Planning and scheduling models
 Logistics

Giovanni Righini

Università degli Studi

Planning

Production planning is a typical operation at a tactical decision level in production logistics.
Decide the amount of products to be produced on a medium term horizon (one week - one year).

Different levels of planning can be nested for different time periods, from longer to shorter term plans.
Production planning may involve:

- a single product or multiple products
- a single period or multiple periods
- fixed and variable production costs
- constraints on the lot size
- constraints on resource availability
- deadlines or due dates.

Objectives:

- minimize the production cost;
- maximize the expected profit.

The optimal production mix problem

The problem assumes a set P of products and a single period.
Production requires a set R of resources.
For each product $j \in P$ an expected unit profit c_{j} is known.
For each resource iinR an available amount b_{i} is known.
A given technological coefficient $a_{i j}$ indicates the amount of each resource needed to produce a unit of each product.
The objective is to maximize the total expected profit.
A (continuous or integer) variable x_{j} indicates the production level for each product $j \in P$.

$$
\begin{aligned}
\operatorname{maximize} z= & \\
\text { subject to } & \sum_{j \in N} c_{j} x_{j} \\
a_{i j} x_{j} \leq b_{i} & \forall i \in R \\
& x_{j} \geq 0 \text { (integer) }
\end{aligned} \quad \forall j \in P
$$

Multi-period planning

When several consecutive periods are considered, the common assumption is that a warehouse of limited capacity is available to stock an amount of products that can be distributed or sold later.

Flow conservation constraints are needed to ensure the consistency of produced and stored amounts in consecutive periods.

$$
x_{t}+s_{t-1}=d_{t}+s_{t}
$$

where

- $x_{t} \geq 0$ indicates the production in period t;
- $s_{t} \geq 0$ indicates the amount stored in the warehouse at the end of period t;
- d_{t} indicates the demand satisfied in period t.

The lot-sizing problem

The problem assumes a single product and a set T of potential production periods.

A demand d_{t} is known for each period $t \in T$.
A fixed production cost f_{t} and a variable production cost c_{t} are given for each period $t \in T$.

A maximum production capacity q_{t} for each period and a warehouse capacity Q are also given.

A unit inventory cost h_{t} is known for each period $t \in T$.
The objective is to satisfy the demand at minimum total cost.

The lot-sizing problem

A binary variable y_{t} indicates whether period t is used or not. A continuous or integer variable $x_{t} \geq 0$ indicates the production in period t.
A variable $s_{t} \geq 0$ indicates the amount stored at the end of period t.

$$
\begin{array}{rr}
\text { minimize } z=\sum_{t \in T}\left(f_{t} y_{t}+c_{t} x_{t}+h_{t} s_{t}\right) & \\
\text { subject to } x_{t} \leq q_{t} y_{t} & \forall t \in T \\
s_{t-1}+x_{t}=d_{t}+s_{t} & \forall t \in T: t>1 \\
s_{0}+x_{1}=d_{1}+s_{1} & \\
x_{t} \geq 0 \text { (integer) } & \forall t \in T \\
s_{t} \geq 0 & \forall t \in T \\
y_{t} \in\{0,1\} & \forall t \in T
\end{array}
$$

Assignment problems

At a more detailed decision level, production lots must be assigned to production units or teams.

This originates assignment problems between a set N of tasks/jobs and a set M of agents/machines.

The decision is typically represented by binary assignment variables:

$$
x_{i j}= \begin{cases}0 & \text { if task } i \in N \text { is not assigned to machine } j \in M \\ 1 & \text { if task } i \in N \text { is assigned to machine } j \in M\end{cases}
$$

Assignment costs/times are given for each possible assignment (i, j) between a task $i \in N$ and a machine $j \in M$.

The linear assignment problem

A set N of jobs and a set M of agents are given, with $|N|=|M|$. An assignment cost $c_{i j}$ is given for each $i \in N$ and $j \in M$. Assign a job to each agent and an agent to each job, minimizing the total assignment cost.

Binary variables $x_{i j}$ are used to represent the selected assignments.

$$
\begin{array}{rlr}
\operatorname{minimize} z= & \sum_{i \in N, j \in M} c_{i j} x_{i j} & \\
\text { subject to } & \sum_{i \in N} x_{i j}=1 & \forall j \in M \\
& \sum_{j \in M} x_{i j}=1 & \forall i \in N \\
& x_{i j} \in\{0,1\} & \forall i \in N, \forall j \in M
\end{array}
$$

The generalized assignment problem

A set N of jobs and a set M of agents are given.
An assignment cost $c_{i j}$ and a resource consumption $a_{i j}$ are given for each $i \in N$ and $j \in M$.
A capacity (amount of available resource) b_{j} is given for each machine $j \in M$.
Assign jobs to machines, minimizing the total assignment cost and complying with capacity constraints.
Binary variables $x_{i j}$ are used to represent the selected assignments.

$$
\begin{array}{rlr}
\operatorname{minimize} z= & \sum_{i \in N, j \in M} c_{i j} x_{i j} & \\
\text { subject to } & \sum_{i \in N} a_{i j} x_{i j} \leq b_{j} & \forall j \in M \\
& \sum_{j \in M} x_{i j}=1 & \forall i \in N \\
& x_{i j} \in\{0,1\} & \forall i \in N, \forall j \in M
\end{array}
$$

Scheduling problems

Scheduling problems are typically short-term decisions, arising at an operational level, when operations are considered in full detail and time is taken into account: for each lot to be produced on a machine a starting time must be decided, according to a suitable job sequence: the schedule.

A set N of jobs and a set M of machines are given.
Each job $i \in N$ can be characterized by

- a processing time p_{i}
- a release date r_{i}
- a due date d_{i}
- a deadline D_{i}
- a weight w_{i}
- a delay cost c_{i}

An available time horizon T is given.
The objective is to schedule all jobs, minimizing a function of their completion times.

Scheduling problems

Scheduling problems are typically very difficult to solve to proven optimality.

They involve assignment decisions to assign jobs to machines (binary variables).

They involve sequencing decisions, that can be represented in several ways.

Linear ordering

Linear ordering variables (binary):
$x_{i j}=1$ if and only if i precedes j, for each pair of distinct jobs i and j.
Linear ordering constraints:

$$
\begin{aligned}
& x_{i j}+x_{j i}=1 \\
& x_{i j}+x_{j k}+x_{k l}=2 \\
& x_{i j} \in\{0,1\}
\end{aligned}
$$

$$
\begin{array}{r}
\forall i \neq j \in N \\
\forall i \neq j \neq k \in N \\
\forall i, j \in N
\end{array}
$$

Time-indexed formulations

Time-indexed variables (binary):
$x_{i t}=1$ if and only if job i starts at time $t, \forall i \in N$ and $\forall t \in T$.
The time axis is discretized: the granularity affects the number of variables.

Time-indexed formulation constraints:

$$
\begin{array}{lr}
\sum_{t=1}^{T-p_{j}+1} x_{j t}=1 & \forall j \in N \\
\sum_{j \in N} \sum_{s=\max \left\{1, t-p_{j}+1\right\}}^{t} x_{j s} \leq 1 & \forall t=1, \ldots, T \\
x_{j t} \in\{0,1\} & \forall j \in N \forall t=1, \ldots, T
\end{array}
$$

Disjunctive constraints

Disjunction variables (binary):
$x_{i j}=1$ if and only if job i starts before job $j, \forall i \neq j \in N$.
Starting time variables (continuous):
t_{j} indicates the starting time of each job $j \in N$.
Disjunctive constraints:

$$
\begin{array}{lr}
t_{i} \geq t_{j}+p_{j}+M x_{i j} & \forall i \neq j \in N \\
x_{i j}+x_{j i}=1 & \forall i \neq j \in N \\
t_{i} \geq 0 & \forall i \in N \\
t_{i} \leq T-p_{i} & \forall i \in N
\end{array}
$$

Classification

In 1979 Graham et al. introduced a three fields notation to classify scheduling problems

$$
\alpha|\beta| \gamma
$$

where

- α describes the machines
- β describes the jobs
- γ describes the objective.

Classification: α

Some possible values for α are:

- 1: single machine
- P (identical): the processing time of each job does not depend on the machine;
- Q (uniform): the machines have different speed s_{j} and the processing time of job i on machine j is $p_{i j}=p_{i} / s_{j}$;
- R (unrelated): the values of $p_{i j}$ are in general different and unrelated;
- F (flow shop): each job must be processed by each machine according to a fixed machine sequence which is the same for all jobs;
- J (job shop): as in flow shop but the machine sequence can be different for each job;
- FJ (flexible job shop): machines are replaced by work centers equipped with parallel identical machines;
- O (open shop): all jobs must be processed on all machines but without routing restrictions.

Classification: β

Some possible values for β are:

- r_{j} : with release dates;
- prmp: with preemption (and resume);
- with precedence constraints, represented by a digraph G with a node for each job:
- prec: G is generic;
- chain: G is a set of paths;
- tree: G is an oriented tree;
- brkdwn (breakdown): with fixed unavailability periods for the machines;
- s : with set-up times (dependent or independent of the machine);
- $p_{j}=1$: unitary processing times.

Classification: KPIs

Some typical KPIs in scheduling:

- C_{j} : completion time of job j;
- $L_{j}=C_{j}-d_{j}$: lateness of job j (it can be negative);
- $T_{j}=\max \left\{L_{j}, 0\right\}$: tardiness of job j (non-negative);
- $U_{j}=1$ if $C_{j}>d_{j}$ and 0 otherwise.

Classification: γ

Some possible values for γ are:

- $C_{\text {max }}$: minimize the completion time of the last job (makespan);
- $L_{\text {max }}$: minimize the maximum lateness;
- $\sum C_{j}$: minimize the total completion time;
- $\sum w_{j} C_{j}$: minimize the total weighted completion time;
- $\sum\left(w_{j}\right) T_{j}$: minimize the total (weighted) tardiness;
- $\sum\left(w_{j}\right) U_{j}$: minimize the total (weighted) number of tardy jobs.

Single-machine scheduling

For some single-machine scheduling problems, the optimal solution can be computed by sorting the jobs according to specific ordering criteria.

Some well-known examples are:

- $1 \| \sum_{j} w_{j} C_{j}$
- $1\left|r_{j}, p r m p\right| \sum_{j} C_{j}$
- $1\left|\mid L_{\text {max }}\right.$
- $1 \| \sum_{j} U_{j}$

Several single-machine scheduling problems can be solved in polynomial or pseudo-polynomial time by dynamic programming.

Sum of weighted completion times

$1 \| \sum_{j} C_{j}$ (unweighted case).
SPT (Shortest Processing Time) rule (Smith's rule): sort the jobs by non-decreasing processing time.

Proof: by exchange.
Complexity: $O(n \log n)$.
$1 \| \sum_{j} w_{j} C_{j}$ (weighted case).
WSPT (Weighted Shortest Processing Time) rule (Smith's rule): sort the jobs by non-decreasing values of the ratio w_{j} / p_{j}.

Proof: by exchange. Complexity: $O(n \log n)$.

Preemption and unit weights

$1\left|r_{j}, p r m p\right| \sum_{j} C_{j}$.
This problem has unit weights, release dates and preemption. SRPT (Shortest Remaining Processing Time) rule: sort the jobs by non-decreasing residual processing time.

Proof: by exchange.
Complexity: $O(n \log n)$.

Maximum lateness

$1\left|\mid L_{\text {max }}\right.$.
EDD (Earliest Due Date) rule (Jackson's rule): sort the jobs by non-decreasing due dates.

Proof: by exchange.
Complexity: $O(n \log n)$.

Number of tardy jobs

$1\left|\mid \sum_{j} U_{j}\right.$.
EDD (Earliest Due Date) rule (Moore's algorithm):

- sort the jobs by non-decreasing due dates (EDD)
- start with an empty schedule
- for each job j in the EDD ordered list
- append j to the schedule
- if j is late, then select the longest job k in the schedule and remove it
- add all the removed jobs at the end of the schedule (in any order).

