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Abstract

A new approach is proposed for forecasting a time series with multiple seasonal patterns. A state space model is devel-
oped for the series using the innovations approach which enables us to develop explicit models for both additive and mul-
tiplicative seasonality. Parameter estimates may be obtained using methods from exponential smoothing. The proposed
model is used to examine hourly and daily patterns in hourly data for both utility loads and traffic flows. Our formulation
provides a model for several existing seasonal methods and also provides new options, which result in superior forecasting
performance over a range of prediction horizons. In particular, seasonal components can be updated more frequently than
once during a seasonal cycle. The approach is likely to be useful in a wide range of applications involving both high and
low frequency data, and it handles missing values in a straightforward manner.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Time series may contain multiple seasonal cycles
of different lengths. For example, the hourly utility
demand data shown in Fig. 1 exhibit both daily
and weekly cycles. Such a plot contrasts with the sea-
sonal times series usually considered, which contain
only an annual cycle for monthly or quarterly data.
Note that we use the term ‘‘cycle’’ to denote any pat-
tern that repeats (with variation) periodically rather
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than an economic cycle that has no fixed length. Our
second example relates to traffic flows, and a similar
pattern holds, see Fig. 8. It is easy to think of many
other cases where daily and weekly cycles would
occur, such as hospital admissions, demand for pub-
lic transportation, calls to call centers, and requests
for cash at ATM machines.

There are several notable features in Fig. 1. First,
we observe that the daily cycles are not all the same,
although it may reasonably be claimed that the
cycles for Monday through Thursday are similar,
and perhaps Friday also. Those for Saturday and
Sunday are quite distinct. In addition, the patterns
.
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Fig. 1. Sub-sample of hourly utility data.
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for public holidays are usually more similar to
weekends than to regular weekdays. A second fea-
ture of the data is that the underlying levels of the
daily cycles may change from one week to the next,
yet be highly correlated with the levels for the days
immediately preceding. Thus, an effective time series
model must be sufficiently flexible to capture these
principal features without imposing too heavy com-
putational or inferential burdens.

The goal of this paper is to introduce a new pro-
cedure that uses innovations state space models to
forecast time series with multiple seasonal patterns.
The innovations state space approach provides a
theoretical foundation for exponential smoothing
methods (Ord et al., 1997; Hyndman et al., 2002).
For a recent review of exponential smoothing meth-
ods, see Gardner (2006). This procedure improves
on the current approaches by providing, in one
methodology, a common sense structure to the mod-
els, flexibility in modeling seasonal patterns, a poten-
tial reduction in the number of parameters to be
estimated, and model based prediction intervals.

The most commonly employed approaches to
modeling seasonal patterns include the Holt–Win-
ters exponential smoothing approach (Winters,
1960) and the ARIMA models of Box et al.
(1993). The Holt–Winters approach could be used
for the type of data shown in Fig. 1, but suffers from
several important weaknesses. It would require 168
starting values (24 h · 7 days) and would fail to pick
up the similarities from day-to-day at a particular
time. Also, it does not allow for patterns on different
days to adapt at different rates nor for the compo-
nent for one day to be revised on another day. In
a recent paper, Taylor (2003) has developed a dou-
ble seasonal exponential smoothing method, which
allows the inclusion of one cycle nested within
another. His method is described briefly in Section
2.2. Taylor’s method represents a considerable
improvement, but assumes the same intra-day cycle
for all days of the week. Moreover, updates based
upon recent information (the intra-day cycle) are
the same for each day of the week.

An ARIMA model could be established by includ-
ing additional seasonal factors. Such an approach
again requires the same cyclical behavior for each
day of the week. Although the resulting model may
provide a reasonable fit to the data, there is a lack
of transparency in such a complex model compared
to the specification provided by Taylor’s approach
and by the methods we describe later in this paper.

Harvey (1989) provided an unobserved compo-
nents approach to modeling multiple seasonal pat-
terns and his approach is similar in some ways to
the innovations state space approach described in
this paper. The principal difference is that Harvey’s
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state equations use multiple (independent) sources
of error in each state equation, whereas our scheme
uses a single source of error, following Snyder
(1985). At first sight, the multiple error model may
seem to be more general, but this is not the case.
As shown, for example, in Durbin and Koopman
(2001), both sets of assumptions lead to the same
class of ARIMA models, although the single source
models typically have a larger parameter space. The
innovations state space model has several advanta-
ges over the multiple source model (Ord et al., 2005):

(1) the parameters may be estimated directly by
least squares without using the Kalman filter;

(2) the updating equations are identical in form to
the model equations, making interpretation
more straightforward;

(3) models for non-linear processes (e.g., the mul-
tiplicative Holt–Winters method) are readily
formulated and easy to apply;

(4) it becomes feasible to develop prediction inter-
vals for both linear and non-linear methods
(Hyndman et al., 2005).

The paper is structured as follows: the additive
Holt–Winters (HW) method and Taylor’s double
seasonal (DS) scheme are outlined in Section 2.
Our multiple seasonal (MS) process is introduced
and developed in Section 3; the primary emphasis
is on the additive scheme, but the multiplicative ver-
sion is also briefly described. Applications to hourly
data on utility demand and on traffic flows are con-
sidered in Sections 4 and 5, respectively. Concluding
remarks and directions for further research are pre-
sented in Section 6.
2. Exponential smoothing for seasonal data

2.1. A structural model for the Holt–Winters (HW)

method

The Holt–Winters (HW) exponential smoothing
approach (Winters, 1960) includes methods for both
additive and multiplicative seasonal patterns. Our
primary development in Sections 2 and 3 is in terms
of additive seasonality; the corresponding model for
the multiplicative case is presented in Section 3.2. A
model for the additive seasonal HW method decom-
poses the series value yt into an error et, a level ‘t, a
trend bt and a seasonal component (st). The under-
lying model based on the innovations state space
model (Ord et al., 1997) is
yt ¼ ‘t�1 þ bt�1 þ st�m þ et; ð1aÞ
‘t ¼ ‘t�1 þ bt�1 þ aet; ð1bÞ
bt ¼ bt�1 þ bet; ð1cÞ
st ¼ st�m þ cwet; ð1dÞ

where et � NID(0, r2), and a, b and cw are smooth-
ing parameters for the level, trend and seasonal
terms, respectively. ‘‘NID(0, r2)’’ indicates that the
errors are independent and identically distributed
and that the common distribution is Gaussian with
mean 0 and variance r2. The smoothing parameters
reflect how quickly the level, trend, and seasonal
components adapt to new information. The value
of m represents the number of seasons in one sea-
sonal cycle. We will denote this model by HW(m)
and the seasonal cycle by

ct ¼ ðst; st�1; . . . ; st�mþ1Þ0: ð2Þ
Estimates of m + 2 different seed values for the
unobserved components must be made; one for
the level, one for the trend, and m for the seasonal
terms (although we constrain the initial seasonal
components to sum to 0).

The HW method allows each of the m seasonal
terms to be updated only once during the seasonal
cycle of m time periods. Thus, for hourly data we
might have an HW(24) model that has a cycle of
length 24 (a daily cycle). Each of the 24 seasonal
terms would be updated once every 24 h. Or we might
have an HW(168) model that has a cycle of length 168
(24 h · 7 days). Although a daily pattern might occur
within this weekly cycle, each of the 168 seasonal
terms would be updated only once per week. In addi-
tion, the same smoothing constant cw is used for each
of the m seasonal terms. We will show how to relax
these restrictions by use of our MS model.

2.2. A structural model for the double seasonal (DS)

method

Taylor’s double seasonal (DS) exponential
smoothing method (Taylor, 2003) was developed
to forecast time series with two seasonal cycles: a
short one that repeats itself many times within a
longer one. It should not be confused with double
exponential smoothing (Brown, 1959), the primary
focus of which is on a local linear trend. Taylor
(2003) developed a method for multiplicative
seasonality (i.e., larger seasonal variation at higher
values of yt), which we adapt for additive seasonal-
ity (i.e., size of seasonal variation not affected by the
level of yt). We now present a description of the DS
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method, as a lead-in to the more general approach
that we develop later in the paper.

Like the HW exponential smoothing methods,
DS exponential smoothing is a method. It was spec-
ified without recourse to a stochastic model, and
hence, it cannot be used in its current form to find
estimates of the uncertainty surrounding predic-
tions. In particular, a model is required to find pre-
diction intervals. The problem is resolved by
specifying an innovations state space model under-
pinning the additive DS method. Letting m1 and
m2 designate the periods of the two cycles, this
model is

yt ¼ ‘t�1 þ bt�1 þ sð1Þt�m1
þ sð2Þt�m2

þ et; ð3aÞ
‘t ¼ ‘t�1 þ bt�1 þ aet; ð3bÞ
bt ¼ bt�1 þ bet; ð3cÞ
sð1Þt ¼ sð1Þt�m1

þ cd1
et; ð3dÞ

sð2Þt ¼ sð2Þt�m2
þ cd2

et; ð3eÞ

where et � NID(0, r2), and the smoothing parame-
ters for the two seasonal components are cd1

and
cd2

. We denote this model by DS(m1, m2) and the
two seasonal cycles by

cð1Þt ¼ sð1Þt ; sð1Þt�1; . . . ; sð1Þt�m1þ1

� �0
ð4Þ

and

cð2Þt ¼ sð2Þt ; sð2Þt�1; . . . ; sð2Þt�m2þ1

� �0
: ð5Þ

Estimates for m1 + m2 + 2 seeds must be made for
this model.

There are m2 seasonal terms in the long cycle
that are updated once in every m2 time periods.
There are an additional m1 seasonal terms in the
shorter cycle that are updated once in every m1

time periods. It is not a requirement of the
DS(m1, m2) model that m1 is a divisor of m2. How-
ever, if k = m2/m1, then there are k shorter cycles
within the longer cycle. Hence for hourly data,
there would be 168 seasonal terms that are updated
once in every weekly cycle of 168 time periods and
another 24 seasonal terms that are updated once in
every daily cycle of 24 time periods. For the longer
weekly cycle the same smoothing parameter, cd2

, is
used for each of the 168 seasonal terms, and for the
shorter daily cycle the same smoothing parameter,
cd1

, is used for each of the 24 seasonal terms. In
our MS model we will be able to relax these
restrictions.
2.3. Using indicator variables in a model for the HW

method

We now show how to use dummy variables to
express the HW(m2) model in two other forms when
k = m2/m1. We do this to make it easier to under-
stand the MS model and its special cases in the next
section. First we divide the cycle c0 for HW(m2) into
k sub-cycles of length m1 as follows

ci;0 ¼ ðsi;0; si;�1; . . . ; si;�m1þ1Þ0

¼ ðs�m1ðk�iÞ; s�m1ðk�iÞ�1; . . . ; s�m1ðk�iÞ�m1þ1Þ0; ð6Þ
where i = 1, . . . , k, and

c0 ¼ ðc0k;0; c0k�1;0; . . . ; c01;0Þ
0
: ð7Þ

For example with hourly data, we could divide the
weekly cycle of length 168 into k = 7 daily sub-cy-
cles of length m1 = 24. At each time period t, cit con-
tains the current values of the m1 seasonal
components for cycle i (i.e., day i) and is defined by

cit ¼ ðsi;t; si;t�1; . . . ; si;t�m1þ1Þ0 i ¼ 1; . . . ; k: ð8Þ
Next we define a set of dummy variables that indi-
cate which sub-cycle is in effect for time period t.
For example, when using hourly data these dummy
variables would indicate the daily cycle to which the
time period belongs. The dummy variables are de-
fined as follows

xit ¼
1 if time t occurs when sub-cycle

i ðe:g:day iÞis in effect;

0 otherwise:

8<
: ð9Þ

Then the HW(m2) model may be written as follows:

yt ¼ ‘t�1 þ bt�1 þ
Xk

i¼1

xitsi;t�m1
þ et; ð10aÞ

‘t ¼ ‘t�1 þ bt�1 þ aet; ð10bÞ
bt ¼ bt�1 þ bet; ð10cÞ
sit ¼ si;t�m1

þ cwxitet ði ¼ 1; . . . ; kÞ: ð10dÞ

The effect of the xit is to ensure that the m2

(=k · m1) seasonal terms are each updated exactly
once in every m2 time periods. Eq. (10d) may also
be written in a form that will be a special case of
the MS model in the next section as follows

sit ¼ si;t�m1
þ

Xk

j¼1

cijxjt

 !
et ði ¼ 1; . . . ; kÞ;

where

cij ¼
cw if i ¼ j;

0 otherwise:

�
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3. Multiple seasonal processes

3.1. A structural model for multiple seasonal (MS)

processes

A fundamental goal of our new model for multi-
ple seasonal (MS) processes is to allow for the sea-
sonal terms that represent a seasonal cycle to be
updated more than once during the period of the
cycle. This goal may be achieved in two ways with
our model. We start, as we did for the HW(m2)
model in the previous section, by dividing the cycle
of length m2 into k shorter sub-cycles of length m1.
Then we use a matrix of smoothing parameters that
allows the seasonal terms of one sub-cycle to be
updated during the time for another sub-cycle.
For example, seasonal terms for Monday can be
updated on Tuesday. Sometimes this goal can be
achieved by combining sub-cycles with the same
seasonal pattern into one common sub-cycle. This
latter approach has the advantage of reducing the
number of seed values that are needed. When mod-
eling the utility data in Fig. 1, for example, there are
potentially seven distinct sub-cycles; one for each
day of the week. However, since the daily patterns
for Monday through Thursday seem to be very sim-
ilar, a reduction in complexity might be achieved by
using the same sub-cycle for these four days. More
frequent updates may also provide better forecasts,
particulary when the observations m1 time periods
ago are more important than those values m2 time
periods earlier. It is also possible with our model
to have different smoothing parameters for different
sub-cycles (e.g., for different days of the week).

The existence of common sub-cycles is the key to
reducing the number of seed values compared to
those required by the HW method and DS exponen-
tial smoothing. As described in Section 2.3, it may
be possible for a long cycle to be broken into
k = m2/m1 shorter cycles of length m1. Of these k

possible sub-cycles, r 6 k distinct cycles may be
identified. For example, consider the case when
m1 = 24 and m2 = 168 for hourly data. By assuming
that Monday–Friday have the same seasonal pat-
tern, we can use the same sub-cycle for these 5 days.
We can use the same sub-cycle for Saturday and
Sunday, if they are similar. Thus, we might be able
to reduce the number of daily sub-cycles from k = 7
to r = 2. The number of seed estimates required for
the seasonal terms would be reduced from 168 for
the HW method and 192 for the DS method to 48
for the new method. (A similar quest formed the
motivation for developing cubic spline models for
hourly utility data (Harvey and Koopman, 1993).)

A set of dummy variables based on the r shorter
cycles can be defined by

xit ¼
1 if time period t occurs when

sub-cycle i is in effect;

0 otherwise:

8><
>: ð11Þ

On any given day, only one of the xit values equals
1. Let xt = [x1t, x2t, x3t, . . . , xrt]

0 and st = [s1t, s2t,
s3t, . . . , srt]

0.
The general summation form of the MS model

for r 6 k = m2/m1 is

yt ¼ ‘t�1 þ bt�1 þ
Xr

i¼1

xitsi;t�m1
þ et; ð12aÞ

‘t ¼ ‘t�1 þ bt�1 þ aet; ð12bÞ
bt ¼ bt�1 þ bet; ð12cÞ

sit ¼ si;t�m1
þ

Xr

j¼1

cijxjt

 !
et ði ¼ 1; . . . ; rÞ; ð12dÞ

where et � NID(0, r2).
These equations can also be written in matrix

form:

yt ¼ ‘t�1 þ bt�1 þ x0tst�m1
þ et; ð13aÞ

‘t ¼ ‘t�1 þ bt�1 þ aet; ð13bÞ
bt ¼ bt�1 þ bet; ð13cÞ
st ¼ st�m1

þ Cxtet; ð13dÞ
ŷtð1Þ ¼ ‘t�1 þ bt�1 þ x0tst�m1

; ð13eÞ

where ŷtð1Þ is the one-period ahead prediction.
C is the seasonal smoothing matrix, which con-

tains the smoothing parameters for each of the
cycles. The parameter cii is used to update seasonal
terms during time periods that belong to the same
sub-cycle (e.g., days that have the same daily pat-
tern). The parameter cij, i 5 j, is used to update sea-
sonal terms belonging to a sub-cycle during the time
periods that occur during another sub-cycle (e.g.,
seasonal terms for one day can be updated during
a day that does not have the same daily pattern).
We will denote this model by MS(r; m1, m2) and
the seasonal cycles by

cit ¼ ðsi;t; si;t�1; . . . ; si;t�m1þ1Þ0 ði ¼ 1; . . . ; rÞ: ð14Þ

While (13) is helpful when programming with ma-
trix software, (12) is better for understanding how
the model works. For example, suppose we have
hourly data that has a different daily pattern for
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each of the 7 days of the week to give a weekly pat-
tern that repeats every 168 h. If time period t occurs
say on day 3 of the week, then cycle c3t is in effect.
Hence, x3t = 1, and xjt = 0 for all j 5 3. If
c3,3 5 0, then the seasonal component s3,t would
be updated. This is the seasonal component for
the day of the week that corresponds to time t. In
addition, if say c2,3 5 0, then the seasonal compo-
nent s2,t would be revised, and it corresponds to
the same time of the day as time t, but on day 2.
Furthermore, if days 2 and 3 have the same pattern,
we can reduce the number of cycles by one with cy-
cle c2,t representing both days. Then if time t is on
either day 2 or 3, the dummy variable is defined to
pick this cycle.
3.2. A model for multiplicative seasonality

Thus far, we have concentrated upon models for
time series that exhibit additive, rather than multi-
plicative seasonal patterns. In the additive case the
seasonal effects do not depend on the level of the
time series, while for the multiplicative case the sea-
sonal effects increase at higher values of the time ser-
ies. We can adapt the MS(r; m1, m2) model to
account for a multiplicative seasonal pattern using
the approach of Ord et al. (1997) for the multiplica-
tive HW method.

The general multiplicative form of the MS model
for r 6 k = m2/m1 is

yt ¼ ð‘t�1 þ bt�1Þ
Xr

i¼1

xitsi;t�m1

 !
ð1þ etÞ; ð15aÞ

‘t ¼ ð‘t�1 þ bt�1Þð1þ aetÞ; ð15bÞ
bt ¼ bt�1 þ bð‘t�1 þ bt�1Þet; ð15cÞ

sit ¼ si;t�m1
1þ

Xr

j¼1

cijxjt

 !
et

" #
ði ¼ 1; . . . ; rÞ;

ð15dÞ

ŷtð1Þ ¼ ð‘t�1 þ bt�1Þ
Xr

i¼1

xitsi;t�m1

 !
; ð15eÞ

where et � NID(0, r2).
3.3. Model restrictions

In general, the number of smoothing parameters
contained in C is equal to the square of the number
of separate sub-cycles (r2) and can be quite large. In
addition to combining some of the sub-cycles into a
common sub-cycle, restrictions can be imposed on C
to reduce the number of parameters. We shall see
that some of these restrictions produce the
HW(m1), HW(m2), and DS(m1, m2) models as spe-
cial cases of the MS(r; m1, m2) model in (13).

One type of restriction is to force common diag-
onal and common off-diagonal elements as follows

cij ¼
c�1; if i ¼ j common diagonal;

c�2; if i 6¼ j common off-diagonal:

�
ð16Þ

Within the type of restriction in (16), there are three
restrictions of particular interest. We will refer to
them as

• Restriction 1: c�1 6¼ 0, and c�2 ¼ 0
If r = k, this restricted model is equivalent to the
HW(m2) model in (1) where c�1 ¼ cw. The seed
values for the k seasonal cycles in this MS(k;
m1, m2) model and the one seasonal cycle in the
HW(m2) model are related as shown in Eqs. (6)
and (7) of Section 2.3.

• Restriction 2: c�1 ¼ c�2
If the seed values for the r seasonal sub-cycles in
the MS(r; m1, m2) model are identical, this
restricted model is equivalent to the HW(m1)
model in (1) where c�1 ¼ cw. Normally in the
MS(r; m1, m2) model, the different sub-cycles are
allowed to have different seed values. Hence, this
restricted model will only be exactly the same as
the HW(m1) model, if we also restrict the seed val-
ues for the sub-cycles to be equal to each other.

• Restriction 3: Equivalent to Eq. (16)
If r = k, this restricted model is equivalent to the
DS(m1, m2) model in (2) where c�1 ¼ cd1

þ cd2
and

c�2 ¼ cd1
. The seed values for the k seasonal cycles

in this MS(k; m1, m2) model and the two seasonal
cycles in the DS(m1, m2) model are related by

ci0 ¼ sð1Þ0 þ sð2Þ�m1ðk�iÞ; s
ð1Þ
�1 þ sð2Þ�m1ðk�iÞ�1; . . . ; sð1Þ�m1þ1

�
þ sð2Þ�m1ðk�iÞ�m1þ1

�0
: ð17Þ

The MS(r; m1, m2) model allows us to explore a
much broader range of assumptions than existing
methods, while retaining parsimony. It nests the
models underlying the additive HW and DS meth-
ods. It contains other restricted forms that stand
in their own right. Table 1 presents the number of
parameters and seed values that require estimates
for the MS(r:m1, m2) model and some of its restric-



Table 1
Number of smoothing parameters and seed values

Model Parameters Seed values

MS(r; m1, m2) r2 + 2 rm1 + 2
MS(r; m1, m2)-Rstr. 1 3 rm1 + 2
HW(m2) 3 m2 + 2 = km1 + 2
MS(r; m1, m2)-Rstr. 2 3 rm1 + 2
HW(m1) 3 m1 + 2
MS(r; m1, m2)-Rstr. 3 4 rm1 + 2
DS(m1, m2) 4 m2 + 2 = km1 + 2a

a Short cycle seed values may be started at 0.
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tions. A procedure for choosing among the possible
MS(r; m1, m2) models with and without these
restrictions is described in the next section.
3.4. Model estimation, selection, and prediction

The estimation, model selection, and prediction
described in this section apply to both the additive
and multiplicative MS models.
3.4.1. Estimation

Within the exponential smoothing framework,
the parameters in an MS(r; m1, m2) model can be
estimated by minimizing the one-step-ahead sum
of squared errors

SSE ¼
Xn

i¼1

ðyt � ŷtÞ2;

where n is the number of observations in the series,
and ŷt ¼ ŷt�1ð1Þ. The seed states for the level, trend
and seasonal components may be estimated by
applying the procedures for HW(m2) in Hyndman
et al. (2002) to the time periods that represent four
completions of all the sub-cycles (e.g., the first four
weeks for hourly data). In principle, maximum like-
lihood could be used to estimate these seed values
along with the smoothing parameters (c.f. Hynd-
man et al., 2002; Bermudez et al., 2006a,b), but a
very large number of states (e.g., 168 states for the
seasons when each day has a different pattern)
would make this approach very cumbersome and
potentially very unstable numerically. The m1 esti-
mates for each of the k seasonal sub-cycles are then
found by using the relationship between the cycles
explained in Eqs. (6) and (7) of Section 2.3. If
r < k, the estimates for the sub-cycles with the same
seasonal pattern are averaged. Then the SSE is min-
imized with respect to the smoothing parameters by
using the exponential smoothing equations in (12).
The smoothing parameters are restricted to values
between 0 and 1.

3.4.2. Model selection

We have seen that various special cases of the
MS(r; m1, m2) model may be of interest. We may
wish to choose the number of seasonal sub-cycles
r to be less than k, restrict the values of the seasonal
parameters, or use a combination of the two. We
employ a two-step process to make these decisions.
First we choose r, and then we determine whether to
restrict C as follows:

(1) Choose the value of r in MS(r; m1, m2).
(a) From a sample of size n, withhold q time

periods, where q is the last 20% of the data
rounded to the nearest multiple of m2 (e.g.,
whole number of weeks).

(b) Select a set of values of interest for r (e.g.,
using common sense and/or graphs), and
estimate the parameters for each model
using observations 4m1 + 1 to n � q.

(c) For each of the models in 1(b), find one-
period-ahead forecasts for time periods
n � q + 1 to n without re-estimating.

(d) Pick the value of r with the smallest mean
square forecast error.
MSFEð1Þ ¼
Xn

t¼n�qþ1

ðyt � ŷtÞ2=q
(2) Choose the restrictions on C.
(a) Using the value of r selected in part 1 and

the same n � q time periods, compute the
one-period-ahead forecast errors for
Restrictions 1–3, no restriction, and any
other restrictions of particular interest
over [n � q + 1, n].

(b) Choose the restriction with the smallest
MSFE.
3.4.3. Prediction

A point forecast for yn+h at time period n is the
conditional expected value

ŷnþhðnÞ ¼ Eðynþhja0; y1; . . . ; ynÞ;

where

a0 ¼ ð‘0; b0; s1;0; . . . ; s1;�m1þ1; s2;0; . . . ; s2;�m1þ1; . . . ;

sr;0; . . . ; sr;�m1þ1Þ0 ¼ ð‘0; b0; c
0
1;0; c

0
2;0; . . . ; c0r;0Þ

0
:
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Prediction intervals for h periods in the future from
time period n can be found by using the model in
(12) as follows: simulate an entire distribution for
yn+h and pick the percentiles for the desired level
of confidence (Ord et al., 1997).

4. An application to utility data

Forecasting demand is an important issue for
utility companies. For example, electricity suppliers
need to compute short-term hourly demand fore-
casts for operational planning. Turning generators
on and off is very expensive, but so are black-outs
and brown-outs. Consequently, short-term demand
forecasting is an essential part of energy manage-
ment systems and is needed for control and schedul-
ing of power systems, and for the optimal utilization
of generators and power stations. Accurate demand
forecasting provides system dispatchers with timely
information to operate economically and reliably
(Bunn and Farmer, 1985). In addition, analyzing
forecast demand shapes is needed to set pricing.
Peak-load is always a big concern and utilities with
limited capacity will often negotiate demand-man-
agement strategies with large commercial users
involving lower prices but low usage during forecast
peaks. Similar comments apply to other utility com-
panies such as those supplying natural gas or water.
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Fig. 2. Hourly uti
Utility demand data was selected to illustrate our
MS procedure because it clearly has multiple sea-
sonal cycles. In this simple example, we do not dis-
cuss the role of important covariates (particularly
temperature-related variables) which are often use-
ful in utility demand forecasting; see, for example,
Ramanthan et al. (1997) and Cottet and Smith
(2003). The MS model could be extended to include
such variables, but we leave that for later research.
In this empirical example, we show that the MS
model performs best within the class of exponential
smoothing models.

4.1. The study

The data set plotted in Fig. 1 consists of 3024
observations (18 weeks) of hourly demand, begin-
ning on January 1, 2003. These data are from a util-
ity company in the Midwestern area of the United
States. The details of the company and nature of
the utility are commercially confidential.

A graph of the data is shown in Fig. 2. This util-
ity data appears to have a changing level rather than
a trend so the growth rate bt is omitted. The data
also appear to exhibit an additive seasonal pattern,
that is, a seasonal pattern for which the variation
does not change with the level of the time series.
For this reason the main focus of this application
1400 1600 1800 2000 2200 2400

Actual 

lity demand.
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is on additive models, although a multiplicative ver-
sion of our model is also tested. The data are split
into two parts: a fitting sample of (n = 2520) obser-
vations (i.e., 15 weeks) and a post-sample data of
(p = 504) observations (i.e., 3 weeks). There are no
weekday public holidays during the period of this
post-sample data.

The data have a number of important features
that should be reflected in the model structure. There
are three levels of seasonality: yearly effects (largely
driven by temperatures), weekly effects and daily
effects. For this case study, we will only seek to cap-
ture the daily and weekly seasonal patterns.

4.2. Selecting an MS model

In this section we follow the procedure for model
selection described in Section 3.4 to select the best
MS model. The first step is to choose r in MS(r;
24,168). To start this step we withhold 504 observa-
tions or three weeks of data (q = 504) from the fit-
ting sample (n = 2520). The value of q is 20% of n
and is the same as that of p in this example. Then,
we need to re-examine the data to look for common
daily patterns for different days of the week. One
way to look for potential common patterns is to
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Fig. 3. MS(7;24,168): hourly sub-cycles by day, based o
graph the 24-h pattern for each day of the week
on the same horizontal axis. In Fig. 3, we plot the
seasonal terms that are estimated for the seven
sub-cycles in the MS(7;24,168) model during the last
week of the sample (t = n � 168, . . . , n). The plot
suggests that r = 7 may use more daily patterns than
is required. The similarity of some weekday sub-
cycles indicates that alternative structures could be
tested.

Visual inspection of Fig. 3 shows that the Mon-
day – Friday sub-cycles are similar, and Saturdays
and Sundays are similar. Closer inspection shows
that the Monday–Tuesday patterns are similar,
Wednesday–Friday patterns are similar, and Sat-
urdays and Sundays display some differences from
each other. A third possible approach is to assume
Monday–Thursday have a common pattern and
Friday, Saturday and Sunday have their own pat-
terns. This choice is plausible because Fridays
should have a different evening pattern to other
weekdays as consumers and industry settle into
weekend routines. Support for this choice of com-
mon sub-cycles can also be seen in Fig. 3 where
Friday starts to behave more like Saturday in
the evening hours. We list these three choices
below.
our
2418

Sunday 
Tuesday 
Thursday 
Saturday 

Monday 
Wednesday 
Friday 

n the last 168 observations (t = 2353, . . . , 2520).
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• r = 4 Version 1 MS(4;24,168): common Mon-
day–Thursday sub-cycle, separate Friday, Satur-
day and Sunday sub-cycles;

• r = 4 Version 2 MS(4(2);24,168): common Mon-
day–Tuesday, Wednesday–Friday sub-cycles,
separate Saturday and Sunday sub-cycles;

• r = 2 MS(2;24,168): common Monday–Friday
sub-cycle, common weekend sub-cycle.

We finish the first step of the model selection pro-
cess by comparing the value of MSFE(1) for the
MS(7;24,168) model to the values for the three
sub-models listed above. Of these four models,
MS(2;24,168) has the smallest MSFE(1), as shown
in Table 2. Thus, we choose this model in the first
step. The MSFE(1) values in Table 2 are computed
for the withheld time periods n � q + 1 to n (i.e.,
2017–2520). In Table 2, we say this MSFE(1) com-
pares ‘withheld-sample’ forecasts to distinguish it
from the MSFE(1) in Table 3, which will be com-
puted for the p post-sample values (i.e., 2521–
3024) that are not part of the fitting sample.

In the second step of the process from Section
3.4, we compare Restrictions 1–3 from Section 3.3
for the MS(2;24,168) model that was chosen in the
first step. The MSFE(1) values for these three addi-
tional models are also shown in Table 2. The model
Table 2
Withheld-sample MSFE in MS model selection for utility data

Model Restriction MSFE(1) Parameters Seed
values

MS(7;24,168) None 234.72 50 168
MS(4;24,168) None 239.67 17 96
MS(4(2);24,168) None 250.34 17 96
MS(2;24,168) None 225.51 5 48
MS(2;24,168) 1 246.51 2 48
MS(2;24,168) 2 234.49 2 48
MS(2;24,168) 3 225.31 3 48

Table 3
Comparison of post-sample forecasts for the utility data

Model Restriction MSFE(1) Parameters Seed
values

HW(24) naa 278.50 2 24
HW(168) na 278.04 2 168
DS(24,168) na 227.09 3 168
MS(7;24,168) None 208.45 50 168
MS(2;24,168) 3 206.45 3 48

a Restrictions not applicable to this model.
with the smallest MSFE(1) for the withheld-sample
test is the MS(2;24,168) model with Restriction 3.
Hence, this model is our selection for the best MS
model for forecasting.
4.3. Forecasting with the MS, HW and DS models

In general, the MS models provide better point
forecasts than the HW and DS models. The fore-
casting accuracy of the models is compared by using
the mean square forecast error for h periods ahead
over p post-sample values. The mean square fore-
cast error is defined as

MSFEðhÞ ¼
Pnþp�h

t¼n ðytþh � ŷtþhðtÞÞ2

p � ðh� 1Þ ; ð18Þ

where ŷtþhðtÞ is the forecast of yt+h at time t. In this
application, the MSFE(h) values are averages based
on 3 weeks (i.e., p = 504 h) of post-sample data and
lead-times h of 1–48 h. Table 3 contains the post-
sample MSFE(1) for the two HW models of
HW(24) and HW(168), the double seasonal model
DS(24,168), the full unrestricted multiple seasons
model MS(7;24,168), and the selected multiple sea-
sons model MS(2;24,168) with Restriction 3 from
Section 4.2. Fig. 4 contains the MSFE(h) for these
same five models where the lead-time, h ranges from
1 to 48 (i.e., 1–48 h).

The estimation of the parameters and seed values
for these five models is done using the fitting sample
of size n = 2520. The first four weeks of the fitting
sample are used to find initial values for the states.
For the HW method these values are found by using
the approach in Hyndman et al. (2002). The 24
additional initial values for daily seasonal compo-
nents in the DS method are set equal to 0. The ini-
tial values for MS models are found as described in
Section 3.4. Smoothing parameters for all the mod-
els are estimated by minimizing the SSE for the fit-
ting sample of length n = 2520, and all parameters
are constrained to lie between 0 and 1.

In examining Table 3, we see that MS(2;24,168)
with Restriction 3 has the smallest MSFE(1), and
MS(7;24,168) is second best. The MS(2;24,168)
model also has far fewer parameters (3 versus 50)
and seed values (48 versus 168) than the
MS(7;24,168) model. In Fig. 4, the MSF(h) values
are consistently lower for the MS models than for
the HW and DS alternatives with the MS model
chosen by our selection process being much lower.
The more accurate forecasts are the result of the
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MS models offering a more reliable structure to cap-
ture the changes in seasonality.

Fig. 5 shows post-sample forecasting accuracy of
the MS(2;24,168) model with Restriction 3. Fore-
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Fig. 5. MS(2;24,168) Restriction 3: Point forecasts and 80% prediction
the utility demand.
casts and 80% prediction intervals are provided only
for the first 8 h of the post-sample period because
the intervals become extremely wide as the time
horizon increases. During the 8 h period in Fig. 5,
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ime
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intervals for the first 8 h in the next week (t = 2521, . . . , 2528) of



Table 4
Utility data smoothing parameter estimates

Estimation done for â ĉ1 ĉ2

h = 1 1 0.12 0.084
h = 24 0 0.83 0.83
h = 168 0 0.13 0.11
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the forecasts are very good. The 80% prediction
intervals are calculated via simulation. One cause
for the wide prediction intervals at longer time hori-
zons is the large estimate for a. Large structural
change will require wide prediction intervals. For
the utility data the parameter a was estimated to
be between 0 and 1, and this constraint was binding
in most cases (i.e., â ¼ 1). In this case, the resulting
model corresponds to a purely seasonal model for
first differences.

4.4. Further comments

The wide prediction intervals that were found
when forecasting the utility data can sometimes be
avoided, if one’s goal is to forecast more than a
few hours ahead, For the longer time horizons, the
parameters can be estimated by minimizing the
sum of squared h-step-ahead errors instead of
the usual one-step-ahead errors. Table 4 shows the
effect on the estimates for the parameters when the
estimation criterion is altered for the utility data in
our study. When the sum of squares is minimized
for 24-step-ahead or 168-step-ahead errors, the esti-
mate for a is 0, so that the local level becomes a con-
stant. This smaller value for â will reduce the width
of the prediction intervals at the longer lead-times.
Examination of the equations in (12), without (12c)
and when a = 0, reveals that the prediction intervals
will only increase in width every m1 periods rather
than every period. Fig. 4 suggests that narrower pre-
diction intervals become possible, especially for (1/
2)m1 < h 6 m1.

An interesting feature of Fig. 4 is the way in
which the models have clearly lower MSFE(h) val-
ues when h is a multiple of 24. This pattern has been
seen in the other studies of seasonal series (e.g.,
Makridakis and Hibon, 2000) and indicates some
degree of model mis-specification. The implication
of the numerical results in this case is that the fore-
casts are more accurate when they are made for a
full day ahead at the same time of day (i.e., a purely
seasonal model).

In addition to examining the utility data in Fig. 2
to decide that additive seasonal models were appro-
priate, we tested the multiplicative MS(7;24,168)
model in (15) with no trend. We found that the
withheld-sample MSFE(1) was 271.48, which is lar-
ger than the MSFE(1) of 234.72 for the additive
MS(7;24,168) model. This provides further support
for our choice of additive seasonality. An advantage
of the single source of error models is that such non-
linear models can be included in a study.

Since Taylor (2003) found that adding an AR(1)
term improved the forecasting accuracy of the DS
model for his utility data, we also examined whether
adding an AR(1) would help for our data. We found
that forecasts at lead-times longer than one time
period are worse when the AR(1) term is included.

5. Analysis of traffic data

Federal and state government agencies of trans-
portation are vitally interested in traffic flow along
the roadways. They must provide the information
on traffic flow for the scheduling of road mainte-
nance with minimal disruption to motorists and
business. Since the maintenance work often spans
a period of a few hours, the forecasts must be based
on relatively high frequency data to aid in the selec-
tion of optimal times of the day. In order to forecast
traffic flow, the government agencies collect data on
vehicle counts. When combined with transportation
models, the forecasts of the vehicle counts enable
the planning and scheduling that is necessary. These
traffic flow (vehicle count) forecasts can also be used
by road freighting companies, who wish to minimize
travel times for their vehicle fleets. In practice, the
counting equipment is not always reliable and
results in missing data. Our MS approach can read-
ily handle missing data, and thus the MS model can
be used to predict missing values with one-period-
ahead forecasts. Providing values for the missing
data is important for models in road safety research.

Hence, for our second application of the MS pro-
cedure we have chosen vehicle count data. This
data, like the utility demand data, clearly have mul-
tiple seasonal cycles. We will show that the forecasts
from the MS procedure are more accurate than
those from the HW and DS methods.

5.1. The study

The fitting sample consists of 1680 observations
(10 weeks) of hourly vehicle counts for the Monash
Freeway, outside Melbourne in Victoria, Australia,
beginning August, 1995. A graph of the data is
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shown in Fig. 6. The observation series has missing
values when the data recording equipment was not
operational. The gaps in the data are for periods
of days (i.e., multiples of 24) and can be handled
easily in exponential smoothing. Since yt is not
observed, the error et cannot be estimated by
yt � ŷt�1ð1Þ. The error is still unknown and gov-
erned by an N(0, r2) distribution. Hence, in this case
we use 0 to estimate et in model (12) when estimat-
ing the components at time t from the old compo-
nents at time t � 1. Such an approach can be
applied to any innovations state space model. This
procedure for missing values ensures that the expo-
nential smoothing algorithm continues to yield min-
imum mean squared error predictors (conditional
means). It is the analogue of the procedure in Kal-
man filtering with missing values (Koopman, 1997;
Cipra and Romera, 1997). In many traffic applica-
tions this ability to handle missing values is particu-
larly useful when counting equipment has to be
taken off-line for maintenance.

Apart from the missing observations, the traffic
data share the same features as the utility data,
although yearly effects are less pronounced. As
before, we seek only to capture the daily and weekly
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Fig. 6. Hourly ve
seasonal patterns. Since this data appears to have
no trend and to exhibit an additive seasonal pattern,
we use additive seasonality for the HW, DS, and
MS approaches and omit the equation for the
growth rate bt. Victorian public holidays appear
throughout the sample and follow a similar daily
pattern to Sundays.

This study of vehicle flows includes the HW(24),
HW(168), DS(24,168) and MS models. Models are
compared by using the MSFE for h periods ahead
over a post-sample of length p = 504. We examine
lead-times of up to two weeks (h = 1, . . . , 336),
which can be relevant for planning road works.
Smoothing parameters and seeds are estimated
using the same procedures as the previous section.

An MS model is chosen using the method in Sec-
tion 3.4 with q = 336 (i.e., two weeks of data). Based
on visual inspection of the raw data and plots of the
seasonal terms for the MS(7;24,168) model, three
candidates were tested along with the full MS
model.

• r = 4 Version 1 MS(4;24,168): common Mon-
day–Thursday sub-cycle, separate Friday, Satur-
day and Sunday sub-cycles;
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Table 5
Comparison of withheld-sample forecasts for the traffic data

Model Restriction MSFE(1) Parameters Seed
values

MS(7;24,168) None 498.31 50 168
MS(4;24,168) None 428.88 17 96
MS(3;24,168) None 394.42 10 72
MS(2; 24, 168) None 308.84 5 48
MS(2;24,168) 1 310.94 2 48
MS(2;24,168) 2 333.85 2 48
MS(2;24,168) 3 310.94 3 48
MS(2;24,168)

public
holidays

None 228.68 5 48

Table 6
Comparison of post-sample forecasts for the traffic data

Model Restriction MSFE(1) Parameters Seed
values

HW(24) na 365.09 2 24
HW(168) na 228.60 2 168
DS(24,168) na 228.59 3 168
MS(7; 24, 168) None 238.33 50 168
MS(7; 24, 168)

public
holidays

None 245.25 50 168

MS(2;24,168)
public
holidays

None 203.64 5 48

220 P.G. Gould et al. / European Journal of Operational Research 191 (2008) 207–222
• r = 3 MS(3;24,168): common Monday–Friday
sub-cycle, separate Saturday and Sunday sub-
cycles;

• r = 2 MS(2;24,168): common Monday–Friday
sub-cycle, common weekend sub-cycle.

In Table 5, we see that, among the first four mod-
els, MS(2;24,168) has the smallest MSFE(1), where
this MSFE is computed using the withheld values
within the original sample. Thus, we choose r = 2
in step 1. None of the restrictions are supported.
However, if we account for public holidays by using
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the same indicator as the one for the Saturday/Sun-
day sub-cycle, the one-period-ahead forecasts for
the withheld data are greatly improved. Hence, we
choose MS(2;24,168) with public holidays for our
best MS model.

5.2. Comparison of the MS models with the HW and

DS models

In Table 6, the post-sample MSFE(1) can be
compared for each of the following six models:
HW(24), HW(168), DS(24,168), full MS(7;24,168)
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d-times from 1 to 336 h (i.e., 2 weeks).
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(with and without public holidays), and MS(2;
24,168) model with public holidays. We see that
the MS(2;24,168) model that accounts for public
holidays has the smallest MSFE(1), while the
MSFE(1) for the MS(7;24,168) model is slightly lar-
ger than the essentially common value for HW(168)
and DS(24,168). The MS(2;24,168) model with pub-
lic holidays is clearly the best model for forecasting
ahead 1 h, offering a reduction of approximately
15% in MSFE over the HW and DS models.

In Fig. 7, we can compare the HW(24) model, the
HW(168) model, the MS(7;24,168)model, and the
MS(2;24,168) model with public holidays over
lead-times of 1 through 336 h. The values of
MSFE(h) when h > 1 in this figure give a different
ordering to forecasting accuracy than those in Table
6. The estimate of cd1

when m1 = 24 for DS(24,168)
is effectively zero, meaning it is equivalent to
HW(168). Thus, the DS(24,168) model is not
included, as it is indistinguishable from HW(168).
The model selected by our MS selection process,
MS(2;24,168) with public holidays, is no longer
best, but it still provides far more accurate forecasts
than the HW and DS models. Clearly, the
MS(7;24,168) produces the best forecasts (i.e., the
smallest MSFE(h)) for forecasting horizons of two
or more hours ahead.

The unconditional updating of the states during
periods of missing data proves to be effective for
all models. Generally jumps are observed in the level
‘t after periods of missing data. The jumps are more
pronounced for the MS(7;24,168) model, which has
a relatively stable level during periods of no missing
data.

Multi-step-ahead forecasts and 80% prediction
intervals for the post-sample data using the
MS(7;24,168) model can be found in Fig. 8. The
forecasts follow the observed series closely and
the prediction intervals are not as wide as those
for the utility data. These narrower intervals can
be explained by the extremely small estimate for a.
For MS(7;24,168), â ¼ 0:01.

6. Conclusions

A new approach for forecasting a time series with
multiple seasonal patterns has been introduced. The
framework for this approach employs innovations
state space models that allow us to forecast time
series with either additive (linear) or multiplicative
(non-linear) seasonal patterns. For both additive
and multiplicative seasonality, the Holt–Winters
(HW) methods and Taylor’s double seasonal (DS)
methods are special cases of our new multiple sea-
sonal (MS) process. In this development, we have
provided innovations state space models for the
HW, DS, and MS approaches. The estimation of
the parameters for all the models can be done using
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exponential smoothing. Since we have models
rather than just methods, we were able to produce
prediction intervals as well as point forecasts.

We applied our MS model to utility demand and
vehicle flows. In each case the data had been col-
lected by the hour and displayed daily and weekly
seasonal effects. The MS model provided more
accurate forecasts than the HW and DS models
because of its flexibility. The MS model allows for
each day to have its own hourly pattern or to have
some days with the same pattern. In addition, the
model permits days with different patterns to affect
one another. By identifying common seasonal pat-
terns for different sub-cycles, the MS structure
makes it possible to greatly reduce the number of
parameters and seeds required by the full MS
model. We found in both examples that we could
use two sub-cycles. Public holidays and missing val-
ues are readily handled by the MS model in the
examples.

There are some interesting possibilities for future
research. Investigation of the effect of longer lead-
times on model selection and parameter estimation
would be valuable. Our multiple seasonal approach
should also be helpful on lower frequency observa-
tions when one does not want to wait to update a
seasonal factor. A key aim of the MS model is to
allow for the seasonal terms to be updated more
than once during the period of the long cycle of
the data, which was 168 in both of our examples.

Note: Ox code and a Microsoft Excel spreadsheet
for the multiple seasonal (MS) model are available
at http://www.robhyndman.info/papers/multisea-
sonal. htm.
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