
Scheduling: flow shops
Logistics

Giovanni Righini

Flow shops

Flow shop models arise when jobs must undergo a given sequence
of operations in the same order.
• Flow shops with unlimited intermediate storage
• Flow shops with limited intermediate storage

Flexible flow shops arise when a set of parallel machines are
available for each stage.

Most studies concentrate on makespan minimization, which is
computationally difficult.

The other classical objectives are even harder.

Permutation flow shops

Fm||Cmax .

There exists an optimal solution in which the jobs are processed in
the same order on the first two machines and on the last two
machines.

When sequence changes are allowed and there are 4 or more
machines, then it may be optimal to change the order of the jobs.

Problems in which it is explicitly forbidden to change the sequence
are called permutation flow shops.

Non-permutation flow shops are significantly harder.

Makespan minimization

Given a permutation 1, 2, . . . , n of the jobs for an m machine flow
shop, completion times can be computed recursively:

Ci1 =

i∑

l=1

pl1

C1j =

j∑

k=1

p1k

Cij = max{Ci−1 j ,Ci j−1}+ pij

The makespan is the cost of the critical path from node (1, 1) to node
(m, n) on a grid graph with
• a node for each (i, j) pair,
• horizontal arcs from (i, j − 1) to (i, j),
• vertical arcs from (i − 1, j) to (i, j)
• weights pij associated with the nodes.

Permutation n, n − 1, . . . , 2, 1 yields the same makespan as
1, 2, . . . , n − 1, n.

Two machines: Johnson’s rule

Consider F2||Cmax .

Johnson’s rule. Partition the jobs into two sets:
• Set I : jobs with p1j < p2j

• Set II: jobs with p1j > p2j

Jobs with p1j = p2j can be put in either set, arbitarily.

Schedule the jobs in Set I first, according to the SPT rule. Then
schedule the jobs in Set II, according to the LPT rule. Ties can be
broken arbitrarily.

The resulting SPT(1)-LPT(2) schedule is optimal (the rule is sufficient
but not necessary).

More than 2 machines: MIP formulation

Fm|prmu|Cmax is hard from m ≥ 3. It can be formulated as a MIP
model.

Variables. A binary variable xjk indicates whether job j is in position k
in the permutation.

A variable Iik represents the idle time on machine i between the job in
position k and the next one.

A variable Wik represents the waiting time of the job in position k
between machine i and the next one.

Objective. The makespan is minimized by minimizing the total idle
time on the last machine:

minimize Cmax =

m−1∑

i=1

n∑

j=1

pijxj1 +

n−1∑

k=1

Imk +

n∑

j=1

pmj .

The first sum indicates the time needed to start the first job on the last
machine; the second sum is the total idle time on the last machine
after processing the first job; the third term is constant.

More than 2 machines: MIP formulation

Constraints. Assignment constraints for each job and position:
n∑

j=1

xjk = 1 ∀k = 1, . . . , n

n∑

k=1

xjk = 1 ∀j = 1, . . . , n

Consistency of idle times and waiting times:

Iik +
n∑

j=1

pijxjk+1 + Wik+1 =

Wik +

n∑

j=1

pi+1 jxjk + Ii+1 k ∀1 ≤ i ≤ m − 1, ∀1 ≤ k ≤ n − 1

The first job does never wait and the first machine is never idle:

Wi1 = 0 ∀1 ≤ i ≤ m − 1

I1k = 0 ∀1 ≤ k ≤ n − 1.

Special cases

Proportionate permutation flow shop Fm|prmu, pij = pj |Cmax is the
special case in which the processing times do not depend on the
machine.

For Fm|prmu, pij = pj |Cmax the makespan equals

Cmax =

n∑

j=1

pj + (m − 1)max
j
{pj}

and it is independent of the schedule.

Permutation schedules are optimal even for Fm|pij = pj |Cmax .

Special cases

Proportionate flow shops have several common characteristics with
single-machine scheduling problems:
• the SPT rule is optimal for 1||

∑
Cj as well as for

Fm|prmu, pij = pj |
∑

Cj ;
• the algorithm that optimizes 1||

∑
Uj also optimizes

Fm|prmu, pij = pj |
∑

Uj ;
• the algorithm that optimizes 1||hmax also optimizes

Fm|prmu, pij = pj |hmax ;
• the pseudo-polynomial D.P. algorithm that optimizes 1||

∑
Tj also

optimizes Fm|prmu, pij = pj |
∑

Tj ;
• the elimination criteria that are valid for 1||

∑
wjTj are also valid

for Fm|prmu, pij = pj |
∑

wjTj .

Machines with different speed

On a machine with speed vi each job j spends pij = pj/vi time.

The bottleneck machine is the machine with minimum speed.

In Fm|prmu, pij = pj |
∑

Cmax with machines at different speeds, the
LPT and SPT rules are optimal.

Heuristics

Since the Fm|prmu|Cmax is difficult, several heuristics have been
developed to approximate it.

Slope heuristic. A slope index is computed for each job:

Aj = −

m∑

i=1

(m − (2i − 1))pij .

Then jobs are scheduled in non-increasing order of the slope index.

Jobs with small processing time on the first machines and large
processing times on the last machines should better be placed in the
initial positions of the schedule.

Total completion time

F2||
∑

Cj is already strongly NP-hard.

Fm|pij = pj |
∑

Cj is optimized by the SPT rule.

Fm|pij = pj |
∑

wjCj is not optimized by the WSPT rule, but it is
polynomially solvable.

