
Packing problems
Logistics

Giovanni Righini



Packing

In general, packing problems arise when items must be put into bins:
• goods in boxes
• boxes on pallets
• pallets in containers
• containers in trains, barges, ships, airplanes...

Objective:
• minimize the number or the cost of the used bins;
• maximize the number or the value of the packed items.



Items and bins

Items can be characterized by
• size (1, 2, 3 dimensions)
• weight
• value
• compatibilty/incompatibility with other items or with bins
• et cetera...

Bins can be characterized by
• size (1, 2, 3 dimensions)
• weight capacity
• cost for usage
• number of available bins
• et cetera...

In on-line packing problems, items must be loaded as they arrive
according to a given sequence, with no knowledge about the next
items to come.



The knapsack problem

Given a set N of items with a value ci and a weight ai and a knapsack
with capacity b, select a maximum value subset of items that fits into
the knapsack.

A binary variable xi indicates whether item i is selected or not ∀i ∈ N.

maximize z =
∑

i∈N

cixi

subject to
∑

i∈N

ai xi ≤ b

xi ∈ {0, 1} ∀i ∈ N



Variations

Many possible variations may occur:
• multiple capacities (weight, volume, value...),
• multiple knapsacks,
• several copies of identical items for each type i ∈ N (Integer KP),
• incompatible items,
• selection of one item from each given group of items (Multiple

Choice KP)...



Bin packing

Pack a set N of items of given weight ai ∀i ∈ N in a minimum number
of identical bins of capacity b.

A binary variable xij indicates whether item i is assigned to bin j.
A binary variable yj indicates whether bin j is used or not.

minimize z =
∑

j∈M

yj

subject to
∑

j∈M

xij = 1 ∀i ∈ N

∑

i∈N

ai xij ≤ b ∀j ∈ N

xij ≤ yj ∀i ∈ N, ∀j ∈ M

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ M

yj ∈ {0, 1} ∀j ∈ M



Bin packing: an alternative formulation

Constraints xij ≤ yj can be replaced by a modification to capacity
constraints: ∑

i∈N

ai xij ≤ byj ,

yielding a more compact model but a weaker linear relaxation.

minimize z =
∑

j∈M

yj

subject to
∑

j∈M

xij = 1 ∀i ∈ N

∑

i∈N

aixij ≤ byj ∀j ∈ N

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ M

yj ∈ {0, 1} ∀j ∈ M



Variations

Many possible variations may occur:
• multiple capacities (weight, volume, value...),
• heterogeneous bins,
• costs associated with bins,
• incompatibility constraints,
• level packing/strip packing,
• bi-dimensional, tri-dimensional packing...

The same models describe cutting problems.



Complexity

From a computational complexity point of view, packing problems are
in general difficult to solve (NP-hard), because they translate into
integer/binary linear programming models.

The most commonly used techniques are
• dynamic programming (for single bin problems),
• branch-and-price (for multi-bin problems),
• heuristic algorithms (for 2D and 3D problems).



Dynamic programming for the KP

• Policy: sort the items in N (the variables) from x1 to xn.
• State:

• Feasibility depends on the residual capacity;
• Cost does not depend on previous decisions.

Hence the state is given by the last item considered (i) and the
capacity used so far (u).

• R.E.F.:
• Initialization: z(0, 0) = 0;
• Extension:

z(i , u) = max{z(i −1, u), z(i −1,u−ai)+ci} ∀i ∈ N,∀u = 1, . . . , b.



Dynamic programming for the KP

i-1, u 
Xi=0 

Xi=1 

i, u+ai 

i, u 

The state graph has a layer for each item (variable) j ∈ N and b + 1
nodes per layer.

Complexity: The graph has O(nb) nodes and each of them has only
two predecessors. Then the D.P. algorithm has complexity O(nb),
which is pseudo-polynomial.



Heuristics for on-line packing problems

First Fit: Put each object in the first bin that can accommodate it. If no
such bin exists, then initialize a new bin.

Best Fit: Put each object in the bin with minimum residual capacity
among those than that can accommodate it. If no such bin exists,
then initialize a new bin.

Both of them have a constant approximation factor equal to 1.7
(2013,2014).

If the objects are sorted by decreasing weight, then both First Fit
Decreasing and Best Fit Decreasing have constant approximation
factor equal to 1.2 (2007).



2D and 3D packing problems

Both items and bins are usually represented by rectangles (2D) or
parallelepiped (3D).

• with/without rotation
• with/without overlap
• bin packing/strip packing
• with/without levels
• with balance constraints (ships, artificial satellites...)
• loading/unloading constraints (LIFO, guillotine cutting,...)



Heuristics for 2D packing problems

In some heuristics item are accommodates in layers within each bin.

Finite First Fit: sort the items by non-increasing height. For each
item, insert it in the leftmost position of the first layer of the first bin
that can accommodate it. If no suitable position exists, then initialize a
new layer in the first bin that can accommodate it. If no suitable bin
exists, then initialize the first layer of a new bin.

Finite Best Fit: same as FFF but selecting the layer and the bin with
minimum residual capacity.



Heuristics for 2D packing problems

Bottom-Left: same as before but without layers. Insert each bin in the
bottom-most and left-most position in the first bin where this is
possible.



Heuristics for 3D packing problems

3D packing problems can be solved in a heuristic way by transforming
them in into a set of bi-dimensional packing problems, disregarding
the height of items and bins, followed by a 1D packing problem,
where 2D sets of items must be stacked one above the other to form
3D arrangements.


