
Scheduling: job shops
Logistics

Giovanni Righini

Job shops

In job shop models each job must undergo a given sequence of
operations, but different jobs may require different sequences.

Most studies concentrate on makespan minimization, which is
computationally difficult.

Two machines

J2||Cmax : some jobs (subset J1,2) must be processed on machine 1
first, some others (subset J2,1) on machine 2 first.

The problem can be reduced to F2||Cmax .

All jobs in J1,2 are scheduled on machine 1 before all jobs in J2,1 and
vice versa on machine 2.

Then two instances of F2||Cmax arise, one for jobs in J1,2 with
machine 1 first and machine 2 second and the other for jobs in J2,1

with machine 2 first and machine 1 second.

These are solved by SPT (1)− LPT (2) sequences for each of the two
sets.

This is one of the few job shop problems with a polynomial time
optimization algorithm.

Disjunctive graph

Jm||Cmax .

Consider a digraph G = (N,A ∪ B) with
• a node (i, j) ∈ N for each operation (machine i processes job j);
• conjunctive arcs in A representing the routes of the jobs;
• disjunctive bi-directional arcs in B connecting pairs of jobs to be

processed on the same machine;
• a cost pij for each arc outgoing from (i, j);
• A dummy source U and a dummy sink V connected to the first

and last operations of each job with zero cost conjunctive arcs.

A feasible solution corresponds to the selection of an orientation for
each disjunctive arc so that the resulting graph is acyclic.

The makespan is the cost of the longest U − V path in the resulting
acyclic graph.

MIP formulation

minimize Cmax

s.t. thj − tij ≥ pij ∀(i, j) ≺ (k , j) ∈ A

Cmax − tij ≥ pij ∀(i, j) ∈ N

tij − til ≥ pil ∨ til − tij ≥ pij ∀(i, j), (i, l) ∈ N, j 6= l

tij ≥ 0 ∀(i, j) ∈ N

where tij indicates the starting time of (i, j).

Owing to the disjunctive constraints this model is called disjunctive
programming formulation.

Active schedules

A feasible schedule is called active if there is no other feasible
schedule such that at least one operation is completed earlier and no
operation is completed later.

It can be proven that there exists an optimal schedule that is active.

Hence, a common branching technique in BnB algorithms for
Jm||Cmax is designed to generate all possible active schedules.

Ω: set of schedulable jobs.
rij : earliest start time for each (i, j) ∈ Ω.
Ω′: subset of Ω.

Branching

1. Set Ω as the set of the first operations of the jobs.

2. Set rij := 0 for all (i, j) ∈ Ω.

3. Compute
t(Ω) = min

(i,j)∈Ω
{rij + pij}

and let i∗ be the machine where the minimum is achieved.

4. Set Ω′ as the set of all (i∗, j) ∈ Ω such that ri∗,j < t(Ω).

5. For each (i∗, j) ∈ Ω′, extend the schedule with (i∗, j).

6. Delete (i∗, j) from Ω, insert its successor in Ω and repeat from
step 3.

This branching method generated all active schedules.

Bounding

A trivial lower bound Cmax is the length of the critical U − V path in
the current digraph.

A tighter lower bound can be computed for each machine i:
• assume all other machines can violate disjunctions (i.e. they can

process different operations at the same time);
• compute the earliest starting time rij for all operations on machine

i (the longest path from U to (i, j) in the current digraph);
• compute the length ∆ij of the longest path from (i, j) to V in the

current digraph;
• set a due date dij = Cmax −∆ij + pij ;
• solve 1|rij |Lmax (NP-hard);
• temporarily orient the disjunctive arcs accordingly and recompute

Cmax .

The shifting bottleneck heuristic

At each iteration a machine is selected and its disjunctive arcs are
fixed.

M0: set of machines already fixed;
M: set of all machines.

Delete all disjunctive arcs of machines in M − M0.

Compute the critical path. Let Cmax (M0) be its length.

The shifting bottleneck heuristic

For each (i, j) with i 6∈ M0 set the release date and the due date,
according to the critical path on the digraph.

For each machine i 6∈ M0, solve a 1|rj |Lmax (NP-hard) and let Lmax (i)
its optimal value.

The machine with maximum value of Lmax (i) (the bottleneck) is
selected and its disjunctive arcs are fixed accordingly.

Before starting another iteration, machines in M0 are tentatively
rescheduled: for each machine k ∈ M0, its disjunctive arcs are
temporarily deleted and 1|rj |Lmax is solved. If a shorter makespan is
found, then the solution is updated.

Delayed precedence constraints

When solving the 1|rj |Lmax subproblems, it is necessary to also
include delayed precedence constraints, generated by teh disjunctive
arcs fixed in the machines in M0.

A certain delay is required between the end of an operation and the
beginning of another.

Disregarding these constraints, the shifting bottleneck heuristic could
produce infeasible solutions containing cycles.

Delayed precedence constraints make the 1|rj |Lmax subproblem
instances harder.

