
Scheduling
(single machine)

Logistics

Giovanni Righini

Scheduling problems

Scheduling problems are typically short-term decisions, arising at a
tactial or operational level, when operations are considered in full
detail and time is taken into account: for each lot to be produced on a
machine a starting time must be decided, according to a suitable job
sequence: the schedule.

The schedule includes the sequence but possibly additional
information, such as idle times, preemptions and so on.

Scheduling problems are typically very difficult to solve to proven
optimality.

They involve assignment decisions to assign jobs to machines (binary
variables).

They involve sequencing decisions, that can be represented in
several ways.

Scheduling problems

In general, we consider a set N of n jobs (indexed by j) and a set M of
m machines (indexed by i).
Each job j ∈ N can be characterized by
• a processing time pj

• a release date rj

• a due date dj

• a deadline Dj

• a weight wj

• a delay cost cj

Some of these data may have two indices if their values depend also
on the machine.
An available time horizon T is often given.
The objective is to schedule all jobs, minimizing a function of their
completion times.

Classification

In 1979 Graham et al. introduced a three fields notation to classify
scheduling problems

α|β|γ

where
• α describes the machines
• β describes the jobs
• γ describes the objective.

Classification: α

Some possible values for α are:
• 1: single machine
• P (identical): the processing time of each job does not depend

on the machine;
• Q (uniform): the machines have different speed si and the

processing time of job j on machine i is pij = pj/si ;
• R (unrelated): the values of pij are in general different and

unrelated;
• F (flow shop): each job must be processed by each machine

according to a fixed machine sequence which is the same for all
jobs;

• J (job shop): as in flow shop but the machine sequence can be
different for each job;

• FJ (flexible job shop): machines are replaced by work centers
equipped with parallel identical machines;

• O (open shop): all jobs must be processed on all machines but
without routing restrictions.

Classification: β

Some possible values for β are:
• rj : with release dates;
• prmp: with preemption (and resume);
• with precedence constraints, represented by a digraph G with a

node for each job:
• prec: G is generic;
• chain: G is a set of paths;
• tree: G is an oriented tree;

• brkdwn (breakdown): with fixed unavailability periods for the
machines;

• s: with set-up times (dependent or independent of the machine);
• pj = 1: unitary processing times.
• nwt: with no-wait requirement: for each job in a flow shop, as

soon as a machine finishes processing the job, another one must
start processing it.

Classification: KPIs

Some typical KPIs in scheduling:
• Cj : completion time of job j;
• Lj = Cj − dj : lateness of job j (it can be negative);
• Tj = max{Lj , 0}: tardiness of job j (non-negative);
• Uj = 1 if Cj > dj and 0 otherwise.

An objective function is regular if it is non-decreasing with the
completion times.

Classification: γ

Some possible values for γ are:
• Cmax : minimize the completion time of the last job (makespan);
• Lmax : minimize the maximum lateness;
•
∑

Cj : minimize the total completion time;
•
∑

wjCj : minimize the total weighted completion time;
•
∑

(wj)Tj : minimize the total (weighted) tardiness;
•
∑

(wj)Uj : minimize the total (weighted) number of tardy jobs.

All these objective functions are regular.

Non-delay schedules

A feasible schedule is non-delay if no machine is kept idle, when a
job is waiting for being processed.

A feasible non-preemptive schedule is active if there is no other
schedule obtained from different sequences such that at least one
operation finishes earlier and no operation finishes later.

A feasible non-preemptive schedule is semi-active if there is no other
schedule obtained from the same sequence such that at least one
operation finishes earlier.

Single-machine scheduling

Single-machine scheduling problems arise as sub-problems when
multi-machine scheduling problems are solved via heuristics or
decomposition methods (e.g. Dantizg-Wolfe decomposition).

For some single-machine scheduling problems, the optimal solution
can be computed by sorting the jobs according to specific ordering
criteria.

Some examples are:
• 1||

∑

j wjCj

• 1|rj , prmp|
∑

j Cj

• 1||Lmax

• 1||
∑

j Uj

Several single-machine scheduling problems can be solved in
polynomial or pseudo-polynomial time by dynamic programming.

General properties

We consider regular objective functions.

In general, optimal schedules are non-preemptive and non-delay.

If release dates are considered, then the optimal schedule may be
preemptive.

If release dates are considered and preemption is not allowed, then
the optimal schedule may contain unforced idleness (i.e. it is not
non-delay).

Total weighted completion time

1||
∑

j Cj (unweighted case).

SPT (Shortest Processing Time) rule (Smith’s rule): sort the jobs by
non-decreasing processing time.

Proof: by exchange.
Complexity: O(n log n).

1||
∑

j wjCj (weighted case).

WSPT (Weighted Shortest Processing Time) rule (Smith’s rule): sort
the jobs by non-increasing values of the ratio wj/pj .

Proof: by exchange.
Complexity: O(n log n).

Proof

By contradiction, assume the schedule is not WSPT. Then there exist

two consecutive jobs i and j with i preceding j, such that
wi

pi
<

wj

pj
,

which implies
wipj < wjpi .

We prove that swapping i and j improves the objective function.
We indicate with a prime the values after the swap.

C′
i = Ci + pj

C′
j = Cj − pi

The completion times of all jobs before i and after j remain
unchanged.

Then z ′ − z = wi(C′
i − Ci) + wj(C′

j − Cj) = wipj − wjpi < 0.

Precedence constraints: chains

Consider two chains of jobs: Chain I consists of jobs 1, . . . , k and
Chain II consists of jobs k + 1, . . . , n.

The chains impose the precedences

1 → 2 → . . . → k

k + 1 → k + 2 → . . . → n.

Assume that the two chains have to be processed with no
interruption.

Lemma 1. If
∑k

j=1 wj
∑k

j=1 pj

> (<)

∑n
j=k+1 wj

∑n
j=k+1 pj

then it is optimal to process Chain I (Chain II) first.

Proof. Trivial: compare the two objective function values.

The ρ factor

The ρ factor of a chain 1, . . . , k is

ρ(1, . . . , k) = max
1≤l≤k

{

∑l
j=1 wj

∑l
j=1 pj

}

.

Let l∗ be the job that determines the ρ factor of the chain.

Assume now that chains can be interrupted.

Lemma 2. There exists an optimal sequence that processes jobs
1, . . . , l∗ with no interruption.

Proof

Proof. By contradiction, assume a job v from another chain is
processed between 1 and l∗:

S = 1, . . . , u, v , u + 1, . . . , l∗.

We prove that either S′ = v , 1, . . . , l∗ or S′′ = 1, . . . , l∗, v is better than
S. From Lemma 1,

z(S) < z(S′) ⇔
wv

pv
<

∑u
j=1 wj

∑u
j=1 pj

z(S) < z(S′′) ⇔
wv

pv
>

∑l∗

j=u+1 wj
∑l∗

j=u+1 pj

.

By definition of l∗,
∑l∗

j=u+1 wj
∑l∗

j=u+1 pj

>

∑u
j=1 wj

∑u
j=1 pj

.

Therefore z(S) < z(S′) and z(S) < z(S′′) cannot be both true.

Total weighted completion time with chains: 1|chain|
∑

wjCj

Algorithm. Whenever the machine is freed, select the remaining
chain with the largest ρ factor and process it with no interruption up to
the job that determines its ρ factor.

Polynomial time algorithms have been devised for other variants of
1|prec|

∑

wjCj .

However, the general case with arbitrary precedence constraints is
strongly NP-hard.

Also 1|rj , prmp|
∑

wjCj is strongly NP-hard, while 1|rj , prmp|
∑

Cj is
easy.

Preemption and unit weights: 1|rj , prmp|
∑

Cj

1|rj , prmp|
∑

j Cj .

This problem has unit weights, release dates and preemption.

SRPT (Shortest Remaining Processing Time) rule: sort the jobs by
non-decreasing residual processing time.

Proof: by exchange.
Complexity: O(n log n).

The non-preemptive version 1|rj |
∑

Cj is strongly NP-hard.

Single-machine scheduling with due dates

1|prec|hmax , where
hmax = max

i=1,...,n
{hi(Ci)}

and hi() are non-decreasing cost functions.

This general problem can be solved to optimality with a backward
greedy algorithm, even in the case with arbitrary precedence
constraints.

We denote by
• J , the set of jobs already scheduled,
• I, the set of jobs to be scheduled,
• I′ ⊆ I, the subset of schedulable jobs.

Greedy algorithm

The completion of the last job occurs at Cmax =
∑n

j=1 pj .

Algorithm.
• Initialize: J := ∅, I := {1, . . . , n} and t := Cmax .
• Initialize I′ as the subset of jobs with no successors.
• Loop: Select k ∈ I′ such that

k = argmini∈I′{hi(t)}.

• Update: delete k from I, insert k in J , t := t − pk .
• Update I′ as the subset of jobs with no successors in I.
• If I = ∅, then stop; otherwise, repeat the loop.

Correctness and complexity

Correctness. Assume job j 6= k is selected at a given iteration,
instead of job k = argmini∈I′{hi(t)}.

Then in the final sequence S, job k occurs before job j and job j ends
at time t.

Consider S′ obtained from S by moving k immediately after j.

The only job whose completion time in S′ is larger than in S is job k
and it ends at time t in S′.

But k = argmini∈I′{hi(t)} implies that hk (t) ≤ hj(t).

Hence S′ is not worse than S.

Complexity O(n2). There are n iterations. The selection of k
requires O(n). The update of I′ requires O(n) (scan all predecessors
of k and decrease by 1 their counter of scheduled successors). The
initialization may also take O(n2) to count the number of successors
of each job.

Maximum lateness

1||Lmax .

This is the special case where hj(Cj) = Cj − dj ∀j = 1, . . . , n.

EDD (Earliest Due Date) rule (Jackson’s rule): sort the jobs by
non-decreasing due dates.

Proof: by exchange.
Complexity: O(n log n).

Proof

By contradiction, assume the schedule is not EDD. Then there exist
two jobs i and j with i preceding j, such that di > dj . We prove that
swapping i and j does not worsen the objective function.
We indicate with a prime the values after the swap.

The following relations hold:

Lj = Cj − dj

L′
i = C′

i − di

C′
i = Cj

Then L′
i = c′

i − di = cj − di ≤ cj − dj = Lj .
Since i is the only job whose completion time is increased by the
swap, then no lateness value L′

k is larger than Lk for any job
k = 1, . . . , n.

Generalizations

1|rj |Lmax .

The problem is NP-hard. Its optimal solution is not necessarily a
no-delay schedule.

Branch-and-bound algorithm.
Branching. Fix the next job in all possible ways, discarding j when
rj > mink 6∈S{max{t , rk}+ pk}, where S is the partial schedule and
t =

∑

j∈S pj (another job k can be completed before rj).

Lower bound. Schedule the remaining jobs according to a preemptive
EDD rule, which is optimal for 1|rj , prmp|Lmax . If the optimal solution
of 1|rj , prmp|Lmax is non preemptive at a node of the BnB tree, then it
provides an upper bound for the whole problem.

1|rj , prec|Lmax can be solved in a similar way, yielding a smaller BnB
tree thanks to the precedence constraints.

Number of tardy jobs

1||
∑

j Uj .

Moore algorithm.
• sort the jobs by non-decreasing due dates (EDD)
• start with an empty schedule
• for each job j in the EDD ordered list

• append j to the schedule
• if j is late, then select the longest job k in the schedule and remove

it

• add all the removed jobs at the end of the schedule (in any
order).

Complexity. It can be implemented to run in O(n log n) using a binary
heap to represent the scheduled jobs, so that insertions and deletions
take O(logn) (there are O(n) insertions and O(n) deletions).

Correctness. The proof is omitted (see Pinedo, page 49).

Weighted number of tardy jobs

1||
∑

j wjUj .

The weighted version of the problem is NP-hard.

When all due dates are equal, then the problem is a Knapsack
Problem, where the due date is the capacity of the knapsack.

Total tardiness: lemma 1

1||
∑

j Tj .

This problem is weakly NP-hard (1990).

Lemma 1. If pj ≤ pk and dj ≤ dk , then there is an optimal sequence
in which job j is scheduled before job k .

Consider an instance with a due dates vector d ; consider a job k . Let
C′

k be the maximum completion time of job k in an optimal solution S′.

Consider a modified instance where dk is replaced by
dk = max{dk ,C′

k}. Let C′′ be the completion times vector in an
optimal solution S′′ of the modified instance.

Total tardiness: lemma 2

Lemma 2. Any sequence that is optimal for the modified instance is
also optimal for the original instance.

If C′
k ≤ dk , then the two instances are identical and the proof is trivial.

Let z ′ and z ′′ indicate the total tardiness in the original and the
modified instance, resp..

z ′(S′) = z ′′(S′) + Ak

z ′(S′′) = z ′′(S′′) + Bk

If C′
k > dk , then

Ak = C′
k − dk

Bk = (C′′
k − dk)− (C′′

k − dk)}

Then Bk = dk − dk = max{0,C′
k − dk} ≤ C′

k − dk = Ak .
Since z ′′(S′′) ≤ z ′′(S′) and Bk ≤ Ak , then z ′(S′′) ≤ z ′(S′) (q.e.d.).

Total tardiness: assumptions

Assume w.l.o.g. that all processing times are different.

Renumber the jobs according to the EDD criterion.

Let pk = maxj{pj}.

From Lemma 1, there is an optimal sequence in which all jobs
1, . . . , k − 1 are scheduled, in some order, before job k . The other
n − k jobs may be scheduled before or after job k .

Total tardiness: lemma 3

Lemma 3. There is an integer 0 ≤ δ ≤ n − k such that there is an
optimal sequence in which job k is preceded by all jobs j with
j ≤ k + δ and it is followed by all jobs j with j > k + δ.

Proof. Using the same notation of the previous Lemma, let S′′ be a
sequence which is optimal when dk is replaced by dk = max{C′

k , dk}
and complies with Lemma 1; let C′′

k be the completion time of job k in
S′′. By Lemma 2, S′′ is also optimal with respect to the original due
dates. Therefore C′′

k ≤ dk .

If any job j precedes job k in S′′ and dj > d , then it can be reinserted
after job k still being on time, without increasing the total tardiness.

By Lemma 1, if S′′ is optimal, then all jobs j with dj < d must precede
job k .

Then δ can be chosen as the largest integer such that

dk+δ ≤ dk .

Total tardiness: dynamic programming

Owing to Lemma 3, we are guaranteed that
• for any subset of jobs j, . . . , l,
• for each starting time t of their schedule,

an optimal sequence is obtained for some 0 ≤ δ ≤ l − k by the
concatenation of three subsequences:
• jobs j, . . . , k − 1, k + 1, . . . , k + δ, in some order;
• job k (the job with maximum processing time in the subset
{j, . . . , l});

• jobs k + δ, . . . , l in some order.

The completion time of job k is Ck (δ) =
∑

i≤k+δ pi .

The first and the third subsequences must be optimized and this
originates the recursion.

Total tardiness: dynamic programming

To execute the D.P. algorithm bottom-up, one must consider subsets
with a special structure: they are subsets {j, j + 1, . . . , l − 1, l} with
processing times smaller than pk for some k . We indicate these sets
with J(j, l, k). Let z(J(j, l, k), t) be the minimum total tardiness for
J(j, l, k) starting at time t .

D.P. algorithm.
Initialization (recursion base).

z(∅, 0) = 0 z({j}, t) = max{0, t + pj − dj}.

Extension rule (recursive step).

z(J(j, l, k), t) = min
δ
{z(J(j, k ′ + δ, k ′), t) + max{0,Ck ′(δ)− dk ′}+

+ z(J(k ′ + δ + 1, l, k ′),Ck ′(δ))},

where k ′ is the maximum processing time job in the subset J(j, l, k).

Optimal value: z({1, . . . , n}, 0).

Complexity: O(n4 ∑

j pj), which is pseudo-polynomial.

Models (ILP)

Time-indexed formulations. They use binary variables xjt to indicate
whether the execution of job j starts at time t or not, with assignment
constraints

T
∑

t=0

xjt = 1 ∀j ∈ J

and no-overlap constraints

n
∑

j=1

t−1
∑

s=max{t−pj ,0}

xjs = 1 ∀t = 0, . . . ,T

. The completion time of each job is given by

Cj =

T
∑

t=0

t ∗ xjt + pj .

The constraints and the objective are very easy to formulate, but the
number of variables can be huge.

Models (ILP)

Sequencing variables. Binary variables xjk indicate whether job j
precedes job k or not, for each pair j 6= k .

The completion time of each job is given by

Cj =
∑

k 6=j

pk xkj + pj .

The following constraints are imposed:

xjk + xkj = 1 ∀j, k ∈ J , j 6= k
xjk + xkl + xlj ≤ 2 ∀j, k , l ∈ J , j 6= k , k 6= l, l 6= j
xjk ∈ {0, 1} ∀j, k ∈ J
xjj = 0 ∀j ∈ J .

Models (ILP)

Disjunctive programming. Disjunctive constraints are inserted:

xk + pk ≤ xj ∨ xj + pj ≤ xk

for each pair of jobs, where xj indicates the start time of job j.

The problem is solved without the disjunctive constraints; the
constraints are then checked; if no constraint is violated then the
solution is optimal; otherwise binary branching is done, generating a
branch-and-bound tree.

