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Location theory

Location theory is a branch of Operations research and Mathematical
programming in particular.

It is concerned with algorithms to compute optimal locations for
resources, service centers, and so on.

It obviously applies to logistics but not only to logistics: it has
applications in many contexts in which locations have to be
determined in graphs (e.g. optimally locating ambulances in a city) or
in Euclidean spaces (e.g. optimally locating antennas in a territory).
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Decisions

In logistics, locational decisions are typically taken at a strategic level
or less frequently at a tactical level.

Costs usually take into account
• cost terms that depend only on the location chosen (e.g.

building, renting, maintaining a warehouse);
• cost terms that depend on the interaction with the demand (e.g.

transportation costs, distances between service centers and
customers’ locations,...).

Locating facilities induces a (geographical) partition of the demand:
location/allocation problems.
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Classification

Location problems can be classified according to several criteria.
• Decision space:

• continuous space (usually ℜ2) (continuous location);
• graphs:

• location restricted to the vertices/nodes (discrete location);
• location allowed also on the edges/arcs (continuous location).

• Number/type of facilities: single-facility, multi-facility,...
• Objective: min-sum, min-max, max-cover,...
• Constraints: capacity, forbidden regions,...
• Time horizon: single-period or multi-period.
• Type of facility: single-type or multi-type.
• Type of material flow: single-commodity or multi-commodity.
• Interaction among facilities (e.g. hub airports).
• Flow direction: inbound, outbound, both.
• Splittable demand.
• Competitive location.
• Obnoxious location.
• Hybrid models: location/inventory, location/routing,

location/scheduling, etc...
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Objectives

Median of a set of points N: a point X that minimizes the sum of the
distances between X and the points in N (min-sum).

minimize z(X) =
∑

Pi∈N

dist(X ,Pi ).

Center of a set of points N: a point x that minimizes the maximum of
the distances between X and the points in N (min-max).

minimize z(X) = max
Pi∈N

dist(X ,Pi ).

Weighted medians and centers minimize
∑

Pi∈N widist(X ,Pi ) and
maxPi∈N widist(X ,Pi ), where wi is a given weight for each point
Pi ∈ N.
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Location/allocation

When a given number of facilities must be located, it is indicated by p:

• min-sum: p-median problem;
• min-max: p-center problem.

The set N is partitioned into p subsets, one assigned to each facility
(obviously, the closest one).

A problem has the single-source constraint if each point Pi ∈ N must
be assigned to a unique facility.

A problem has the single-assignment property if it has at least an
optimal solution complying with the single-source constraint, although
the contraint is not explicitly enforced.

In their basic version, uncapacitated location problems have the
single-assignment property.
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Distances

In continuous spaces, distances can be defined as
• Euclidean distances: dist(Pi ,Pj) =

√

(xi − xj)2 + (yi − yj)2 (L2

norm)
• Manhattan distances: dist(Pi ,Pj ) = |xi − xj |+ |yi − yj | (L1 norm)
• Others. For instance: dist(Pi ,Pj) = max{|xi − xj |, |yi − yj |} (L∞

norm)

In graphs, distances are defined as shortest path lengths.

In both cases:
• dist(Pi ,Pi) = 0
• dist(Pi ,Pj) > 0 ∀Pi 6= Pj

• dist(Pi ,Pj) = dist(Pj ,Pi )

• dist(Pi ,Pj) ≤ dist(Pi ,Pk ) + dist(Pk ,Pj) ∀Pi ,Pj ,Pk

In some cases some of these properties may not hold (e.g. digraphs).
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Location in ℜ2

Location problems in continuous spaces typically involve Euclidean
distances, which are non-linear in the variables:

dist(i, j) =
√

(xi − xj)2 + (yi − yj)2.

Typical examples are:

• finding the 1-median in ℜ2: the Weber problem (easy: Weiszfeld
algorithm)

• finding the p-medians in ℜ2: the multi-Weber problem (difficult:
Cooper heuristic)

• finding the 1-center in ℜ2: the Sylvester problem (easy:
Elzinga-Hearn algorithm)

• finding the p-centers in ℜ2: the p-center problem (difficult:
heuristics).
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1-median in ℜ2: Weiszfeld algorithm

• Initialize a point x .
• For each point not coinciding with x compute the first derivative

of its distance in x .
• Compose all vectors and compute x ′.
• If last step is small then stop, else repeat.

The problem is convex: there is a unique global minimum.

The optimal solution is better and better approximated, not
necessarily reached exactly.
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1-center in ℜ2

One of the shortest papers ever (one line and a half long):

J.J.Sylvester, A question in the geometry of situation, Quarterly
Journal of Pure and Applied Mathematics 1, 79 (1857).

“It is desired to find the least circle which shall contain a given system
of points in a plane.”
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1-center in ℜ2: Elzinga-Hearn algorithm

• Select a subset P of three of the given points, at random.
• Find the center x of the smallest circle C covering them.
• Find a given point P′ 6∈ P farthest from x .
• Find the center x of the smallest circle C′ covering the points in
P ∪ {P′}.

• Delete from P the points stricly covered by C′.
• Repeat until all points are covered.

The theoretical complexity is quadratic, but in practice the running
time grows linearly with the number of given points.
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p-medians: Cooper algorithm

• Initialize p medians x1, x2, . . . xp in some way.
• For each given point j = 1, . . . , n assign it to the current closest

median.
• For each cluster of points assigned to the same median,

compute the optimal location of the median.
• If nothing has changed, stop; else repeat.

This algorithm is very easy to code, but it can produce arbitrarily bad
solutions.
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Medians

Node optimality property. Optimal location of (weighted) medians
always occurs in the nodes/vertices of the graph.

Proof. The proof uses the following lemmata.
1. A linear function is concave.
2. If f (x) is concave and λ ≥ 0, then λf (x) is concave.
3. If f1(x) and f2(x) are concave functions, then f1(x) + f2(x) is also

concave.
4. If f (v) is a concave function of vector v and the components of v

are linear in x , then f (v(x)) is concave.
5. If fi(x) i = 1, . . . , n is a set of concave functions, then

mini=1,...,n{fi(x)} is concave.
6. If f (x) is concave and defined in [0, 1], then

min0≤x≤1{f (x)} = min{f (0), f (1)}.
Then, when transportation costs are concave functions, the cost
function on each arc is concave. Therefore, there exists at least a
subset of p vertices that are optimal p-medians of the graph.
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The 1-median problem

Given a weighted graph G = (V ,E), being dij the distance between
any two vertices i and j, find the 1-median of the graph.

Binary variables: xi = 1 if and only if the median is in vertex i ∈ V .

minimize z =
∑

i∈V

∑

j∈V

dijxi

s.t.
∑

i∈V

xi = 1

xi ∈ {0, 1} ∀i ∈ V .

The problem is easily solvable by enumeration.
All pairs shortest paths can be computed in O(nm) time.
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The 1-median on a tree

Given a Tree T = (V ,E), consider a generic edge [v1, v2] ∈ E and
the two trees T1 = (V1,E1) and T2 = (V2,E2) obtained from T by
removing it, such that v1 ∈ V1 and v2 ∈ V2.

Let x ∈ V be the 1-median of T .

Lemma 1. x ∈ T1 if and only if w(V1) ≥ w(V2).

Lemma 2. If w(V1) ≥ w(V2), then the 1-median of T is the 1-median
of T1, where w(v1) is increased by w(V2).

Majority algorithm (Goldman, 1971).

1. Take any leaf v of T : if w(v) ≥ w(V )/2, stop: v is the median.

2. Take the unique vertex u adjacent to v ; increase w(u) by w(v);
delete v from T . Go to 1.

Worst-case time complexity: O(m).
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The p-medians problem

Given a weighted graph G = (V ,E), being dij the distance between
any two vertices i and j, and given an integer 1 < p < |V |, select p
medians of the graph.

The cost incurred by each vertex is the distance to its closest median.
Hence the selection of the medians induces a partition of the graph
into p vertex subsets.

Algorithms:
• locate-first-allocate-second;
• allocate-first-locate-second;
• iterated location-allocation.
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The p-medians problem on a graph

Location variables: yi binary, representing whether i ∈ V is a median.
Allocation variables: xij binary, indicating whether j ∈ V is assigned to
the median in i ∈ V .

minimize z =
∑

i∈V

∑

j∈V

dijxij

s.t.
∑

i∈V

yi = p

∑

i∈V

xij = 1 ∀j ∈ V

xij ≤ yi ∀i ∈ V , ∀j ∈ V

yi ∈ {0, 1} ∀i ∈ V

xij ∈ {0, 1} ∀i ∈ V∀j ∈ V .

The p-median problem is NP-hard (Kariv and Hakimi, 1979).
The integrality restrictions xij ∈ {0, 1} are redundant.
Variables yi can be replaced by binary variables xii .
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Algorithms

Enumeration algorithms require to enumerate and evaluate all vertex
subsets of cardinality p.

They are viable only for small values of p (n. of medians) or n (n. of
vertices).

The linear continuous relaxation provides integer solutions when
• the graph is a path;
• the graph has a single cycle;
• the graph is made by the above components.

For the general case the most effective algorithms are based on
Lagrangean relaxation or column generation.
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Graph-theoretic algorithms

Graph-theoretic algorithms are used when the underlying graph has a
special structure; in particular, when it is a tree.

2-medians on a tree.

1. For each e ∈ E , consider the two trees T1 and T2 obtained from
T by deleting e.

2. Compute the optimal 1-median for T1 and T2 separately; sum
their costs.

3. Output the pair of optimal 1-medians of the (T1,T2) pair of
minimum total cost.

Complexity: O(n2).

For general p, Kariv and Hakimi (1979) gave a D.P. algorithm with
complexity O(p2n2).
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Centers

The node optimality property does not hold for optimal (weighted)
centers.

Lemma 3 used for medians:
If f1(x) and f2(x) are concave functions, then f1(x) + f2(x) is also
concave.

If f1(x) and f2(x) are concave functions, then max{f1(x), f2(x)} is not
necessarily concave.

Classification (Handler):

{V ,A}/{V ,A}/{p, λ−1}/{N,T}

meaning

facility set / demand set / n.centers or max distance / type of graph
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The restricted 1-center problem on a graph: V/V/1/N

Given a weighted graph G = (V ,E), being dij the distance between
any two vertices i and j, find the 1-center of the graph.

Binary variables: xi = 1 if and only if the center is in vertex i ∈ V .
Continuous variable: r , maximum distance between a vertex and the
center.

minimize z =r

s.t.
∑

i∈N

xi = 1

dijxi ≤ r ∀j ∈ V

xi ∈ {0, 1} ∀i ∈ V .

The problem is easily solvable by enumeration.
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Absolute centers on a tree

Absolute 1-center problem on a tree: A/V/1/T (Haendler, 1973).
1. Select any point x on the tree, arbitrarily.
2. Find the leaf u that is farthest from x .
3. Find the leaf v that is farthest from u.
4. Compute the midpoint of the path between u and v .

Complexity: O(n).

Absolute 2-center problem on a tree: A/V/2/T (Haendler, 1978).
1. Find the absolute 1-center x on the tree (midpoint between

leaves u and v ).
2. Delete any arc containing x and belonging to the path betweeen

u and v .
3. Find the absolute 1-centers of the two resulting subtrees.

Complexity: O(n).

Absolute p-centers problem on a tree: A/V/p/T
Complexity: O(n log n) (Frederickson and Johnson, 1983).



Introduction Continuous location Location on graphs Plant location problem

The absolute 1-center problem on a graph A/V/1/N

Given an undirected weighted graph G = (V ,E), for any two distinct
vertices u ∈ V and v ∈ V and any edge [i, j] ∈ E , x ∈ [i, j] is a local
center if and only if







dist(u, x) = dist(v , x)
i ∈ P(u, x)
j ∈ P(v , x)

There are at most n local centers on each edge.
Sorting them to compute their intersections takes O(n log n).
This must be repeated for each edge, i.e. m times.

Complexity: O(mn log n) (Kariv and Hakimi, 1979).
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The absolute p-centers problem on a graph: A/V/p/N

Given a weighted graph G = (V ,E), being dij the distance between
any two vertices i and j, and given an integer 1 < p < |V |, select p
centers of the graph.

The cost is the maximum distance between a vertex and the center of
its cluster.
Hence the selection of the centers induces a partition of the graph
into p vertex subsets.

All existing algorithms operate on the same principle: generating and
solving a series of set covering problems.

Only local centers are candidate locations for the p centers.
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Minieka algorithm (1970)

Let C be the set of local centers of the graph.

1. Compute a shortest path matrix F with a row for each vertex and
a column for each local center in the graph.

2. Select an arbitrary subset of p columns, S.

3. Loop: Set d := maxv∈V minx∈S{fvx}

4. Set bvx := 0 if fvx ≥ d and bvx := 1 otherwise.

5. Solve the set covering problem
min z = {eT x : Bx ≥ e, x ∈ {0, 1}|C|}.

6. If z > p, then stop: S is optimal. Otherwise a solution S′ better
than S has been obtained: go to Loop.
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Minieka algorithm (improved version)

Let dx the radius of the local center, i.e. its distance from the vertices
defining it.

1. Compute a shortest path matrix F with a row for each vertex and
a column for each local center in the graph.

2. Select an arbitrary subset of p columns, S.

3. Loop: Set d := maxv∈V minx∈S{fvx}

4. Set bvx := 0 if fvx > d and bvx := 1 otherwise.

5. Delete from matrix b all columns j s.t. dj ≥ d .

6. Solve the set covering problem
min z = {eT x : Bx ≥ e, x ∈ {0, 1}|C|}.

7. If z > p, then stop: S is optimal. Otherwise a solution S′ better
than S has been obtained: go to Loop.
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Relaxation algorithm (Garfinkel, Neebe, Rao, 1977)

The most time consuming step of Minieka algorithm is the solution of
the set covering problem.

In the p-center problem, most constraints are not binding at optimality.

The idea is to iteratively generate vertices to be inserted in the set
covering problem instance.

These algorithms should be re-evaluated today, comparing them with
general-purpose ILP solvers that were not available in the 70s.
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The restricted p-centers problem on a graph: V/V/p/N

Location variables: yi = 1 if and only if a center is in vertex i ∈ V .
Allocation variables: xij binary, indicating whether j ∈ V is in the
cluster with a center in i ∈ V .
Continuous variable: r , maximum distance between a vertex and its
center.

minimize z =r

s.t.
∑

i∈N

yi = p

∑

i∈V

xij = 1 ∀j ∈ V

xij ≤ yi ∀i ∈ V , ∀j ∈ V

dijxij ≤ r ∀i ∈ V , ∀j ∈ V

yi ∈ {0, 1} ∀i ∈ V

xij ∈ {0, 1} ∀i ∈ V , ∀j ∈ V .



Introduction Continuous location Location on graphs Plant location problem

The restricted p-centers problem on a graph: V/V/p/N

An algorithm by Toregas, Swan, ReVelle and Bergman (1971)
resembles Minieka’s algorithm for A/V/p/N.

The set of local centers C is replaced by the vertex set V .

The midpoint property no longer holds.

The relaxation algorithm can be extended to this case, but it does not
provide substantial savings in computing time as it does with
A/V/p/N.

Therefore V/V/p/N can be even more difficult to solve than
A/V/p/N.
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Continuous demand: A/A/p/N and V/A/p/N

A/A/p/N.

This is the most difficult case.

The relaxation approach can be extended to solve it.

Efficient algorithms are available for A/A/p/T (Chandrasekaran and
Tamir, 1980, Megiddo and Tamir, 1983).

V/A/p/N.

It is solvable by adapting the relaxation algorithm.
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Inverse center problems

A/V/λ−1/N.

Let zλ be the minimum number of centers needed to cover the
vertices within a radius λ.

A single set covering instance must be solved.

Extensions to A/A/λ−1/N, V/V/λ−1/N and V/A/λ−1/N are
straightforward.
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Max covering location problem

Given a weighted graph G = (V ,E), given the distance dij between
any two vertices i and j, given the demand qi associated with each
vertex i ∈ V , given an integer 1 < p < |V |, given a radius r , select p
vertices of the graph so that the maximum demand is covered.

A vertex is covered by a facility if and only if the distance between
them is within the radius.
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Max covering location problem

Location variables: yi = 1 if and only if a facility is located in vertex
i ∈ V .
Covering variables: wj = 1 if and only if vertex j ∈ V is covered.

maximize z =
∑

j∈N

qj wj

s.t.
∑

i∈V

yi = p

wj ≤
∑

i∈V :dij≤r

yi ∀j ∈ V

yi ∈ {0, 1} ∀i ∈ V

wj ∈ {0, 1} ∀j ∈ V .

The problem is NP-hard, but it is solvable in polynomial time if the
graph is a tree.
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Single-echelon single-commodity location

Plant (capacitated) location problem: homogeneous locations,
single-commodity, mono-directional flow (e.g. outbound only), linear
or piece-wise linear cost for both transportation and operations at the
facilities, splittable demand.

The problem is modelled with a complete bipartite graph:
• V1 is the set of sites where a facility can be located;
• V2 is the set of sites where customers are located;
• A = V1 × V2 is the arc set connecting the two partitions.

Each potential facility has a capacity qi ∀i ∈ V1.
Each customer has a known demand dj ∀j ∈ V2.
The operational cost for each potential facility is Fi(ui ) ∀i ∈ V1, where
ui indicates the total flow from i.
The transportation cost for each arc (i, j) ∈ A is Cij(xij), where xij

indicates the amount of flow on the arc.
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Single-echelon single-commodity location

The mathematical model is:

minimize z =
∑

i∈V1

∑

j∈V2

Cij(xij) +
∑

i∈V1

Fi(ui)

s.t.
∑

j∈V2

xij = ui ∀i ∈ V1

∑

i∈V1

xij = dj ∀j ∈ V2

0 ≤ ui ≤ qi ∀i ∈ V1

xij ≥ 0 ∀i ∈ V1, ∀j ∈ V2

Additional constraints can be imposed such as capacities on the arcs
or limits to the number of locations.
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Fixed transportation price and facility set-up cost

Assume Cij(xij) = cijxij and Fi(ui ) =

{

fi if ui > 0
0 if ui = 0

To represent fixed costs we need to use a binary variable yi replacing
the continuous variable ui for each potential facility i ∈ V1.

minimize z =
∑

i∈V1

∑

j∈V2

cijxij +
∑

i∈V1

fiyi

s.t.
∑

j∈V2

xij≤ qiyi ∀i ∈ V1

∑

i∈V1

xij = dj ∀j ∈ V2

yi ∈ {0, 1} ∀i ∈ V1

xij ≥ 0 ∀i ∈ V1, ∀j ∈ V2

The problem is formulated as a mixed-integer programming model.
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Fixed and variable facility set-up costs

Assume that

Fi(ui) =

{

fi + giui if ui > 0
0 if ui = 0

Since ui =
∑

j∈V2
xij ,

minimize z =
∑

i∈V1

∑

j∈V2

(cij+gi)xij +
∑

i∈V1

fi yi

s.t.
∑

j∈V2

xij ≤ qiyi ∀i ∈ V1

∑

i∈V1

xij = dj ∀j ∈ V2

yi ∈ {0, 1} ∀i ∈ V1

xij ≥ 0 ∀i ∈ V1, ∀j ∈ V2
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Lower bounds on the activity level

Assume that a facility can profitably operate only if ui ≥ mi ∀i ∈ V1.
We can impose such a constraint in this way:

minimize z =
∑

i∈V1

∑

j∈V2

(cij + gi)xij +
∑

i∈V1

fiyi

s.t.
∑

j∈V2

xij ≤ qi yi ∀i ∈ V1

∑

j∈V2

xij ≥ miyi ∀i ∈ V1

∑

i∈V1

xij = dj ∀j ∈ V2

yi ∈ {0, 1} ∀i ∈ V1

xij ≥ 0 ∀i ∈ V1, ∀j ∈ V2
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Concave piecewise linear facility set-up costs

Assume that

Fi(ui) =







0 if ui = 0
f ′i + g′

i ui if 0 < ui ≤ ui

f ′′i + g′′
i ui if ui > ui

where f ′i < f ′′i and g′
i > g′′

i .

We can model this situation by replacing each facility i with as many
facilities as the number of intervals in the definition of Fi(ui ), each one
with fixed and variable facility costs and with lower and upper bounds
on the activity level.

At optimality no more than one of the artificial facilities corresponding
to the same actual facility is selected.
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Single source constraints

Single-source constraints impose that each customer j ∈ V2 be
completely served by a single facility i ∈ V1.

Example (Cortinhal and Captivo, 2003): SSCFLP - Single source
capacitated facility location problem (single echelon, single
commodity, linear transportation costs, fixed facility costs):

minimize z =
∑

i∈V1

∑

j∈V2

cijxij +
∑

i∈V1

fiyi

s.t.
∑

j∈V2

djxij ≤ qiyi ∀i ∈ V1

∑

i∈V1

xij = 1 ∀j ∈ V2

yi ∈ {0, 1} ∀i ∈ V1

xij ∈ {0, 1} ∀i ∈ V1, ∀j ∈ V2

The problem is formulated as a 0-1 linear programming model.
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SSCFLP: Lagrangean relaxation

Constraints
∑

i∈V1
xij = 1 ∀j ∈ V2 are dualized, i.e. they are

transformed into penalty terms in the Lagrangean objective function:

zLR(λ) =
∑

i∈V1

∑

j∈V2

(cij − λj )xij +
∑

i∈V1

fiyi +
∑

j∈V2

λj ,

where the coefficients λ ≥ 0 are the Lagrangean multipliers.

The constraint set is now:

s.t.
∑

j∈V2

djxij ≤ qiyi ∀i ∈ V1

∑

i∈V1

qiyi ≥
∑

j∈V2

dj

yi ∈ {0, 1} ∀i ∈ V1

xij ∈ {0, 1} ∀i ∈ V1, ∀j ∈ V2

For any choice of λ ≥ 0, z∗
LR can be found by solving |V1|+ 1

instances of the binary knapsack problem and it is guaranteed to be a
valid lower bound to z∗.
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SSCFLP: dual optimization

The Lagrangean multipliers are iteratively adjusted by sub-gradient
optimization.

λ
(t+1)
j = λ

(t)
j + ρ(t)

z − z∗
LR(λ

(t))

||g(t)||
∀j ∈ V2,

where
• z is the best incumbent upper bound;
• z∗

LR(λ
(t)) is the current optimal value of the Lagrangean objective;

• g(t) is the current subgradient: gj = 1 −
∑

i∈V1
xij ;

• ρ(t) is a step parameter, halved after every 5 iterations without
improvement of the lower bound.

Stop when
• z − z∗

LR(λ
(t)) < 1

• max. n. of iterations reached
• ||g(t)|| = 0
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SSCFLP: Lagrangean heuristic

At each iteration of the subgradient algorithm, V2 is partitioned into
three subsets:
• V=

2 = {j ∈ V2 :
∑

i∈V1
xij = 1}

• V−
2 = {j ∈ V2 :

∑

i∈V1
xij = 0}

• V+
2 = {j ∈ V2 :

∑

i∈V1
xij > 1}

Heuristic:
• Optimally reassign each j ∈ V−

2 ∪ V+
2 selecting a single source

i ∈ V1 for it;
• If the capacity constraint is violated, start a local search

algorithm.
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SSCFLP: exact optimization

Provably optimal solutions can be computed by branch-and-bound,
where lower bounds are computed for each sub-problem with
Lagrangean relaxation.

A suitable branching policy is needed. For instance (binary
branching):
• branch on a yi variable;

• yi = 0 in one branch;
• yi = 1 in the other.

• branch on a pair (u, v) of customers:
• xiu = xiv ∀i ∈ V1 in one branch;
• xiu + xiv ≤ 1 ∀i ∈ V1 in the other.
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