
Scheduling
(parallel machines)

Logistics

Giovanni Righini



Scheduling problems with parallel machines

Scheduling problems with parallel machines involve two types of
decisions
• allocation of jobs to machines;
• sequencing the jobs on each machine.

Model with and without pre-emptions may have different optimal
solutions even if all jobs are released at t = 0.

Most models have optimal schedules that are non-delay, but
problems with unrelated machines and no pre-emptions may have
optimal solutions with delays.

We assume p1 ≥ p2 ≥ . . . ≥ pn.



Makespan minimization (no preemptions)

Pm||Cmax .

The problem is NP-hard even for m = 2.
Several heuristics have been developed.

Longest Processing Time (LPT) rule. At time t = 0, assign the m
longest jobs to the m machines. Whenever a machine is freed, assign
it the next longest job.

The worst-case approximation achieved by this heuristic is
4
3
− 1

3m
.



Makespan minimization (with precedences)

Pm|prec|Cmax .

The version with no limits on the number of machines, Pm|prec|Cmax ,
is easily solvable with the greedy algorithm known as Critical Path
Method (CPM).

For generic 2 ≤ m ≤ n the problem is NP-hard.
Even the case with pj = 1 ∀j is not easy.

The special case when the precedences define a tree (in either
direction) is polynomially solvable by the Critical Path rule: assign first
the job at the head of the longest path of jobs in the precedence
graph.



Makespan minimization (with precedences)

The CP rule applied to problems with arbitrary precedence
constraints and m = 2 achieves an approximation factor of 4/3.

Another heuristic priority rule is Largest Number of Successors
(LNS): it is based on the total number of jobs in the subtree rooted at
each job in the precedence graph.

The LNS rule is optimal for Pm|intree|Cmax and for
Pm|outtree, pj = 1|Cmax .

Variations of these heuristic rules prioritize jobs on the basis of total
processing time of the successors of each job.



Makespan minimization (with incompatibilites)

Pm||Cmax , where job j can be processed only on a machine subset
Mj .

Consider the case pj = 1 and nested subsets. For each job pair (j, k)
exactly one of the following conditions holds:

1. Mj = Mk ;

2. Mj ⊂ Mk ;

3. Mk ⊂ Mj ;

4. Mj ∩ Mk = ∅.

An optimal solution is computed by the Least Flexible Job (LFJ)
rule: every time a machine is freed, select the compatible job that
can be processed on the smallest number of machines.

The LFJ rule is optimal for P2|pj = 1,Mj |Cmax , because subsets are
always nested for m = 2.

For m > 2 it can provide sub-optimal solutions.



Makespan minimization (with preemptions)

Pm|prmp|Cmax is easy. It is an LP whose variables represent the
amount of processing time of each job on each machine. Its objective
function is min-max.

In Qm|prmp|Cmax , assume to sort the n jobs so that
p1 ≥ p2 ≥ . . . ≥ pn and to sort the m uniform machines so that
v1 ≥ v2 ≥ . . . ≥ vm.

Cmax ≥ max

{

p1

v1
,

p1 + p2

v1 + v2
, . . . ,

∑m−1
j=1 pj

∑m−1
j=1 vj

,

∑n
j=1 pj

∑m
j=1 vj

}

provides a valid lower bound.

If the largest term in the lower bound is given by

∑k
j=1 pj

∑k
j=1 vj

, then the

n − k shortest jobs are not processed on any of the fastest k
machines.



Makespan minimization (with preemptions)

The Longest Remaining Processing Time on the Fastest
Machine (LRPT-FM) rule is optimal for Qm|prmp|Cmax .

However, in a continuous time context, it would imply an infinite
number of preemptions.

This problem is fixed by processor sharing: a number m∗ of machines
process a number n∗ of jobs, so that they simultaneously start and
end.

The rule is optimal also in a discrete time context (preemptions are
allowed only at integer values of time t).

The proof is based on the replacement of each machine i with speed
vi by vi parallel machines with unit speed. At any time t any job is
allowed to be processed on more than one unit-speed machine
corresponding to the same machine i.



Total completion time (without preemptions)

Pm||∑j Cj . The problem is solved to optimality by the SPT rule.

By contrast, the WSTP rule does not extend to the parallel machines
case.

It provides a heuristic with approximation guarantee
1
2
(1 +

√
2).

Pm|prec|∑j Cj is strongly NP-hard.

Pm|outtree, pj = 1|∑j Cj is solved to optimality by the CP rule.
The result does not hold for Pm|intree, pj = 1|∑j Cj .



Proof

Let t1 be the first point in time when more than m jobs can be
scheduled.

Up to t1 all job assignments comply with the CP rule.

Let t2 be the last point in time when a rule R prescriibes a decision
not complying with the CP rule.
Let CP the schedule from t2 onwards.

Then, at t2 there are m jobs, that are not heading the m longest paths
in the precedence graph, assigned to the m machines.
In CP consider the longest precedence path p′ headed by a job that
is not assigned at t2 and the shortest precedence path p′′ headed by
a job that is assigned at t2.
Let C

′

and C
′′

be the completion times of the last jobs of p′ and p′′ in
CP.
In CP, C

′ ≥ C
′′

.



Proof

Owing to the CP rule, the job heading p′ must start at time t2 + 1 in
CP.
For the CP rule after t2, all machines have to be busy at least up to
C

′′ − 1.

If C
′ ≥ C

′′

+ 1, then applying the CP rule at t2 yields an improved
solution, because the last job of p′ is completed one time unit earlier,
so that one more job is completed within C

′ − 1 with respect to CP.

Otherwise, C
′

= C
′′

and the two schedules are equivalent.



Unrelated machines

Pm|pj = 1,Mj |
∑

Cj is easy when the subsets Mj are nested. It is
solved to optimality by the LFJ rule.

The problem with subsets is a special case of Rm||∑Cj , in which
processing times are infinite (or “large enough”) for some
job-machine pairs.

It can be formulated as a weighted bipartite matching problem and
solved at optimality in polynomial time.

If job j is processed on machine i and there are k jobs after it on the
same machine, then it contributes kpij to the total completion time.

Let xikj be a binary variable indicating whether job j is scheduled as
the k to last job on machine i.



Unrelated machines

minimize z =

m
∑

i=1

n
∑

j=1

n
∑

k=1

kpijxikj

s.t.
m
∑

i=1

n
∑

k=1

xikj = 1 ∀j = 1, . . . , n

n
∑

j=1

xikj ≤ 1 ∀i = 1, . . . ,m ∀k = 1, . . . , n

xikj ∈ {0, 1} ∀i = 1, . . . ,m ∀k = 1, . . . , n ∀j = 1, . . . , n

The model corresponds to a bipartite matching problem and is
polynomially solvable.

The optimal schedule may not be a non-delay schedule.



Total completion time (with preemptions)

The SPT rule is optimal also when preemptions are allowed.

Qm|prmp|∑Cj is solved by the Shortest Remaining Processing
Time on the Fastest Machine (SRPT-FM) rule.

Every time the fastest machine completes a job, all jobs are prempted
and moved to the next faster machine.

Lemma. There exists an optimal schedule in which Cj ≤ Ck when
pj ≤ pk for all j and k .



Proof

Since p1 ≥ p2 ≥ . . . ≥ pn, owing to the SRPT-FM rule,
Cn ≤ Cn−1 ≤ . . . ≤ C1.

Owing to the job-machine assignments generated by the
preemptions,

v1Cn = pn

v2Cn + v1(Cn−1 − Cn) = pn−1

. . . . . .
vnCn + vn−1(Cn−1 − Cn) + . . .+ v1(C1 − C2) = p1



Proof

Adding these equations from row 1 to row k for all k = 1, . . . , n
generates

v1Cn = pn

v2Cn + v1Cn−1 = pn + pn−1

. . . . . .
vnCn + vn−1Cn−1 + . . .+ v1C1 = pn + pn−1 + . . .+ p1



Proof

Assume a schedule S′ is optimal. Then for the lemma

C′

n ≤ C′

n−1 ≤ . . . ≤ C′

1.

The shortest job cannot be completed before pn/v1:

v1C′

n ≥ pn.

Since jobs n and n − 1 are completed at C′

n and C′

n−1 the amount of
processing done on these two jobs cannot be larger than the amount
of processing done on machine 1 and machine 2 in parallel up to C′

n
and by machine 1 alone from C′

n up to C′

n−1, that is

(v1 + v2)C′

n + v1(C′

n−1 − C′

n).

Therefore
v2C′

n + v1C′

n−1 ≥ pn + pn−1.

Repeating the same argument we obtain

vk C′

n + vk−1C′

n−1 + . . .+ v1C′

n−k+1 ≥ pn + pn−1 + . . .+ pn−k+1.



Proof

Now we can relate the equations coming from the SRPT-FM rule and
the inequalities coming from the optimality assumption:

v1C′

n ≥ v1Cn

v2C′

n + v1C′

n−1 ≥ v2Cn + v1Cn−1

. . . . . .
vnC′

n + vn−1C′

n−1 + . . .+ v1C′

1 ≥ vnCn + vn−1Cn−1 + . . .+ v1C1

If a vector of multipliers α ≥ 0 exists such that we can aggregate
these rows to produce the inequality

∑

j

C′

j ≥
∑

j

Cj

then we have proven that the SRPT-FM rule is optimal.



Proof

The multipliers are the solution of the system

v1α1 + v2α2 + v3α3 + . . .+ vnαn = 1
v1α2 + v2α3 + . . .+ vn−1αn = 1

. . .
v1αn−1 + v2αn = 1

v1αn = 1

Since v1 ≥ v2 ≥ ldots ≥ vn such a solution α ≥ 0 exists.



Due dates related objectives

Pm||Lmax is not as easy as 1||Lmax .

Take all due dates equal to 0. Then minimizing Lmax is the same as
minimizing Cmax and it is NP-hard.

One exception, that is easy to solve, is Qm|prmp|Lmax .

It is solved by setting a bound Lmax = z and solving a feasibility
problem.

By bisection, one can find the value z such that the problem is
feasible for Lmax = z and infeasible for Lmax = z − 1.



Due dates related objectives

In the feasibility problem, for each job j one must have Cj ≤ dj + z.

Set a deadline Dj = dj + z for each job.

Solving the feasibility problem is equivalent to solve
Qm|rj , prmp|Cmax , where time has been reversed so that deadlines
act as release dates.

Applying the LRPT-FM rule, one can find a feasible schedule if one
exists.



Due dates related objectives

Qm|rj , prmp|Lmax is also solved via parametric analysis, imposing
Lmax = z and setting hard deadlines accordingly.

Reversing time in this problem does not help because release dates
and deadlines are simply swapped.

It can be formulated as a network flow problem (polynomially
solvable).


