 10.

Scan {2}{3}{4}{5}{6}

End {2}{3}{4}{5}{6}

S = {6}
δ(S) = {(1, 6), (2, 6), (4, 6)}
α = 11.
w = y6 = 11.
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Example: primal iteration 1

1 2 3

6 4 5

28

20(9)

25

22
16(5)

13

2
7

7

11
11(0)

1

10

18

x46 = 1.
z = 11.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3}{4}{5} k0 = 4

k + k0 = 9.

w = y6 = 11.
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Example: dual iteration 2

1 2 3

6 4 5

28

20(9)

25

22
16(5)

13

2
7(0)

7

11(4)

11(0)

1

10

18

x46 = 1.
z = c46 = 11.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3}{4}{5} k0 = 4

k + k0 = 9.

Scan {2}{3}{4}{6}{5}

End {2}{3}{6}{4}{5}

S = {5}
δ(S) = {(3, 5), (4, 5)}
α = 7.
w = y6 + y5 = 18.
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Example: primal iteration 2

1 2 3

6 4 5

28

20(9)

25

22
16(5)

13

2
7(0)

7

11(4)

11(0)

1

10

18

x46 = x35 = 1.
z = c46 + c35 = 18.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3}{4} k0 = 3

k + k0 = 8.

w = y6 + y5 = 18.
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Example: dual iteration 3

1 2 3

6 4 5

28

20(9)

25

22(20)
16(5)

13

2(0)
7(0)

7

11(4)

11(0)

1

10(8)

18

x46 = x35 = 1.
z = c46 + c35 = 18.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3}{4} k0 = 3

k + k0 = 8.

Scan {2}{3}{5}{4}{6}

End {2}{5}{3}{6}{4}

S = {4}
δ(S) = {(2, 4), (3, 4), (5, 4)}
α = 2.
w = y6 + y5 + y4 = 20.
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Example: primal iteration 3

1 2 3

6 4 5

28

20(9)

25

22(20)
16(5)

13

2(0)
7(0)

7

11(4)

11(0)

1

10(8)

18

x46 = x35 = x34 = 1.
z = c46 + c35 + c34 = 20.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3} k0 = 2

k + k0 = 7.

w = y6 + y5 + y4 = 20.
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Example: dual iteration 4

1 2 3

6 4 5

28

20(9)

25(24)

22(20)
16(5)

13

2(0)
7(0)

7(6)

11(4)

11(0)

1(0)

10(8)

18

x46 = x35 = x34 = 1.
z = c46 + c35 + c34 = 20.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3}{4}{5}{6} k = 5

S.C.C.0 {2}{3} k0 = 2

k + k0 = 7.

Scan {2}{3}{4}{6}{5}

End {2}{6}{4}{5}{3}

S = {3}
δ(S) = {(2, 3), (4, 3), (5, 3)}
α = 1.
w = y6 + y5 + y4 + y3 = 21.
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Example: primal iteration 4

1 2 3

6 4 5

28

20(9)

25(24)

22(20)
16(5)

13

2(0)
7(0)

7(6)

11(4)

11(0)

1(0)

10(8)

18

x46 = x35 = x34 = x53 = 1.
z = c46 + c35 + c34 + c53 = 21.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 5}{4}{6} k = 4

S.C.C.0 {2}{3, 5} k0 = 2

k + k0 = 6.

w = y6 + y5 + y4 + y3 = 21.
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Example: dual iteration 5

1 2 3

6 4 5

28

20(9)

25(20)

22(20)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x35 = x34 = x53 = 1.
z = c46 + c35 + c34 + c53 = 21.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 5}{4}{6} k = 4

S.C.C.0 {2}{3, 5} k0 = 2

k + k0 = 6.

Scan {2}{3, 5}{4}{6}

End {2}{6}{4}{3, 5}

S = {3, 5}
δ(S) = {(2, 3), (4, 3), (4, 5)}
α = 4.
w = y6 + y5 + y4 + y3 + y35 = 25.
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Example: primal iteration 5

1 2 3

6 4 5

28

20(9)

25(20)

22(20)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x34 = x53 = x45 = 1.
z = c46 + c34 + c53 + c45 = 25.

x35 = 0 is replaced by x45 = 1

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 4, 5}{6} k = 3

S.C.C.0 {2}{3, 4, 5} k0 = 2

k + k0 = 5.

w = y6 + y5 + y4 + y3 + y35 = 25.
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Example: dual iteration 6

1 2 3

6 4 5

28

20(9)

25(0)

22(0)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x34 = x53 = x45 = 1.
z = c46 + c34 + c53 + c45 = 25.

Either x23 or x24 enters the basis.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 4, 5}{6} k = 3

S.C.C.0 {2}{3, 4, 5} k0 = 2

k + k0 = 5.

Scan {2}{3, 4, 5}{6}

End {2}{6}{3, 4, 5}

S = {3, 4, 5}
δ(S) = {(2, 3), (2, 4)}
α = 20.
w = y6 + y5 + y4 + y3 + y35 + y345

= 45.



The problem The algorithm Example

Option 1: x23 enters the basis

1 2 3

6 4 5

28

20(9)

25(0)

22(0)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x34 = x45 = x23 = 1.
z = c46 + c34 + c45 + c23 = 49.

Wrong!

1 2 3

6 4 5

28

20(9)

25(0)

22(0)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x34 = x35 = x23 = 1.
z = c46 + c34 + c35 + c23 = 45.

Right!

Why?
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Option 1: x23 enters the basis

1 2 3

6 4 5

28

20(9)

25(0)

22(0)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x34 = x45 = x23 = 1.
z = c46 + c34 + c45 + c23 = 49.

Wrong!

1 2 3

6 4 5

28

20(9)

25(0)

22(0)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x34 = x35 = x23 = 1.
z = c46 + c34 + c35 + c23 = 45.

Right!

Because y35 = 4 and dual C.S.C. impose y35(x23 + x43 + x45 − 1) = 0
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Option 2: x24 enters the basis

1 2 3

6 4 5

28

20(9)

25(0)

22(0)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x24 = x45 = x53 = 1.
z = c46 + c24 + c45 + c53 = 45.

x34 is replaced by x24.
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Example: primal iteration 6

1 2 3

6 4 5

28

20(9)

25(0)

22(0)
16(5)

13

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18

x46 = x34 = x35 = x23 = 1.
z = c46 + c34 + c35 + c23 = 45.

We choose option 1.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 4, 5}{6} k = 3

S.C.C.0 {2} k0 = 1

k + k0 = 4.

w = y6 + y5 + y4 + y3 + y35 + y345

= 45.
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Example: dual iteration 7

1 2 3

6 4 5

28(15)

20(9)

25(0)

22(0)
16(5)

13(0)

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18(5)

x46 = x34 = x35 = x23 = 1.
z = c46 + c34 + c35 + c23 = 45.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2}{3, 4, 5}{6} k = 3

S.C.C.0 {2} k0 = 1

k + k0 = 4.

Scan {2}{3, 4, 5}{6}

End {6}{3, 4, 5}{2}

S = {2}
δ(S) = {(1, 2), (3, 2), (6, 2)}
α = 13.

w = y6 + y5 + y4 + y3 + y35 + y345+
+y2 = 58.
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Example: primal iteration 7

1 2 3

6 4 5

28(15)

20(9)

25(0)

22(0)
16(5)

13(0)

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18(5)

x46 = x34 = x35 = x23 = x32 = 1.
z = c46+c34+c35 +c23+c32 = 58.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2, 3, 4, 5}{6} k = 2

S.C.C.0 {2, 3, 4, 5} k0 = 1

k + k0 = 3.

w = y6 + y5 + y4 + y3 + y35 + y345+
+y2 = 58.
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Example: dual iteration 8

1 2 3

6 4 5

28(10)

20(9)

25(0)

22(0)
16(5)

13(0)

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18(0)

x46 = x34 = x35 = x23 = x32 = 1.
z = c46+c34+c35 +c23+c32 = 58.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2, 3, 4, 5}{6} k = 2

S.C.C.0 {2, 3, 4, 5} k0 = 1

k + k0 = 3.

Scan {2, 3, 4, 5, 6}{6}

End {6}{2, 3, 4, 5}

S = {2, 3, 4, 5}
δ(S) = {(1, 2), (6, 2)}
α = 5.
w = y6 + y5 + y4 + y3 + y35 + y345+

+y2 + y2345 = 63.
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Example: primal iteration 8

1 2 3

6 4 5

28(10)

20(9)

25(0)

22(0)
16(5)

13(0)

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18(0)

x46 = x34 = x35 = x23 = x62 = 1.
z = c46+c34+c35 +c23+c62 = 63.

x62 replaces x32.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2, 3, 4, 5, 6} k = 1

S.C.C.0 {2, 3, 4, 5, 6} k0 = 1

k + k0 = 2.

w = y6 + y5 + y4 + y3 + y35 + y345+
+y2 + y2345 = 63.
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Example: dual iteration 9

1 2 3

6 4 5

28(1)

20(0)

25(0)

22(0)
16(5)

13(0)

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18(0)

x46 = x34 = x35 = x23 = x62 = 1.
z = c46+c34+c35 +c23+c62 = 63.

Unreachable from 1: {2, 3, 4, 5, 6}.

S.C.C. {2, 3, 4, 5, 6} k = 1

S.C.C.0 {2, 3, 4, 5, 6} k0 = 1

k + k0 = 2.

Scan {2, 3, 4, 5, 6}

End {2, 3, 4, 5, 6}

S = {2, 3, 4, 5, 6}
δ(S) = {(1, 2), (1, 6)}
α = 9.

w = y6 + y5 + y4 + y3 + y35 + y345+
+y2 + y2345 + y23456 = 72.
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Example: primal iteration 9

1 2 3

6 4 5

28(1)

20(0)

25(0)

22(0)
16(5)

13(0)

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18(0)

x34 = x35 = x23 = x62 = x16 = 1.
z = c34+c35+c23 +c62+c16 = 72.

x16 replaces x46.

Unreachable from 1: {}.

S.C.C. k = 0

S.C.C.0 k0 = 0

k + k0 = 0.
Algorithm termination.

w = y6 + y5 + y4 + y3 + y35 + y345+
+y2 + y2345 + y23456 = 72.
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Example: optimal solution

1 2 3

6 4 5

28(1)

20(0)

25(0)

22(0)
16(5)

13(0)

2(0)
7(0)

7(2)

11(0)

11(0)

1(0)

10(8)

18(0)

x34 = x35 = x23 = x62 = x16 = 1.
z = c34+c35+c23 +c62+c16 = 72.

y6 = 11
y5 = 7
y4 = 2
y3 = 1
y35 = 4
y345 = 20
y2 = 13
y2345 = 5
y23456 = 9

w = y6 + y5 + y4 + y3 + y35 + y345+
+y2 + y2345 + y23456 = 72.

The reduced cost of each arc is the difference between the original
cost and the sum of all dual variables corresponding to the s.c.c.
reached by the arc.
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