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Planning

Production planning is a typical operation at a tactical decision level in
production logistics.

Decide the amount of products to be produced on a medium term
horizon (one week - one year).

Different levels of planning can be nested for different time periods,
from longer to shorter term plans.

Production planning may involve:
• a single product or multiple products
• a single period or multiple periods
• fixed and variable production costs
• constraints on the lot size
• constraints on resource availability
• deadlines or due dates.

Objectives:
• minimize the production cost;
• maximize the expected profit.



The optimal production mix problem

The problem assumes a set P of products and a single period.
Production requires a set R of resources.
For each product j ∈ P an expected unit profit cj is known.
For each resource iinR an available amount bi is known.
A given technological coefficient aij indicates the amount of each
resource needed to produce a unit of each product.
The objective is to maximize the total expected profit.

A (continuous or integer) variable xj indicates the production level for
each product j ∈ P.

maximize z =
∑

j∈N

cjxj

subject to
∑

j∈N

aijxj ≤ bi ∀i ∈ R

xj ≥ 0 (integer) ∀j ∈ P



Multi-period planning

When several consecutive periods are considered, the common
assumption is that a warehouse of limited capacity is available to
stock an amount of products that can be distributed or sold later.

Flow conservation constraints are needed to ensure the consistency
of produced and stored amounts in consecutive periods.

xt + st−1 = dt + st

where

• xt ≥ 0 indicates the production in period t ;

• st ≥ 0 indicates the amount stored in the warehouse at the end
of period t;

• dt indicates the demand satisfied in period t .



The lot-sizing problem

The problem assumes a single product and a set T of potential
production periods.

A demand dt is known for each period t ∈ T .

A fixed production cost ft and a variable production cost ct are given
for each period t ∈ T .

A maximum production capacity qt for each period and a warehouse
capacity Q are also given.

A unit inventory cost ht is known for each period t ∈ T .

The objective is to satisfy the demand at minimum total cost.



The lot-sizing problem

A binary variable yt indicates whether period t is used or not.
A continuous or integer variable xt ≥ 0 indicates the production in
period t.
A variable st ≥ 0 indicates the amount stored at the end of period t.

minimize z =
∑

t∈T

(ft yt + ctxt + ht st)

subject to xt ≤ qt yt ∀t ∈ T

st−1 + xt = dt + st ∀t ∈ T : t > 1

s0 + x1 = d1 + s1

xt ≥ 0 (integer) ∀t ∈ T

st ≥ 0 ∀t ∈ T

yt ∈ {0, 1} ∀t ∈ T



Assignment problems

At a more detailed decision level, production lots must be assigned to
production units or teams.

This originates assignment problems between a set N of tasks/jobs
and a set M of agents/machines.

The decision is typically represented by binary assignment variables:

xij =

{

0 if task i ∈ N is not assigned to machine j ∈ M
1 if task i ∈ N is assigned to machine j ∈ M

Assignment costs/times are given for each possible assignment (i, j)
between a task i ∈ N and a machine j ∈ M.



The linear assignment problem

A set N of jobs and a set M of agents are given, with |N| = |M|.
An assignment cost cij is given for each i ∈ N and j ∈ M.
Assign a job to each agent and an agent to each job, minimizing the
total assignment cost.

Binary variables xij are used to represent the selected assignments.

minimize z =
∑

i∈N,j∈M

cijxij

subject to
∑

i∈N

xij = 1 ∀j ∈ M

∑

j∈M

xij = 1 ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ M



The generalized assignment problem

A set N of jobs and a set M of agents are given.
An assignment cost cij and a resource consumption aij are given for
each i ∈ N and j ∈ M.
A capacity (amount of available resource) bj is given for each
machine j ∈ M.
Assign jobs to machines, minimizing the total assignment cost and
complying with capacity constraints.

Binary variables xij are used to represent the selected assignments.

minimize z =
∑

i∈N,j∈M

cijxij

subject to
∑

i∈N

aijxij ≤ bj ∀j ∈ M

∑

j∈M

xij = 1 ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ M



Scheduling problems

Scheduling problems are typically short-term decisions, arising at an
operational level, when operations are considered in full detail and
time is taken into account: for each lot to be produced on a machine a
starting time must be decided, according to a suitable job sequence:
the schedule.

A set N of jobs and a set M of machines are given.
Each job i ∈ N can be characterized by

• a processing time pi

• a release date ri

• a due date di

• a deadline Di

• a weight wi

• a delay cost ci

An available time horizon T is given.
The objective is to schedule all jobs, minimizing a function of their
completion times.



Scheduling problems

Scheduling problems are typically very difficult to solve to proven
optimality.

They involve assignment decisions to assign jobs to machines (binary
variables).

They involve sequencing decisions, that can be represented in
several ways.



Linear ordering

Linear ordering variables (binary):
xij = 1 if and only if i precedes j, for each pair of distinct jobs i and j.

Linear ordering constraints:

xij + xji = 1 ∀i 6= j ∈ N

xij + xjk + xkl = 2 ∀i 6= j 6= k ∈ N

xij ∈ {0, 1} ∀i, j ∈ N



Time-indexed formulations

Time-indexed variables (binary):
xit = 1 if and only if job i starts at time t , ∀i ∈ N and ∀t ∈ T .

The time axis is discretized: the granularity affects the number of
variables.

Time-indexed formulation constraints:

T−pj+1
∑

t=1

xjt = 1 ∀j ∈ N

∑

j∈N

t
∑

s=max{1,t−pj+1}

xjs ≤ 1 ∀t = 1, . . . ,T

xjt ∈ {0, 1} ∀j ∈ N ∀t = 1, . . . ,T



Disjunctive constraints

Disjunction variables (binary):
xij = 1 if and only if job i starts before job j, ∀i 6= j ∈ N.

Starting time variables (continuous):
tj indicates the starting time of each job j ∈ N.

Disjunctive constraints:

ti ≥ tj + pj + Mxij ∀i 6= j ∈ N

xij + xji = 1 ∀i 6= j ∈ N

ti ≥ 0 ∀i ∈ N

ti ≤ T − pi ∀i ∈ N



Classification

In 1979 Graham et al. introduced a three fields notation to classify
scheduling problems

α|β|γ

where

• α describes the machines

• β describes the jobs

• γ describes the objective.



Classification: α

Some possible values for α are:
• 1: single machine
• P (identical): the processing time of each job does not depend

on the machine;
• Q (uniform): the machines have different speed sj and the

processing time of job i on machine j is pij = pi/sj ;
• R (unrelated): the values of pij are in general different and

unrelated;
• F (flow shop): each job must be processed by each machine

according to a fixed machine sequence which is the same for all
jobs;

• J (job shop): as in flow shop but the machine sequence can be
different for each job;

• FJ (flexible job shop): machines are replaced by work centers
equipped with parallel identical machines;

• O (open shop): all jobs must be processed on all machines but
without routing restrictions.



Classification: β

Some possible values for β are:

• rj : with release dates;

• prmp: with preemption (and resume);
• with precedence constraints, represented by a digraph G with a

node for each job:
• prec: G is generic;
• chain: G is a set of paths;
• tree: G is an oriented tree;

• brkdwn (breakdown): with fixed unavailability periods for the
machines;

• s: with set-up times (dependent or independent of the machine);

• pj = 1: unitary processing times.



Classification: KPIs

Some typical KPIs in scheduling:

• Cj : completion time of job j;

• Lj = Cj − dj : lateness of job j (it can be negative);

• Tj = max{Lj , 0}: tardiness of job j (non-negative);

• Uj = 1 if Cj > dj and 0 otherwise.



Classification: γ

Some possible values for γ are:

• Cmax : minimize the completion time of the last job (makespan);

• Lmax : minimize the maximum lateness;

•

∑

Cj : minimize the total completion time;

•

∑

wjCj : minimize the total weighted completion time;

•

∑

(wj)Tj : minimize the total (weighted) tardiness;

•

∑

(wj)Uj : minimize the total (weighted) number of tardy jobs.



Single-machine scheduling

For some single-machine scheduling problems, the optimal solution
can be computed by sorting the jobs according to specific ordering
criteria.

Some well-known examples are:

• 1||
∑

j wjCj

• 1|rj , prmp|
∑

j Cj

• 1||Lmax

• 1||
∑

j Uj

Several single-machine scheduling problems can be solved in
polynomial or pseudo-polynomial time by dynamic programming.



Sum of weighted completion times

1||
∑

j Cj (unweighted case).

SPT (Shortest Processing Time) rule (Smith’s rule): sort the jobs by
non-decreasing processing time.

Proof: by exchange.
Complexity: O(n log n).

1||
∑

j wjCj (weighted case).

WSPT (Weighted Shortest Processing Time) rule (Smith’s rule): sort
the jobs by non-decreasing values of the ratio wj/pj .

Proof: by exchange.
Complexity: O(n log n).



Preemption and unit weights

1|rj , prmp|
∑

j Cj .

This problem has unit weights, release dates and preemption.
SRPT (Shortest Remaining Processing Time) rule: sort the jobs by
non-decreasing residual processing time.

Proof: by exchange.
Complexity: O(n log n).



Maximum lateness

1||Lmax .

EDD (Earliest Due Date) rule (Jackson’s rule): sort the jobs by
non-decreasing due dates.

Proof: by exchange.
Complexity: O(n log n).



Number of tardy jobs

1||
∑

j Uj .

EDD (Earliest Due Date) rule (Moore’s algorithm):

• sort the jobs by non-decreasing due dates (EDD)

• start with an empty schedule
• for each job j in the EDD ordered list

• append j to the schedule
• if j is late, then select the longest job k in the schedule and remove

it

• add all the removed jobs at the end of the schedule (in any
order).


