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Forecasting Time Series With Complex Seasonal
Patterns Using Exponential Smoothing

Alysha M. DE LIVERA, Rob J. HYNDMAN, and Ralph D. SNYDER

An innovations state space modeling framework is introduced for forecasting complex seasonal time series such as those with multiple
seasonal periods, high-frequency seasonality, non-integer seasonality, and dual-calendar effects. The new framework incorporates Box–Cox
transformations, Fourier representations with time varying coefficients, and ARMA error correction. Likelihood evaluation and analytical
expressions for point forecasts and interval predictions under the assumption of Gaussian errors are derived, leading to a simple, compre-
hensive approach to forecasting complex seasonal time series. A key feature of the framework is that it relies on a new method that greatly
reduces the computational burden in the maximum likelihood estimation. The modeling framework is useful for a broad range of applica-
tions, its versatility being illustrated in three empirical studies. In addition, the proposed trigonometric formulation is presented as a means
of decomposing complex seasonal time series, and it is shown that this decomposition leads to the identification and extraction of seasonal
components which are otherwise not apparent in the time series plot itself.

KEY WORDS: Fourier series; Prediction intervals; Seasonality; State space models; Time series decomposition.

1. INTRODUCTION

Many time series exhibit complex seasonal patterns. Some,
most commonly weekly series, have patterns with a non-integer
period. Weekly U.S. finished motor gasoline products in thou-
sands of barrels per day, as shown in Figure 1(a), has an annual
seasonal pattern with period 365.25/7 ≈ 52.179.

Other series have high-frequency multiple seasonal patterns.
The number of retail banking call arrivals per 5-minute interval
between 7:00 a.m. and 9:05 p.m. each weekday, as depicted in
Figure 1(b), has a daily seasonal pattern with period 169 and a
weekly seasonal pattern with period 169 × 5 = 845. A longer
version of this series might also exhibit an annual seasonal pat-
tern. Further examples where such multiple seasonal patterns
can occur include daily hospital admissions, requests for cash
at ATMs, electricity and water usage, and access to computer
web sites.

Yet other series may have dual-calendar seasonal effects.
Daily electricity demand in Turkey over nine years from 1 Jan-
uary 2000 to 31 December 2008, shown in Figure 1(c), has a
weekly seasonal pattern and two annual seasonal patterns: one
for the Hijri calendar with a period of 354.37; and the other for
the Gregorian calendar with a period of 365.25. The Islamic Hi-
jri calendar is based on lunar cycles and is used for religious ac-
tivities and related holidays. It is approximately 11 days shorter
than the Gregorian calendar. The Jewish, Hindu, and Chinese
calendars create similar effects that can be observed in time se-
ries affected by cultural and social events (e.g., electricity de-
mand, water usage, and other related consumption data), and
need to be accounted for in forecasting studies (Lin and Liu
2002; Riazuddin and Khan 2005). Unlike the multiple periods
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seen with hourly and daily data, these dual calendar effects in-
volve non-nested seasonal periods.

Most existing time series models are designed to accommo-
date simple seasonal patterns with a small integer-valued period
(such as 12 for monthly data or 4 for quarterly data). Important
exceptions (Harvey and Koopman 1993; Harvey, Koopman, and
Riani 1997; Taylor 2003, 2010b; Pedregal and Young 2006;
Gould et al. 2008; Taylor and Snyder 2009) handle some but
not all of the above complexities. Harvey, Koopman, and Riani
(1997), for example, used a trigonometric approach for single
seasonal time series within a traditional multiple source of er-
ror state space framework. The single source of error approach
adopted in this article is similar in some respects, but admits
a larger effective parameter space with the possibility of better
forecasts (see Hyndman et al. 2008, chap. 13), allows for multi-
ple nested and non-nested seasonal patterns, and handles poten-
tial nonlinearities. The articles by Pedregal and Young (2006)
and Harvey and Koopman (1993) have models for double sea-
sonal time series, but they have not been sufficiently developed
for time series with more than two seasonal patterns, and are
not capable of accommodating the nonlinearity found in many
time series in practice. Similarly, in modeling complex season-
ality, the existing exponential smoothing models (e.g., Taylor
2003, 2010b; Gould et al. 2008; Taylor and Snyder 2009) suf-
fer from various weaknesses such as overparameterization, and
the inability to accommodate both non-integer period and dual-
calendar effects. In contrast, we introduce a new innovations
state space modeling framework based on a trigonometric for-
mulation which is capable of tackling all of these seasonal com-
plexities. Using the time series in Figure 1, we demonstrate the
versatility of the proposed approach for forecasting and decom-
position.

In Section 2.1 we review the existing seasonal innovations
state space models including an examination of their weak-
nesses, particularly in relation to complex seasonal patterns. We
then introduce in Sections 2.2 and 2.3 two generalizations de-
signed to overcome some or all of these problems, one relying
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(a)

(b)

(c)

Figure 1. Examples of complex seasonality showing (a) non-integer seasonal periods, (b) multiple nested seasonal periods, and (c) multiple
non-nested and non-integer seasonal periods. (a) U.S. finished motor gasoline products supplied (thousands of barrels per day), from February
1991 to July 2005. (b) Number of call arrivals handled on weekdays between 7 a.m. and 9:05 p.m. from March 3, 2003, to May 23, 2003 in a
large North American commercial bank. (c) Turkish electricity demand data from January 1, 2000, to December 31, 2008. The online version
of this figure is in color.

on trigonometric representations for handling complex as well
as the usual single seasonal patterns in a straightforward man-
ner with fewer parameters. Section 3 contains a new method

for the calculation of maximum likelihood estimators, formu-
las for point and interval predictions, and the description of the
model selection methodology. It will be seen that the proposed
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estimation procedure is sufficiently general to be applied to any
innovations state space model while possessing some important
advantages over an existing approach. The proposed models are
then applied in Section 4 to the time series from Figure 1 where
it will be seen that the trigonometric formulation leads to better
forecasts and may be used for decomposition. Some conclu-
sions are drawn in Section 5.

2. EXPONENTIAL SMOOTHING MODELS
FOR SEASONAL DATA

2.1 Traditional Approaches

Single seasonal exponential smoothing methods, which are
among the most widely used forecasting procedures in prac-
tice (Makridakis et al. 1982; Makridakis and Hibon 2000;
Snyder, Koehler, and Ord 2002), have been shown to be opti-
mal for a class of innovations state space models (Ord, Koehler,
and Snyder 1997; Hyndman et al. 2002). They are therefore
best studied in terms of this framework because it then admits
the possibility of likelihood calculation, the derivation of con-
sistent prediction intervals, and model selection based on infor-
mation criteria. The single source of error (innovations) state
space model is an alternative to its common multiple source of
error analogue (Harvey 1989) but it is simpler, more robust, and
has several other advantages (Hyndman et al. 2008).

The most commonly employed seasonal models in the in-
novations state space framework include those underlying the
well-known Holt–Winters additive and multiplicative methods.
Taylor (2003) extended the linear version of the Holt–Winters
method to incorporate a second seasonal component as follows:

yt = �t−1 + bt−1 + s(1)
t + s(2)

t + dt, (1a)

�t = �t−1 + bt−1 + αdt, (1b)

bt = bt−1 + βdt, (1c)

s(1)
t = s(1)

t−m1
+ γ1dt, (1d)

s(2)
t = s(2)

t−m2
+ γ2dt, (1e)

where m1 and m2 are the periods of the seasonal cycles and dt is
a white-noise random variable representing the prediction error
(or disturbance). The components �t and bt represent the level
and trend components of the series at time t, respectively, and
s(i)

t represents the ith seasonal component at time t. The coeffi-
cients α,β, γ1, and γ2 are the so-called smoothing parameters,
and �0, b0, {s(1)

1−m1
, . . . , s(1)

0 }, and {s(2)
1−m2

, . . . , s(2)
0 } are the initial

state variables (or “seeds”).
The parameters and seeds must be estimated, but this can be

difficult when the number of seasonal components is large. This
problem is partly addressed by noting that there is a redundancy
when m2 is an integer multiple of m1, something that seems
to have previously gone unnoticed. Consider a time series {rt}
consisting of repeated sequences of the constants c1, . . . , cm1 ,
one for each season in the smaller cycle. Then the seasonal
equations can be written as

s(1)
t + rt = (s(1)

t−m1
+ rt
)+ γ1dt, (2a)

s(2)
t − rt = (s(2)

t−m2
− rt
)+ γ2dt. (2b)

When these are summed, the effect of rt disappears. This sug-
gests that the m1 seed seasonal effects for the smaller seasonal
cycle can be set to zero without constraining the problem in
any way. Alternatively, each sub-season repeats itself m2/m1
times within the longer seasonal pattern. We can impose the
constraint that the seed seasonal effects associated with each
sub-season must sum to zero. For example, the period 10:00–
11:00 a.m. repeats itself seven times in a week. We can insist
that the seven seasonal effects associated with this particular
hour sum to zero and that this is repeated for each of the 24
hour periods in a day. Analogues of these restrictions can be
developed when there are three or more seasonal patterns.

Despite this correction, a large number of initial seasonal val-
ues remain to be estimated when some of the seasonal patterns
have large periods, and such a model is likely to be overparam-
eterized. For double seasonal time series Gould et al. (2008)
attempted to reduce this problem by dividing the longer sea-
sonal length into sub-seasonal cycles that have similar patterns.
However, their adaptation is relatively complex and can only
be used for double seasonal patterns where one seasonal length
is a multiple of the other. To avoid the potentially large opti-
mization problem, the initial states are usually approximated
with various heuristics (Taylor 2003, 2010b; Gould et al. 2008),
a practice that does not lead to optimized seed states. We will
propose an alternative estimation method, one that relies on the
principle of least squares to obtain optimized seed states—see
Section 3.

A further problem is that none of the approaches based on
(1) can be used to handle complex seasonal patterns such as
non-integer seasonality and calendar effects, or time series with
non-nested seasonal patterns. One of our proposed models will
allow for all these features.

The nonlinear versions of the state space models underpin-
ning exponential smoothing, although widely used, suffer from
some important weaknesses. Akram, Hyndman, and Ord (2009)
showed that most nonlinear seasonal versions can be unstable,
having infinite forecast variances beyond a certain forecasting
horizon. For some of the multiplicative error models which do
not have this flaw, Akram, Hyndman, and Ord (2009) proved
that sample paths will converge almost surely to zero even when
the error distribution is non-Gaussian. Furthermore, for nonlin-
ear models, analytical results for the prediction distributions are
not available.

The models used for exponential smoothing assume that the
error process {dt} is serially uncorrelated. However, this may
not always be the case. In an empirical study, using the Holt–
Winters method for multiplicative seasonality, Chatfield (1978)
showed that the error process there is correlated and can be
described by an AR(1) process. Taylor (2003), in a study of
electricity demand forecasting using a double-seasonal Holt–
Winters multiplicative method, found a similar problem. Oth-
ers such as Gardner (1985), Reid (1975), and Gilchrist (1976)
have also mentioned this issue of correlated errors, and the pos-
sibility of improving forecast accuracy by explicitly modeling
it. The source of this autocorrelation may be due to features of
the series not explicitly allowed for in the specification of the
states. Annual seasonal effects may impact on the call center
data, for example, but the limited sample size means that it can-
not be explicitly modeled.
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2.2 Modified Models

We now consider various modifications of the state space
models for exponential smoothing to handle a wider variety
of seasonal patterns, and to also deal with the problems raised
above.

To avoid the problems with nonlinear models that are noted
above, we restrict attention to linear homoscedastic models but
allow some types of nonlinearity using Box–Cox transforma-
tions (Box and Cox 1964). This limits our approach to only
positive time series, but most series of interest in practice are
positive. The notation y(ω)

t is used to represent Box–Cox trans-
formed observations with the parameter ω, where yt is the ob-
servation at time t.

We can extend model (1) to include a Box–Cox transforma-
tion, ARMA errors, and T seasonal patterns as follows:

y(ω)
t =

{ yω
t − 1

ω
, ω �= 0,

log yt, ω = 0,
(3a)

y(ω)
t = �t−1 + φbt−1 +

T∑
i=1

s(i)
t−mi

+ dt, (3b)

�t = �t−1 + φbt−1 + αdt, (3c)

bt = (1 − φ)b + φbt−1 + βdt, (3d)

s(i)
t = s(i)

t−mi
+ γidt, (3e)

dt =
p∑

i=1

ϕidt−i +
q∑

i=1

θiεt−i + εt, (3f)

where m1, . . . ,mT denote the seasonal periods, �t is the local
level in period t, b is the long-run trend, bt is the short-run trend
in period t, s(i)

t represents the ith seasonal component at time t,
dt denotes an ARMA(p,q) process, and εt is a Gaussian white-
noise process with zero mean and constant variance σ 2. The
smoothing parameters are given by α, β , and γi for i = 1, . . . ,T .
We adopt the Gardner and McKenzie (1985) damped trend with
damping parameter φ, but follow the suggestion in the article
by Snyder (2006) to supplement it with a long-run trend b. This
change ensures that predictions of future values of the short-run
trend bt converge to the long-run trend b instead of zero. The
damping factor is included in the level and measurement equa-
tions as well as the trend equation for consistency with the work
of Gardner and McKenzie (1985), but identical predictions are
obtained (see Snyder 2006) if it is excluded from the level and
measurement equations.

The identifier BATS is an acronym for key features of
the model shown by (3): Box–Cox transform, ARMA errors,
Trend, and Seasonal components. It is supplemented with
arguments (ω,φ,p,q,m1,m2, . . . ,mT ) to indicate the Box–
Cox parameter, damping parameter, ARMA parameters (p
and q), and the seasonal periods (m1, . . . ,mT ). For exam-
ple, BATS(1,1,0,0,m1) represents the underlying model for
the well-known Holt–Winters additive single seasonal method.
The double seasonal Holt–Winters additive seasonal model de-
scribed by Taylor (2003) is given by BATS(1,1,0,0,m1,m2),
and that with the residual AR(1) adjustment in the model of
Taylor (2003, 2008) is given by BATS(1,1,1,0,m1,m2). The

Holt–Winters additive triple seasonal model with AR(1) adjust-
ment in the article by Taylor (2010b) is given by BATS(1,1,1,

0,m1,m2,m3).
The BATS model is the most obvious generalization of the

traditional seasonal innovations models to allow for multiple
seasonal periods. However, it cannot accommodate non-integer
seasonality, and it can have a very large number of states; the
initial seasonal component alone contains mT nonzero states.
This becomes a huge number of values for seasonal patterns
with high periods.

2.3 Trigonometric Seasonal Models

In the quest for a more flexible parsimonious approach,
we introduce the following trigonometric representation of
seasonal components based on Fourier series (Harvey 1989;
West and Harrison 1997):

s(i)
t =

ki∑
j=1

s(i)
j,t , (4a)

s(i)
j,t = s(i)

j,t−1 cosλ
(i)
j + s∗(i)

j,t−1 sinλ
(i)
j + γ

(i)
1 dt, (4b)

s∗(i)
j,t = −sj,t−1 sinλ

(i)
j + s∗(i)

j,t−1 cosλ
(i)
j + γ

(i)
2 dt, (4c)

where γ
(i)
1 and γ

(i)
2 are smoothing parameters and λ

(i)
j =

2π j/mi. We describe the stochastic level of the ith seasonal
component by s(i)

j,t , and the stochastic growth in the level of the
ith seasonal component that is needed to describe the change
in the seasonal component over time by s∗(i)

j,t . The number of
harmonics required for the ith seasonal component is denoted
by ki. The approach is equivalent to index seasonal approaches
when ki = mi/2 for even values of mi, and when ki = (mi −1)/2
for odd values of mi. It is anticipated that most seasonal compo-
nents will require fewer harmonics, thus reducing the number
of parameters to be estimated. A deterministic representation of
the seasonal components (e.g., Abraham and Box 1978) can be
obtained by setting the smoothing parameters equal to zero.

A new class of innovations state space models is obtained
by replacing the seasonal component s(i)

t in Equation (3) by
the trigonometric seasonal formulation, and the measurement
equation by y(ω)

t = �t−1 +φbt−1 +∑T
i=1 s(i)

t−1 + dt. This class is
designated by TBATS, the initial T connoting “trigonometric.”
To provide more details about their structure, this identifier is
supplemented with relevant arguments to give the designation
TBATS(ω,φ,p,q, {m1, k1}, {m2, k2}, . . . , {mT , kT}).

A TBATS model requires the estimation of 2(k1 + k2 + · · ·+
kT) initial seasonal values, a number which is likely to be much
smaller than the number of seasonal seed parameters in a BATS
models. Because it relies on trigonometric functions, it can
be used to model non-integer seasonal frequencies. A TBATS
model should be distinguished from two other related (Proietti
2000) multiple source of error seasonal formulations presented
by Hannan, Terrel, and Tuckwell (1970) and Harvey (1989).
Some of the key advantages of the TBATS modeling frame-
work are: (i) Being an innovations state space model, it admits
a larger effective parameter space with the possibility of bet-
ter forecasts (Hyndman et al. 2008, chap. 13); (ii) it allows for
the accommodation of nested and non-nested multiple seasonal
components; (iii) it handles typical nonlinear features that are
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often seen in real time series; (iv) it allows for any autocorre-
lation in the residuals to be taken into account; and (v) it in-
volves a much simpler, yet efficient estimation procedure (see
Section 3).

2.4 Innovations State Space Formulations

The above models are special cases of the linear innovations
state space model (Anderson and Moore 1979) adapted here to
incorporate the Box–Cox transformation to handle nonlineari-
ties. It then has the form

y(ω)
t = w′xt−1 + εt, (5a)

xt = Fxt−1 + gεt, (5b)

where w′ is a row vector, g is a column vector, F is a matrix,
and xt is the unobserved state vector at time t.

2.4.1 TBATS Model. The state vector for the TBATS model
with a nonstationary growth term can be defined as xt =
(�t,bt, s(1)

t , . . . , s(T)
t ,dt,dt−1, . . . ,dt−p+1, εt, εt−1, . . . , εt−q+1)

′

where s(i)
t is the row vector (s(i)

1,t, s(i)
2,t, . . . , s(i)

ki,t
, s∗(i)

1,t , s∗(i)
2,t , . . . ,

s∗(i)
ki,t

). Let 1r = (1,1, . . . ,1) and 0r = (0,0, . . . ,0) be row

vectors of length r; let γ
(i)
1 = γ

(i)
1 1ki , γ

(i)
2 = γ

(i)
2 1ki , γ (i) =

(γ
(i)
1 ,γ

(i)
2 ), γ = (γ (1), . . . ,γ (T)), ϕ = (ϕ1, ϕ2, . . . , ϕp), and

θ = (θ1, θ2, . . . , θp); let Ou,v be a u × v matrix of zeros, let
Iu,v be a u × v rectangular diagonal matrix with element 1 on
the diagonal, and let a(i) = (1ki ,0ki) and a = (a(1), . . . ,a(T)).
We shall also need the matrices B = γ ′ϕ, C = γ ′θ ,

Ai =
[

C(i) S(i)

−S(i) C(i)

]
, Ãi =

[
0mi−1 1
Imi−1 0′

mi−1

]
,

and A =⊕T
i=1 Ai, where C(i) and S(i) are ki × ki diagonal ma-

trices with elements cos(λ(i)
j ) and sin(λ

(i)
j ), respectively, for

j = 1,2, . . . , ki and i = 1, . . . ,T , and where
⊕

denotes the di-
rect sum of the matrices. Let τ = 2

∑T
i=1 ki.

Then the matrices for the TBATS model can be written as
w = (1, φ,a,ϕ, θ)′, g = (α,β,γ ,1,0p−1,1,0q−1)

′, and

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 φ 0τ αϕ αθ

0 φ 0τ βϕ βθ

0′
τ 0′

τ A B C
0 0 0τ ϕ θ

0′
p−1 0′

p−1 Op−1,τ Ip−1,p Op−1,q

0 0 0τ 0p 0q

0′
q−1 0′

q−1 Oq−1,τ Oq−1,p Iq−1,q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These matrices apply when all of the components are present
in the model. When a component is omitted, the corresponding
terms in the matrices must be omitted.

2.4.2 BATS Model. The state space form of the BATS
model can be obtained by letting s(i)

t = (s(i)
t , s(i)

t−1, . . . ,

s(i)
t−(mi−1)), a(i) = (0mi−1,1), γ (i) = (γi,0mi−1), A =⊕T

i=1 Ãi,
and by replacing 2ki with mi in the matrices presented above
for the TBATS models.

2.4.3 Reduced Forms. It is well known that linear fore-
casting systems have equivalent ARIMA (Box and Jenkins
1970) reduced forms, and it has been shown that the fore-
casts from some exponential smoothing models are identical to
the forecasts from particular ARIMA models (McKenzie 1984;
Chatfield and Yar 1991). The reduced forms of BATS and
TBATS models can be obtained by

ϕp(L)η(L)y(ω)
t = θq(L)δ(L)εt, (6)

where L is the lag operator, η(L) = det(I − F∗L), δ(L) =
w∗ adj(I − F∗L)g∗L + det(I − F∗L), ϕp(L) and θq(L) are poly-
nomials of length p and q, w∗ = (1, φ,a), g∗ = (α,β,γ )′, and

F∗ =
[ 1 φ 0

0 φ 0
0′ 0′ A

]
,

with the corresponding parameters defined as above. (Refer to
De Livera 2010b, chap. 4 for the proofs.) For BATS models with
a nonstationary growth, the reduced form is then given by (6),
with

η(L) = (1 − φL)(1 − L)

T∏
j=1

(Lmj−1 + Lmj−2 + · · · + L + 1),

δ(L) =
T∏

j=1

(Lmj−1 + Lmj−2 + · · · + L + 1)

× [L2(φ − φα) + L(α + φβ − φ − 1) + 1]
+ (1 − φL)

×
T∑

i=1

T∏
j=1,i�=j

(Lmj−1 + Lmj−2 + · · · + L + 1)γiL
mi .

For TBATS models with a nonstationary growth, the reduced
form is then given by (6), with

η(L) = (1 − L)(1 − φL)

T∏
i=1

ki∏
j=1

(
1 − 2 cosλ

(i)
j L + L2),

δ(L) = [L2φ(1 − α) + L(α + φβ − φ − 1) + 1]

×
T∏

i=1

ki∏
j=1

(
1 − 2 cosλ

(i)
j L + L2)

+ (1 − L)(1 − φL)

×
T∑

i=1

ki∑
j=1

T∏
ĩ=1,ĩ �=i

kĩ∏
j̃=1,j̃�=j

(
1 − 2 cosλ

(ĩ)
j̃

L + L2)

× [(cosλ
(i)
j γ1i + sinλ

(i)
j γ2i
)
L2 − γ1iL

3]
+ (1 − L)(1 − φL)L

×
T∏

i=1

ki∏
j=1

(
1 − 2 cosλ

(i)
j L + L2) T∑

i=1

kiγ1i.

One of the benefits of using this ARIMA reduced form
compared to the existing innovations state space methodol-
ogy is that it allows for the derivation of exact likelihood es-
timates without treating initial state values as additional pa-
rameters (Gardner, Harvey, and Phillips 1980; Melard 1984;
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Kohn and Ansley 1985). It also allows for the derivation of fore-
cast error variance, computation of forecast intervals, and resid-
ual analysis. However, the reduced form of the TBATS model
has a relatively complex ARIMA structure which is dependent
on the number of terms ki chosen for the ith seasonal compo-
nent, and encompasses trigonometric coefficients that rely on
the frequency of each seasonal pattern. Several other advan-
tages of state space modeling over ARIMA modeling have been
described by Durbin (2001, chap. 3, sect. 3.5).

3. ESTIMATION, PREDICTION, AND
MODEL SELECTION

3.1 Estimation

The typical approach with linear state space models is to es-
timate unknown parameters like the smoothing parameters and
the damping parameter using the sum of squared errors or the
Gaussian likelihood (see Hyndman et al. 2008, chap. 3). In our
context it is necessary to also estimate the unknown Box–Cox
transformation parameter ω, and the ARMA coefficients.

The seed states of state space models are usually treated as
random vectors. Given trial values of the unknown parameters,
the joint steady-state distributions of stationary states are de-
rived, and then assigned to associated seed states. Thus, for
given values of φ and σ 2, the seed short-run growth rate would
be assigned an N(0, σ 2/(1 − φ2)) distribution. Most states,
however, are nonstationary, and they are presumed to have
Gaussian distributions with arbitrarily large variances (Ansley
and Kohn 1985). The Kalman filter is typically used to ob-
tain one-step-ahead prediction errors and associated variances
needed for evaluating fitting criteria for given trial values of the
parameters. The Kalman filter in the work of Snyder (1985b)
would be appropriate for innovations state space models in par-
ticular. However, it would need to be augmented with additional
equations (De Jong 1991) to handle the nonstationary states.

A simpler alternative is available in the context of innova-
tions state space models. By conditioning on all the seed states
and treating them as unknown fixed parameters, exponential
smoothing can be used instead of an augmented Kalman fil-
ter to generate the one-step-ahead prediction errors needed for
likelihood evaluation. In this case both the parameters and seed
states are selected to maximize the resulting conditional like-
lihood function. If not for the different treatment of stationary
states, the exponential smoothing and augmented Kalman filter
approaches yield the same conditional distribution of the final
state vector and so yield identical prediction distributions of fu-
ture series values (Hyndman et al. 2008).

The conditional likelihood of the observed data y = (y1, . . . ,

yn) is derived on the assumption that εt ∼ N(0, σ 2). This
implies that the density of the transformed series is y(ω)

t ∼
N(w′xt−1, σ

2) so that the density of the transformed data is

p
(
y(ω) | x0,ϑ, σ 2) = n∏

t=1

p
(
y(ω)

t | xt−1,ϑ, σ 2)

=
n∏

t=1

p(εt) = 1

(2πσ 2)n/2
exp

(
−1

2σ 2

n∑
t=1

ε2
t

)
,

where ϑ is a vector containing the Box–Cox parameter,
smoothing parameters, and ARMA coefficients. Therefore, the

density of the original series, using the Jacobian of the Box–
Cox transformation, is

p(yt | x0,ϑ,σ 2) = p
(
y(ω)

t | x0,ϑ, σ 2)∣∣∣∣det

(
∂y(ω)

t

∂y

)∣∣∣∣
= p
(
y(ω)

t | x0,ϑ, σ 2) n∏
t=1

yω−1
t

= 1

(2πσ 2)n/2
exp

(
−1

2σ 2

n∑
t=1

ε2
t

)
n∏

t=1

yω−1
t .

On concentrating out the variance σ 2 with its maximum likeli-
hood estimate

σ̂ 2 = n−1
n∑

t=1

ε2
t , (7)

we obtain the log-likelihood given by

L(x0,ϑ, σ 2) = −n

2
log(2πσ 2)

− 1

2σ 2

n∑
t=1

ε2
t + (ω − 1)

n∑
t=1

log yt. (8)

Substituting (7) into (8), multiplying by −2, and omitting con-
stant terms, we get

L∗(x0,ϑ) = n log

(
n∑

t=1

ε2
t

)
− 2(ω − 1)

n∑
t=1

log yt. (9)

The quest is to minimize the quantity (9) to obtain maximum
likelihood estimates, but the dimension of the seed states vec-
tor x0 makes this computationally challenging. Our approach
to this problem is based on the observation that εt is a linear
function of the seed vector x0. Thus, we show that it is possible
to concentrate the seed states out of the likelihood, and so sub-
stantially reduce the dimension of the numerical optimization
problem. This concentration process is the exponential smooth-
ing analogue of de Jong’s method for augmenting Kalman filter
to handle seed states with infinite variances.

The innovation εt can be eliminated from the transition equa-
tion in (5) to give xt = Dxt−1 + gyt where D = F − gw′. The
equation for the state, obtained by back-solving this recurrence
equation to period 0, can be used in conjunction with the mea-
surement equation to obtain

εt = y(ω)
t − w′

t−1∑
j=1

Dj−1gy(ω)
t−j − w′Dt−1x0

= y(ω)
t − w′x̃t−1 − w′

t−1x0

= ỹt − w′
t−1x0, (10)

where ỹt = y(ω)
t −w′x̃t−1, x̃t = Dx̃t−1 +gyt, w′

t = Dw′
t−1, x̃0 =

0, and w′
0 = w′ (see Snyder 1985a, for the derivation). Thus,

the relationship between each error and the initial state vector
x0 is linear. It can also be seen from (10) that the seed vector
x0 corresponds to a regression coefficients vector, and so it may
be estimated using conventional linear least squares methods.
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Thus, the problem reduces to minimizing the following with
respect to ϑ :

L∗(ϑ) = n log(SSE∗) − 2(ω − 1)

n∑
t=1

log yt, (11)

where SSE∗ is the optimized value of the sum of squared errors
for given parameter values.

In contrast to the existing estimation procedure (Hyndman
et al. 2008, chap. 14) where a heuristic scheme is employed to
find the values of the initial states, our approach concentrates
out the initial state values from the likelihood function, leaving
only the much smaller parameter vector for optimization, a tac-
tic in our experience that leads to better forecasts. It may also
be effective in reducing computational times instead of invok-
ing the numerical optimizer to directly estimate the seed state
vector.

We can constrain the estimation to the forecastability region
(Hyndman, Akram, and Archibald 2007) so that the charac-
teristic roots of D lie within the unit circle, a concept that is
equivalent to the invertibility condition for equivalent ARIMA
models. The coefficients w′Dj−1g are the matrix analogues of
the weights in an exponentially weighted average, and this con-
straint ensures that their effect is to reduce the importance
placed on older data. When some roots lie on the unit circle,
the discounting effect is lost (although this possibility admits
some important special cases). For integer period seasonality,
the seasonal values can also be constrained when optimizing,
so that each seasonal component sums to zero.

3.2 Prediction

The prediction distribution in the transformed space for fu-
ture period n + h, given the final state vector xn and given
the parameters ϑ, σ 2, is Gaussian. The associated random vari-
able is designated by y(ω)

n+h|n. Its mean E(y(ω)
n+h|n) and variance

V(y(ω)
n+h|n) are given, after allowing for the Box–Cox transfor-

mation, by the equations (Hyndman et al. 2005):

E
(
y(ω)

n+h|n
) = w′Fh−1xn, (12a)

V
(
y(ω)

n+h|n
) =
⎧⎪⎪⎨
⎪⎪⎩

σ 2, if h = 1,

σ 2

[
1 +

h−1∑
j=1

c2
j

]
, if h ≥ 2,

(12b)

where cj = w′Fj−1g. The prediction distribution of yn+h|n is
not normal. Point forecasts and forecast intervals, however,
may be obtained using the inverse Box–Cox transformation of
appropriate quantiles of the distribution of y(ω)

n+h|n. The point
forecast obtained this way is the median, a minimum mean ab-
solute error predictor (Pankratz and Dudley 1987; Proietti and
Riani 2009). The prediction intervals retain the required prob-
ability coverage under back-transformation because the Box–
Cox transformation is monotonically increasing. To simplify
matters we use the common plug-in approach to forecasting.
The pertinent parameters and final state are replaced by their
estimates in the above formulas. This ignores the impact of es-
timation error, but the latter is a second-order effect in most
practical contexts.

3.3 Model Selection

3.3.1 The Use of an Information Criterion. In this article,
the AIC = L∗(ϑ̂, x̂0) + 2K is used for choosing between the
models, where K is the total number of parameters in ϑ plus the
number of free states in x0, and ϑ̂ and x̂0 denote the estimates
of ϑ and x0. When one of the smoothing parameters takes the
boundary value 0, the value of K is reduced by 1 as the model
simplifies to a special case. For example, if β = 0, then bt = b0
for all t. Similarly, when either φ = 1 or ω = 1, the value of
K is reduced by 1 in each instance to account for the result-
ing simplified model (e.g., when ω = 1, the model simplifies
to a linear model without a Box–Cox transformation, and when
φ = 1, the model reduces to a model without a damping effect
in the trend component). In the applications of our article, the
Nelder–Mead algorithm (Nelder and Mead 1965), which is be-
ing successfully employed in recent R packages (e.g., forecast
package for R Hyndman 2010), was used for optimization, with
a tolerance level of 1e–08 for such boundary values. In an em-
pirical study, Billah, Hyndman, and Koehler (2005) indicated
that information criterion approaches, such as the AIC, provide
the best basis for automated model selection, relative to other
methods such as prediction-validation. Alternative information
criteria such as the AICc (Burnham and Anderson 2002) may
also be used.

3.3.2 Selecting the Number of Harmonics kj in the Trigono-
metric Models. The forecasts from the TBATS model depend
on the number of harmonics ki used for the seasonal compo-
nent i. It is impractical to consider all possible combinations in
the quest for the best combination. After much experimentation
we found that the following approach leads to good models and
that further improvement can rarely be achieved (see De Livera
2010b, chap. 3).

De-trend the first few seasons of the transformed data using
an appropriate de-trending method. In this article, we employed
the method described by Hyndman et al. (2008, chap. 2). Ap-
proximate the resulting de-trended data using the linear regres-
sion

∑T
i=1
∑ki

j=1 a(i)
j cos(λ(i)

j t) + b(i)
j sin(λ

(i)
j t). Starting with a

single harmonic, gradually add harmonics, testing the signifi-
cance of each one using F-tests. Let k∗

i be the number of sig-
nificant harmonics (with p < 0.001) for the ith seasonal com-
ponent. Then fit the required model to the data with ki = k∗

i
and compute the AIC. Considering one seasonal component
at a time, repeatedly fit the model to the estimation sample,
gradually increasing ki but holding all other harmonics con-
stant for each i, until the minimum AIC is achieved. This ap-
proach, based on multiple linear regression, is preferred over
letting k∗

i = 1 for each component, as the latter was found to be
unnecessarily time-consuming.

3.3.3 Selecting the ARMA Orders p and q for the Models.
In selecting a model, suitable values for the ARMA orders p
and q must also be found. We do this using a two-step proce-
dure. First, a suitable model with no ARMA component is se-
lected. Then the automatic ARIMA algorithm of Hyndman and
Khandakar (2008) is applied to the residuals from this model
in order to determine the appropriate orders p and q (we as-
sume the residuals are stationary). The selected model is then
fitted again but with an ARMA(p,q) error component, where
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the ARMA coefficients are estimated jointly with the rest of the
parameters. The ARMA component is only retained if the re-
sulting model has lower AIC than the model with no ARMA
component. Our subsequent work on the proposed models on
a large number of real time series (De Livera 2010a) has in-
dicated that fitting ARMA in a two-step approach yielded the
best out-of-sample predictions, compared to several alternative
approaches.

4. APPLICATIONS OF THE PROPOSED MODELS

The results obtained from the application of BATS and
TBATS to the three complex time series in Figure 1 are reported
in this section.

In addition, it is shown that the TBATS models can be
used as a means of decomposing complex seasonal time series
into trend, seasonal, and irregular components. In decompos-
ing time series, the trigonometric approach has several impor-
tant advantages over the traditional seasonal formulation. First,
seasonal components obtained from the BATS model are not
normalized (cf. the seasonal model of Harrison and Stevens
1976). Although normalized components may not be neces-
sary if one is only interested in the forecasts and the predic-
tion intervals, when the seasonal component is to be analyzed
separately or used for seasonal adjustment, normalized sea-
sonal components are required (Archibald and Koehler 2003;
Hyndman et al. 2008). Thus, BATS models have to be modi-
fied, so that the seasonal components are normalized for each
time period, before using them for time series decomposition
(see De Livera 2010b, chap. 5 for a normalized version of the
BATS model). In contrast, the trigonometric terms in TBATS
models do not require normalization, and so are more appro-
priate for decomposition. Second, in estimating the seasonal
components using BATS, a large number of parameters are
required, which often leads to noisy seasonal components. In
contrast, a smoother seasonal decomposition is expected from
TBATS where the smoothness of the seasonal component is
controlled by the number of harmonics used. Furthermore, a
BATS model cannot be used to decompose time series with non-
integer seasonality and dual-calendar effects. Using TBATS
models for complex seasonal time series, the overall seasonal
component can be decomposed into several individual seasonal
components with different frequencies. These individual sea-
sonal components are given by s(i)

t (i = 1, . . . ,T) and the trend
component is obtained by �t. Extracting the trend and seasonal
components then leaves behind a covariance stationary irregular
component, denoted by dt. In particular, this approach leads to
the identification and extraction of one or more seasonal com-
ponents, which may not be apparent in the time series plots
themselves.

4.1 Application to Weekly U.S. Gasoline Data

Figure 1(b) shows the number of barrels of motor gaso-
line product supplied in the United States, in thousands of
barrels per day, from February 1991 to July 2005 (see www.
forecastingprinciples.com/files/T_competition_new.pdf for de-
tails). The data are observed weekly and show a strong annual
seasonal pattern. The length of seasonality of the time series is
m1 = 365.25/7 ≈ 52.179. The time series exhibits an upward
additive trend and an additive seasonal pattern, that is, a pattern

for which the variation does not change with the level of the
time series.

The series, which consists of 745 observations, was split into
two segments: an estimation sample period (484 observations)
and a test sample (261 observations). The estimation sample
was used to obtain the maximum likelihood estimates of the
initial states and the smoothing parameters, and to select the
appropriate number of harmonics and ARMA orders. Follow-
ing the procedure for finding the number of harmonics to start
with, it was found that only one harmonic was highly signifi-
cant. The model was then fitted to the whole estimation sample
of 484 values by minimizing the criterion equation (11). The
values of the AIC decreased until k1 = 7, and then started to
increase.

Out-of-sample performance was measured by the root mean
squared error (RMSE), defined as

RMSEh =
√√√√ 1

p − h + 1

n+p−h∑
t=n

(yt+h − ŷt+h|t)2
, (13)

where p = 261 is the length of the test sample, n = 484 is
the length of the estimation sample, and h is the length of
the forecast horizon. Further analysis showed that changing
the value of k1 from 7 generated worse out-of-sample results,
indicating that the use of the AIC as the criterion for this
model selection procedure is a reasonable choice. In this way,
the TBATS(0.9922,1,0,0, {365.25/7,7}) model was obtained.
As a second step, ARMA models were fitted to the residuals
with (p,q) combinations up to p = q = 5, and it was discov-
ered that the TBATS(0.9922,1,0,1, {365.25/7,7}) model min-
imizes the AIC.

The BATS model was considered next with m1 = 52, and
following the above procedure, it was discovered that the
BATS(0.9875,1,0,1,52) model minimized the AIC. Figure 2
shows the out-of-sample RMSEs obtained for the two models,
and it can be seen that the trigonometric model performs better
for all lead times.

The BATS model cannot handle the non-integer periods, and
so has to be rounded off to the nearest integer. It may also be
overparameterized, as 52 initial seasonal values have to be esti-
mated. Both these problems are overcome in the trigonometric
formulation.

Tables 1 and 2 show the estimated parameters obtained for
the TBATS and BATS models, respectively. The estimated val-
ues of 0 for β and 1 for φ imply a purely deterministic growth
rate with no damping effect. The models also imply that the
irregular component of the series is correlated and can be de-
scribed by an ARMA(0,1) process, and that a strong transfor-
mation is not necessary to handle nonlinearities in the series.

The decomposition of the Gasoline time series, obtained
from the fitted TBATS model, is shown in Figure 3. The vertical
bars at the right side of each plot represent equal heights plot-
ted on different scales, thus providing a comparison of the size
of each component. The trigonometric formulation in TBATS
allows for the removal of more randomness from the seasonal
component without destroying the influential bumps.

http://www.forecastingprinciples.com/files/T_competition_new.pdf
http://www.forecastingprinciples.com/files/T_competition_new.pdf
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Figure 2. Out-of-sample results for the U.S. gasoline data using BATS(0.9875,1,0,1,52) and TBATS(0.9922,1,0,1, {365.25/7,7}). The
online version of this figure is in color.

4.2 Application to Call Center Data

The call center series in Figure 1(a) consists of 10,140 obser-
vations, that is, 12 weeks of data starting from 3 March 2003
(Weinberg, Brown, and Stroud 2007). It contains a daily sea-
sonal pattern with period 169 and a weekly seasonal pattern
with period 169 ∗ 5 = 845. The fitting sample consists of 7605
observations (9 weeks). As the trend appears to be close to zero,
the growth rate bt was omitted from the models.

The selection procedure led to the models TBATS(1,NA,3,

1, {169,29}, {845,15}) and BATS(0.4306,NA,3,0,169,845).
Other BATS models with ω = 1 were also tried, but their fore-
casting performance was worse.

The post-sample forecasting accuracies of the selected BATS
and TBATS models are compared in Figure 4. Again TBATS,
which requires fewer parameters to be estimated, is more accu-
rate than BATS.

The estimated parameters for the TBATS model shown in
Table 1 imply that no Box–Cox transformation is necessary
for this time series, and that the weekly seasonal component is
more variable than the daily seasonal component. The irregular
component is modeled by an ARMA(3,1) process.

The decomposition obtained from TBATS, as shown in Fig-
ure 5, clearly exhibits strong daily and weekly seasonal compo-
nents. The weekly seasonal pattern evolves considerably over
time but the daily seasonal pattern is relatively stable. As is
seen from the time series plot itself, the trend component is very
small in magnitude compared to the seasonal components.

4.3 Application to the Turkey Electricity Demand Data

The Turkey electricity demand series shown in Figure 1(c)
has a number of important features that should be reflected in
the model structure. Three seasonal components with frequen-
cies m1 = 7, m2 = 354.37, and m3 = 365.25 exist in the se-
ries. The sharp drops seen in the seasonal component with pe-
riod 354.37 are due to the Seker (also known as Eid ul-Fitr)
and Kurban (also known as Eid al-Adha) religious holidays,
which follow the Hijri calendar, while those seen in the seasonal
component with frequency 365.25 are due to national holidays
which follow the Gregorian calendar. Table 3 gives the dates of
the holidays from the Hijri and Gregorian calendars. Seker is
a three-day festival when sweets are eaten to celebrate the end
of the fast of Ramadan. Kurban is a four-day festival when sac-
rificial sheep are slaughtered and their meat distributed to the
poor. In addition, there are national holidays which follow the
Gregorian calendar as shown in the table.

In this study, the series, which covers a period of 9 years,
is split into two parts: a fitting sample of n = 2191 observa-
tions (6 years) and a post-sample period of p = 1096 observa-
tions (3 years). The model selection procedure was followed to
give the TBATS(0.1393,1,3,2, {7,3}, {354.37,23}, {365.25,

3}) and BATS(0.0013,1,0,0,7,354,365) models.
Figure 6 shows that a better post-sample forecasting perfor-

mance is again obtained from the TBATS model. The poor per-
formance of the BATS model may be explained by its inability
to capture the dual seasonal calendar effects and the large num-

Table 1. Parameters chosen for each application of the TBATS model

Parameters

Data ω φ α β γ1 γ2 γ3 γ4 γ5 γ6 θ1 θ2 ϕ1 ϕ2 ϕ3

Gasoline 0.9922 1 0.0478 0 0.0036 −0.0005 −0.2124
Call center 1 0.0921 0.0006 −0.0002 0.0022 0.0020 −0.1353 0.1776 −0.0144 −0.0200
Electricity 0.1393 1 0.8019 0 0.0034 −0.0037 0.0001 0.0001 0.1171 0.251 −1.2610 0.3128 1.0570 −0.2991 −0.1208
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Table 2. Parameters chosen for each application of the BATS model

Parameters

Data ω φ α β γ1 γ2 γ3 θ1 θ2 ϕ1 ϕ2 ϕ3

Gasoline 0.9875 1 0.0457 0 0.2246 −0.2186
Call center 0.4306 0.0368 0.0001 0.0001 0.0552 0.1573 0.1411
Electricity 0.0013 1 0.2216 0 0 0 0

Figure 3. Trigonometric decomposition of the U.S. gasoline data. The within-sample RMSE was 279.9.

Figure 4. Out-of-sample results for the call center data using BATS(0.4306,NA,3,0,169,845) and TBATS(1,NA,3,1, {169,29},
{845,15}). The online version of this figure is in color.
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Figure 5. Trigonometric decomposition of the call center data. The within-sample RMSE was 14.7.

ber of values that are required to be estimated. The estimated
zero values for the smoothing parameters shown in Table 2 for
the BATS solution suggest stable seasonal components. The Hi-
jri seasonal component based on the TBATS solution displays a
similar level of stability. However, moderate change is implied
by the TBATS model in the weekly and Gregorian seasonal
components. Both models required strong Box–Cox transfor-
mations in order to handle the obvious nonlinearity in the time
series plot.

The decomposition of the series obtained by using the cho-
sen TBATS model is shown in Figure 7. The first panel shows
the transformed observations and the second shows the trend
component. The third panel shows the weekly seasonal com-
ponent with period 7, and the fifth and the sixth panels show
the seasonal component based on the Hijri calendar with period
354.37 and the seasonal component based on the Gregorian cal-
endar with period 365.25, respectively. The seasonal compo-

nents shown in the fifth and sixth panels may initially appear
to be mirror images. However, their combined effect, shown in
the fourth panel, indicates that this is not the case. Interpreting
their combined effect as the annual seasonal component would
be misleading as there is no unique annual calendar in this situ-
ation: both constituent calendars are of different lengths.

The rather wiggly components of the decomposition are
probably due to the use of a large number of harmonics in
each seasonal component. This is necessary to capture the sharp
drops seen in the time series plot. If we were to augment the
stochastic seasonal component by deterministic holiday effects
(given in Table 3) represented by dummy variables, the number
of harmonics required might be reduced. Using a trend com-
ponent, a seasonal component, and holiday dummy variables,
regression was performed on the transformed y(ω)

t values. The
term

∑3
i=1
∑ki

j=1 a(i)
j cos(λ(i)

j t) + b(i)
j sin(λ

(i)
j t) was used to cap-

Table 3. The dates of Turkish holidays between 1 January 2000 and 31 December 2006

Religious holidays

Year Seker holiday Kurban holiday National holidays

2000 08 Jan–10 Jan 16 Mar–19 Mar 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
27 Dec–29 Dec

2001 16 Dec–18 Dec 05 Mar–08 Mar 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2002 05 Dec–07 Dec 22 Feb–25 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2003 25 Nov–27 Nov 11 Feb–14 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2004 14 Nov–16 Nov 01 Feb–04 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2005 03 Nov–05 Nov 20 Jan–23 Jan 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2006 23 Oct–25 Oct 10 Jan–13 Jan 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct

31 Dec
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Figure 6. Out-of-sample results for the Turkey electricity demand data using BATS(0.0013,1,0,0,7,354,365) and TBATS(0.1393,1,3,2,

{7,3}, {354.37,23}, {365.25,3}). The online version of this figure is in color.

ture the multiple seasonality with k1 = 3 and k2 = k3 = 1. The
estimated holiday effect was then removed from the series and
the remainder was decomposed using TBATS to achieve the
result shown in Figure 8, which provides a much smoother sea-

sonal decomposition. Again, the sum of the Hijri seasonal com-
ponent and the Gregorian seasonal component shown in the
fourth panel illustrates that the Hijri and Gregorian seasonal
components do not offset each other.

Figure 7. Trigonometric decomposition of the Turkey electricity demand data. The within-sample RMSE was 0.1346.
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Figure 8. Trigonometric decomposition of the regressed Turkey electricity demand data. The within-sample RMSE was 0.1296.

This analysis demonstrates the capability of our trigono-
metric decomposition in extracting those seasonal components
which are otherwise not apparent in graphical displays.

In forecasting complex seasonal time series with such de-
terministic effects, both BATS and TBATS models may be ex-
tended to accommodate regressor variables, allowing additional
information to be included in the models (see De Livera 2010a,
chap. 7 for a detailed discussion of the BATS and TBATS mod-
els with regressor variables).

5. CONCLUDING REMARKS

A new state space modeling framework, based on the in-
novations approach, was developed for forecasting time series
with complex seasonal patterns. The new approaches offer al-
ternatives to traditional counterparts, providing several advan-
tages and additional options. A key feature of the proposed
trigonometric framework is its ability to model both linear and
nonlinear time series with single seasonality, multiple season-
ality, high period seasonality, non-integer seasonality, and dual-
calendar effects. We are not aware of another modeling proce-
dure that is able to forecast and decompose all these complex
seasonal time series features within a single framework.

In addition, the framework consists of a new estimation pro-
cedure which is sufficiently general to be applied to any inno-
vations state space model. By relying on maximum likelihood

estimation, it avoids the ad hoc startup choices with unknown
statistical properties commonly used with exponential smooth-
ing. By incorporating the least squares criterion, it streamlines
the process of obtaining the maximum likelihood estimates.

The applications of the proposed modeling framework to
three complex seasonal time series demonstrated that the
trigonometric models led to a better out-of-sample perfor-
mance with substantially fewer values to be estimated than
traditional seasonal exponential smoothing approaches (see Ta-
ble 4). The trigonometric approach was also illustrated as a
means of decomposing complex seasonal time series. The abil-
ity to handle such complex seasonality is a key advantage of
the trigonometric approach over most traditional decomposi-
tion methods (e.g., Cleveland et al. 1990; Findley et al. 1998;
Gómez and Maravall 1998) which are mainly designed to han-
dle monthly or quarterly data.

A further advantage of the proposed framework is its adapt-
ability. It can be altered to encompass various deterministic ef-
fects that are often seen in real-life time series. For instance, the
moving holidays such as Easter and irregular holidays can be
handled by incorporating dummy variables in the models (see
De Livera 2010a, chap. 7), and the varying length of months
can be managed by adjusting the data for trading days before
modeling (see Makridakis, Wheelwright, and Hyndman 1998).
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Table 4. Number of estimated parameters for each model in each application

Data Model No. parameters

Gasoline BATS(0.9875,1,0,1,52) 60
TBATS(0.9922,1,0,1, {365.25/7,7}) 23

Call center BATS(0.4306,NA,3,0,169,845) 1026
TBATS(1,NA,3,1, {169,29}, {845,15}) 102

Electricity BATS(0.0013,1,0,7,354,365) 735
TBATS(0.1393,1,3,2, {7,3}, {354.37,23}, {365.25,3}) 79

In handling moving holiday effects further forecasting perfor-
mance may be obtained by considering their impact on neigh-
boring days. For a detailed discussion on moving holiday ef-
fects refer to the work of Findley and Soukup (2000).

The framework can also be adapted to handle data with zero
and negative values. The use of a Box–Cox transformation lim-
its our approach to positive time series, as is often encountered
in complex seasonal time series. However, the inverse hyper-
bolic sine transformation (Johnson 1949) can be used in its
place should the need arise.

The derivation of likelihood estimates of the proposed ap-
proach relies on the assumption of a Gaussian distribution for
the errors, something that is often a reasonable approximation
when the level of the process is sufficiently far from the origin
(Hyndman et al. 2008). In cases where such an assumption may
conflict with the underlying structure of the data generating pro-
cess, our approach can be readily adapted to non-Gaussian sit-
uations. Being based on exponential smoothing where the con-
ditioning process ensures that successive state vectors become
fixed quantities, any suitable distribution can substitute for the
role of the Gaussian distribution. Thus, if the innovations have
a t-distribution, the prediction error form of the likelihood can
be formed directly from the product of t-distributions. The an-
alytical form of successive prediction distributions is unknown,
but they can be simulated from successive t-distributions us-
ing means obtained from the application of the equations of the
innovations state space model. This can be contrasted with a
Kalman filter approach, which must usually be adapted in the
presence of non-Gaussian distributions, to a form which neces-
sitates the use of computationally intensive simulation methods.

The proposed frameworks can also be extended to exploit the
potential inter-series dependencies of a set of related time se-
ries, providing an alternative to the existing vector exponential
smoothing framework (de Silva, Hyndman, and Snyder 2007),
but with several advantages (see De Livera 2010a, chap. 7).

Our experiences suggest that the use of our proposed estima-
tion procedure for complex seasonal time series requires rela-
tively less computational time than some of the heuristic esti-
mation procedures employed in recent empirical studies (e.g.,
Taylor 2010a). Further, it should be noted that when the esti-
mation scheme is strictly stable, in large samples, the succes-
sive powers of the matrix D in Equation (10) converge to the
null matrix. Thus, in handling complex seasonal time series, the
sparse structure of this matrix can be utilized for further gain in
computational efficiency (see Koenker and Ng 2003).

The R code for the methods implemented in this article will
be available in the forecast package for R (Hyndman 2010).

[Received December 2009. Revised June 2011.]
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