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Introduction

Queues

Queues occur when a service is provided by a limited number of
resources to a population of users or customers.

Queuing systems are common in logistics. For instance:
jobs must be processed by a given machine in a production plant;
people line up to obtain service service (bank, post-office,...);
machines ask for repair operations by some specialized workers;
patients wait for treatment in a First-Aid center;
incoming calls are received by a call center;
vehicles form lines when paying tolls to enter/leave highways or
when traversing state borders;
distributed processes ask for access to a central server in a
computerized system;
etc...
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Queuing theory

Queuing theory aims at studying queuing systems in a scientific and
quantitative way, to optimize their performance and cost.

It concerns both analysis and design of queuing systems.

Design is often done via simulation and repeated analysis of several
alternative scenarios, because constraints and objectives are typically
non-linear and non-deterministic.



Introduction Probability distributions Birth-and-death process Results for some queuing systems Queuing systems design

Introduction

Analysis of queuing systems (1)

A model of a queuing system is described by the following four main
components.

A source representing the generation of demand:
◮ it may come from a finite or an infinite population;
◮ it is described by the interarrival time, i.e. the time interval between

two consecutive arrivals of customers in the system. The
interarrival time is usually modeled with a random variable,
described by a probability distribution.
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Analysis of queuing systems (2)

A queue with finite or infinite capacity.

A discipline that is used to select which customer must be served
among those in the queue: First-In-First-Out, priority-based,. . . .

A service center represented by a number of parallel servers,
providing the same service to the same queue. It is described by
the service time, i.e., the time needed to provide service to each
customer. The service time is usually modeled with a random
variable, described by a probability distribution.
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Classification

Queuing systems are classified with a three fields notation:

the first field indicates the probability distribution of the interarrival
time;

the second field indicates the probability distribution of the service
time;

the third field indicates the number of parallel servers.

Typical distributions in the first two fields are:

M: Markovian,

D: degenerate,

Ek Erlang with parameter k ,

G: generic.
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Relevant quantities (1)

The main quantities that are relevant to the analysis of a queuing
system are:

s, the number of parallel servers;

n, the number of users in the system; it includes those receiving
service as well as those waiting in queue;

Pn(t), the probability that there are n users in the systems at time
t ;
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Relevant quantities (2)

λn, the mean arrival rate when there are n users in the system;

λ, the mean arrival rate when it does not depend on n;

µn, the mean completion rate for each server, when there are n
users in the system;

µ, the mean completion rate for each server, when it does not
depend on n;

1/λ, the mean arrival time;

1/µ, the mean service time for each server.
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The utilization factor

When n < s users are in the system, s − n servers are idle and the
system completion rate is nµ.

When n ≥ s users are in the system, all servers are busy and the
system completion rate is sµ.

The utilization factor of a queuing system is

ρ =
λ

sµ
.

It represents the mean fraction of time for which each server is busy.
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Steady-state conditions

When a queuing system is in a transient condition, the relevant
quantities may depend on time t .

When a queuing system is in a steady-state condition, the relevant
quantities do not depend on time t .

In general a queuing system reaches a steady-state condition if and
only if its utilization factor is strictly less than 1:

ρ < 1.

Otherwise the system explodes, i.e. the size of the queue goes to
infinity.
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Relevant performance indicators

When we analyze a queuing system in a steady-state condition, we
are mainly interested in these five performance indicators:

Pn: probability that n users are in the system;

L: average number of users in the system;

Lq: average number of users in the queue;

W : average time to traverse the system;

Wq: average waiting time in the queue.

From the probabilities Pn for each n, we can obtain all the others. In
particular

L =
∑

n

Pnn.
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Relations between the indicators

The performance indicators L, Lq, W and Wq are linked by three main
relations.

Little’s Law (1961). If λ does not depend on n:

L = λW

Lq = λWq.

If λn depends on n, Little’s Law still holds, by replacing λ with its mean
value

λ =
∑

n

Pnλn.

The third relation is fairly obvious: the overall time to traverse the
system is given by the time spent in queue plus the service time:

W = Wq + 1/µ.
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Markovian models

The most widely used probability distribution is the exponential
distribution. Its probability density function is:

P{T ≤ t} = 1 − e−αt

P{T > t} = e−αt

The expected value is 1/α. The variance is 1/α2.
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Properties (1)

Property 1. fT (t) is decreasing.

P{0 ≤ T ≤ ∆t} > P{t ≤ T ≤ t +∆t} ∀t > 0

The event T occurs more often before the expected value.

Service. It represents actions that are usually fast, occasionally very
long (e.g. service at a First-Aid center). It does not represent well
repetitive actions (e.g. toll payment at a highway barrier).

Arrivals. It represents independent interarrival times. Consecutive
arrivals are usually close to each other, but sometimes there are long
periods in between.
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Properties (2)

Property 2. Lack of memory.

P{T > t +∆t |T > ∆t} = P{T > t} ∀t > 0

The next event does not depend on the last one.

Service. The remaining service time cannot be better estimated from
the knowledge of the amount of time already elapsed since its
beginning.
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Properties (3.1)

Property 3. Relation with Poisson processes. Let X (t) be the number
of events occurring in the time interval [0, t].

P{X (t) = n} =
(αt)ne−αt

n!
n = 0,1,2, . . .

X (t) has a Poisson distribution with parameter αt . The average is
E{X (t)} = αt . The expected number of events per unit of time is α.
The counting of the events is a Poisson process with parameter α.
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Properties (3.2)

Service. When service time has an exponential distribution with
parameter µ, the average number of service completions between 0
and t is µt . With s active servers, it is sµt .

Arrivals. If users’ arrivals are Poisson events with parameter λ, every
interval with a same width has the same probability of containing an
arrival.
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Properties (4.1)

Property 4. The composition of Poisson processes is a Poisson
process. Given n random variables T1,T2, . . . ,Tn with exponential
distributions with parameters α1, α2, . . . , αn the random variable
U = mini=1,...,n{Ti} has exponential distribution with parameter
∑n

i=1 αi .
P{U > t} = e−(

∑n
i=1 αi )t

Viceversa: if λi = piλ, every process i is a Poisson process.
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Properties (4.2)

Arrivals. If the source population is composed of different types of
users, it is possible to study the interarrival times for the whole
population from the knowledge of the interarrival times for each user
type.

Service. If the servers have different service rates, it is possible to
study the service rate of the overall system from the knowledge of the
service rates of the servers.
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Properties (5)

In small intervals the probability of an event is about α∆t :

P{T ≤ t +∆t |T > t} ≈ α∆t for small∆t .

Arrivals/Service. This gives the probability that an arrival or a
completion occur in an interval of duration ∆t .
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Birth-and-death process

We consider the queuing system as a a dynamic system, whose state
is represented by the number of customers in the system, N(t).

We assume that arrivals and completions are independent.

The interarrival time is assumed to be a random variable with
exponential distribution with parameter λn.

The completion time for each server is assumed to be a random
variable with exponential distribution with parameter µn.

It is a special case of continuous-time Markov chain.
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Birth-and-death process: analysis

0 1 2 n − 2 n − 1 n
λ0 λ1 λn−2 λn−1

µ1 µ2 µn−1 µn

Define:

En(t): number of times the system enters state n up to time t .

Ln(t): number of times the system leaves state n up to time t .

Balance equation: limt→∞

En(t)
t = limt→∞

Ln(t)
t
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Birth-and-death process: analysis

We obtain a system of linear equations:














µ1P1 = λ0P0

λ0P0 + µ2P2 = (λ1 + µ1)P1

. . .
λn−1Pn−1 + µn+1Pn+1 = (λn + µm)Pn

There is an equation for each state, but one equation is linearly
dependent on the others.

The last equation is the normalization equation:
∑

∞

n=0 Pn = 1.
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Birth-and-death process: analysis

We define

cn =
λn−1λn−2 . . . λ0

µnµn−1 . . . µ1
n = 1,2, . . .

and we obtain

Pn = cnP0 from which P0 =
1

∑

∞

n=0 cn

Then:

L =
∞
∑

n=0

nPn Lq =
∞
∑

n=s

(n − s)Pn

W =
L

λ
Wq =

Lq

λ

where λ =
∑

∞

n=0 λnPn.
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Birth-and-death process: analysis

In some cases we can obtain the sums analytically; otherwise they
must be approximated numerically.

These results hold when a steady state exists:

λn = 0 for some n or

ρ = λ
sµ < 1.
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Results for some queuing systems

M/M/1

M stands for exponential distribution (of inter-arrival time and service
time).

Assuming ρ < 1:

Cn = λn

µn = ρn n = 0,1, . . .

P0 = 1 − ρ

Pn = ρn(1 − ρ)

L = ρ
1−ρ

Lq = L − (1 − P0) =
ρ2

1−ρ

W = 1
µ−λ

Wq = λ
µ(µ−λ)
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M/M/s

We assume ρ = λ
sµ < 1.

When n ≤ s, then µn = nµ.
When n ≥ s, then µn = sµ.

cn =

{

(λ/µ)n

n! n ≤ s
(λ/µ)n

s!sn−s n ≥ s

P0 = 1
∑s−1

n=0
(λ/µ)n

n! + (λ/µ)s

s!
1

1− λ
sµ

Pn =

{

(λ/µ)n

n! P0 n ≤ s
(λ/µ)n

s!sn−s P0 n ≥ s

Lq = P0(λ/µ)
sρ

s!(1−ρ)2

L = Lq + λ
µ

Wq =
Lq
λ

W = Wq + 1/µ
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M/M/1/K with finite capacity

The queue length is limited to K (e.g. a capacitated buffer). In this
case the system reaches a steady-state condition even if λ > µ.

λn =

{

λ n < K
0 n ≥ K

cn =

{

ρn n < K
0 n ≥ K

P0 = 1−ρ
1−ρK+1

Pn =

{

1
K+1 n ≤ K if ρ = 1

1−ρ
1−ρK+1 ρ

n n ≤ K otherwise

L =

{

K
2 if ρ = 1
ρ

1−ρ − (K+1)ρK+1

1−ρK+1 otherwise

Lq = L − (1 − P0)

W = L/λ

Wq = Lq/λ

where λ = λ(1 − PK ).
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M/M/s with finite population

We assume there exist only N potential customers: each of them can
be in the system or not (e.g. machine maintenance).

We assume the time spent by each customer out of the system is a
random variable with exponential distribution described by a parameter
λ.

Therefore the next arrival time is the minimum among the N − n arrival
times of the customers out of the system.
Hence it is a random variable with exponential distribution with
parameter λn = (N − n)λ.
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M/M/s with finite population

0 1 2 n − 1 n
Nλ (N − 1)λ

(N − 2)λ
2λ

λ

µ 2µ
3µ sµ

sµ

λn =

{

(N − n)λ n ≤ N
0 n > N

µn =

{

nµ n < s
sµ n ≥ s

The formulae hold for any probability distribution of the
out-of-the-system time with expected value 1/λ.
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M/M/1 with state-dependent frequencies

Effect 1. The longer is the queue, the fewer new customers arrive.

λn = (n + 1)−aλ0 with a > 0

cn =
(λ0/µ)

n

(n!)a n = 0,1,2, . . .

Effect 2. The longer is the queue, the faster is the service.

µn = nbµ1 with b > 0

cn =
(λ/µ1)

n

(n!)b n = 0,1,2, . . .

Both effects.

cn =
(λ0/µ1)

n

(n!)a+b n = 0,1,2, . . .
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M/M/s with state-dependent frequencies

We assume the frequencies depend on the number of customers in
queue for each server, i.e. n/s.

Effect 1.

λn =

{

λ0 n ≤ s − 1
( s

n+1)
aλ0 n ≥ s − 1

Effect 2.

µn =

{

nµ1 n ≤ s
(n

s )
bsµ1 n ≥ s
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M/Ek/1

The Erlang distribution depends on an additional integer parameter k ,
which is called shape parameter.

The density function is:

f (t) =
(µk)k

(k − 1)!
tk−1e−kµt t ≥ 0

The shape parameter affects the variance 1
kµ2 , not the exp. value 1

µ .

The Erlang distribution describes the sum of k independent random
variables with the same distribution with expected value 1

kµ .

Therefore it is used to represent service times when the service
consists of several (identical) operations in a sequence.
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M/Ek/1
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M/Ek/1

For k = 1, Ek reduces to an exponential distribution M.
For k → ∞, Ek tends to a degenerate distribution D.

Lq = 1+k
2k

λ2

µ(µ−λ)

Wq = 1+k
2k

λ
µ(µ−λ)

W = Wq + 1/µ

L = λW
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M/G/1

Assumption: service times are independent and they have the same
probability distribution with expected value 1/µ and variance σ2.
Condition for convergence is λ/µ < 1.

P0 = 1 − ρ

Pollaczek − Khintchine formula :

Lq = λ2σ2+ρ2

2(1−ρ)

L = ρ+ Lq

Wq = Lq/λ

W = Wq + µ

All performance parameters increase with σ2.
If G is exponential, then σ2 = 1/µ2 and we obtain M/M/1.
For s > 1 few results are known.
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M/D/s

In this case we have constant service time: σ2 = 0.

For s = 1 we have Lq = ρ2

2(1−ρ) , that is half the value of Lq in an M/M/1
system.

For s > 1 we must resort to tabulated values, as for many other cases,
such as G/M/s, D/M/s, Ek/M/s, Em/Ek/s, Ek/D/s, D/Ek/s.
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Queuing systems with priorities

We assume to have k queues, each with FIFO discipline.

As soon as a server becomes idle, it starts serving the first customer
from the highest priority non-empty queue.

Each queue is assumed to correspond to an input Poisson process,
whose parameter λi can be different for each queue i = 1, . . . , k .

Service times are assumed to have an exponential distribution with the
same parameter µ for all queues.

Each queue h converges to a steady-state condition if
∑h

i=1 λi < sµ.
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Queuing systems with priorities

We can consider models with and without pre-emption.

Among those with pre-emption, we can distinguish between
preemption-resume and pre-emption-restart.

For the overall system, the same results for L, Lq, W and Wq still hold
as for the M/M/s system.

We have different variance for the waiting times.

Usually one wants to study Li , Lqi , Wi and Wqi for each queue i .
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Designing a queueing system

To properly design a queuing system for a given population of
customers, one has to decide:

the number s of servers;

their efficiency µ;

the number of service centers λ.

The cost for the service provider increases with the level of service.
The cost for the customers decreases with the level of service.
The definition of the optimal trade-off between the two cost terms
depends on the relation between the provider and the customers, the
type of service and the cost function.
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Designing a queueing system

Case 1. The waiting cost is a function g(n) of the number n of
customers in the system:

E [WaitingCost] =
∞
∑

n=0

g(n)Pn

Case 2. The waiting cost is a function h(w)λ of the waiting time w :

E [WaitingCost] = λ

∫

∞

0
h(w)fw (w)dw
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