
The problem The algorithm Computational results

A branch-and-price algorithm
for the multi-depot heterogeneous-fleet

vehicle routing problem with time windows

Andrea Bettinelli, Alberto Ceselli, Giovanni Righini
Dipartimento di Tecnologie dell’Informazione - Università degli Studi di Milano

Odysseus 2009, Cesme

May 26, 2009



The problem The algorithm Computational results

Introduction

Problem description

Demand:
a set N of
customers
a demand qi ∀i ∈ N

a service time
si ∀i ∈ N

a time window
[ai , bi ] ∀i ∈ N

Resources:
a set H of depots
a set K of vehicle types
a fleet of uk vehicles for each
type k ∈ K

a capacity wk for each vehicle of
type k ∈ K

a fixed cost fk for each vehicle of
type k ∈ K

a transportation network
G = (N ∪H,A)

a traveling time tij ∀(i , j) ∈ A

a traveling cost dij ∀(i , j) ∈ A



The problem The algorithm Computational results

Introduction

Constraints and objective

Constraints:

No more than gh routes can depart from each depot h ∈ H.

No more than uk vehicles can be used for each type k ∈ K.

No route can have a duration longer than a given upper limit D.

The arrival time Ti at each customer i must fall in the range
[ai , bi ].

Split deliveries are not allowed.

Objective: minimize the overall cost (fixed costs + routing
costs).



The problem The algorithm Computational results

Introduction

Literature review

Exact

VRPTW:

Salani (2006)

MDVRP, HVRP, MDHVRP:

Baldacci et al. (2008)

Heuristics

HVRPTW:

Liu and Shen (1999)
Dullaert et al. (2002)
Belfiore and Fàvero (2007)

MDVRPTW:

Polacek et al. (2004).

MDHVRPTW:

Dondo and Cerdá (2007).

No exact algorithm is known for the MDHVRPTW.



The problem The algorithm Computational results

Formulation

Set covering formulation

minimize
∑

k∈K

∑

h∈H

∑

r∈Ωhk

cr xr

subject to
∑

k∈K

∑

h∈H

∑

r∈Ωhk

air xr ≥ 1 ∀i ∈ N (1)

∑

h∈H

∑

r∈Ωhk

xr ≤ uk ∀k ∈ K (2)

∑

k∈K

∑

r∈Ωhk

xr ≤ gh ∀h ∈ H (3)

xr ∈ {0, 1} ∀k ∈ K ∀h ∈ H ∀r ∈ Ωhk .

Ωhk is the set of feasible routes of type k ∈ K from depot h ∈ H;

cr is the cost of route r ;

air is the number of times route r visits customer i ∈ N .



The problem The algorithm Computational results

Formulation

Reduced costs

The reduced cost of a route r ∈ Ωhk is:

cr = cr −
∑

i∈N

airλi − µk − γh

where λ ≥ 0, µ ≤ 0 and γ ≤ 0 are dual variables of constraints
(1), (2) and (3).

Pricing subproblem:
Elementary Shortest Path Problem with Resource Constraints
(capacity and time) on a graph with negative arc costs.

Strongly NP-hard (Dror, 1994).



The problem The algorithm Computational results

Pricing algorithms

Pricing algorithms

We use three different pricing algorithms:
Greedy algorithm (resembling nearest neighbor heuristic)
Heuristic dynamic programming
Exact dynamic programming

Each of them is executed only if the previous ones fail.

Pricing must be repeated ∀k ∈ K and ∀h ∈ H.



The problem The algorithm Computational results

Pricing algorithms

Exact dynamic programming

The RCESPP is solved with Dynamic Programming (DP):
bi-directional DP (Righini and Salani, 2006)
decremental state space relaxation (Righini and Salani,
2008).



The problem The algorithm Computational results

Pricing algorithms

States

A label associated with vertex i ∈ N is a tuple (S, φ, τ, z, i),
where

S is the set of vertices visited along the path,
φ is the amount of capacity consumed up to i ,
τ is the time at which the service at vertex i begins,
z is the cost of the path,
i is the last reached vertex.



The problem The algorithm Computational results

Pricing algorithms

Extensions

Forward extension from i to j :

S ′ = S ∪ {j}

φ′ = φ + qj

τ ′ = max{τ + si + tij , aj}

z ′ = z − λi/2 + dij − λj/2

where λdepot = −fk − µk − γh.

Backward extensions follow symmetrical rules.



The problem The algorithm Computational results

Pricing algorithms

Bi-directional DP

Feasibility:
Elementary path constraints: j 6∈ S
Capacity constraints: φ′ ≤ wk
Time windows: τ ′ ≤ bj if j 6= depot
Duration constraints: τ ′ ≤ D.

Stopping rule:
Extensions are stopped when half of a critical resource has
been consumed.
Choosing time as the critical resource, only states with τ ≤ D
are generated.



The problem The algorithm Computational results

Pricing algorithms

Bi-directional DP

Forward and backward paths (S fw , φfw , τ fw , z fw , i) and
(Sbw , φbw , τbw , zbw , i) are joined to produce routes.

Feasibility conditions:
S fw ∩ Sbw = ∅

φfw + φbw ≤ wk

τ fw + si + tij + sj + τbw ≤ D
The (reduced) cost of the resulting route is
z fw − λi/2 + dij − λj/2 + zbw .



The problem The algorithm Computational results

Pricing algorithms

Bounding

In order to associate a lower bound with DP states, we
pre-compute LBiq, that is a lower bound to the routing cost of
any path

from i to the depot,
using no more than q units of capacity,
not necessarily elementary,
disregarding time window constraints,
taking into account the prizes λ.

A forward state (S, φ, τ, z, i) can be fathomed whenever

z + LBiq + fk/2 − µk/2 − γh/2 ≥ 0

with q = wk − φ.



The problem The algorithm Computational results

Pricing algorithms

Dominance

(S ′, φ′, τ ′, z ′, i) dominates (S ′′, φ′′, τ ′′, z ′′, j) only if

S ′ ⊆ S ′′

φ′ ≤ φ′′

τ ′ ≤ τ ′′

z ′ ≤ z ′′

i = j

and at least one of the inequalities is strict.



The problem The algorithm Computational results

Pricing algorithms

Heuristic dominance

Condition S ′ ⊆ S ′′ is replaced by R ′ ≤ R′′, where R is the
optimal value of a fractional knapsack problem:

max
∑

i 6∈S

λiyi

s.t.
∑

i 6∈S

qiyi ≤ wk − φ

yi ∈ [0, 1] ∀i 6∈ S.



The problem The algorithm Computational results

Pricing algorithms

Decremental State Space Relaxation

The elementary path constraint is only checked on a subset S
of S.

If the solution turns out to be non-elementary, one or more
vertices visited more than once are inserted into S and the DP
algorithm is executed again.



The problem The algorithm Computational results

Pricing algorithms

Aggregated pricing

We solve the pricing problem only for the vehicle type with
larger capacity.
Capacity constraint are checked during the “join” phase.
This weakens the bound used to fathom states,
but it reduces the number of executions of the DP algorithm.

We also consider all depots at one time,
by keeping a different time resource τh for each of them.
Dominance occurs only only if τ ′

h ≤ τ ′′
h ∀h ∈ H.

Hence states can be feasible for some depots and infeasible for
others.



The problem The algorithm Computational results

Pricing algorithms

2-path inequalities

We search for subsets P of nodes requiring at least 2 vehicles,
but such that they are visited by a smaller number of vehicles in
the fractional solution of the Linear Restricted Master Problem.

∑

k∈K

∑

h∈H

∑

r∈Ωhk

αr xr ≥ 2

where αr is the number of arcs (i , j) in route r with i ∈ P and
j 6∈ P.

This yields dual variables σP ≥ 0 to be subtracted from dij for
all arcs (i , j) such that i ∈ P and j 6∈ P.

The pricing problem does not change.



The problem The algorithm Computational results

Pricing algorithms

Branching strategies

Branching on the number of vehicles:

Compute
∑

h∈H

∑
r∈Ωhk

xr ∀k ∈ K.
Choose k ∈ K for which the fractional part of the above
quantity is closest to 1/2.
Perform the usual binary branching.

The pricing problem is not affected.
Branching on arcs:

Select the node i which is split among the largest number
of routes.
Forbid half of its outgoing arcs in each “child” sub-problem.

Arc weights are set to ∞.



The problem The algorithm Computational results

Exact optimization

Data-sets

168 HVRPTW instances from Shen and Liu, derived from
Solomon’s VRPTW data-sets (56 instances) with 3
different fixed costs for each instance class;
4 MDVRPTW instances from Cordeau et al. with 4 to 6
depots and 48 to 144 customers.



The problem The algorithm Computational results

Exact optimization

Data-set Liu and Shen 1

File CG iterations Cuts LB LBC UB Gap Time
R1a 153.58 0.33 3997.07 3997.26 4194.02 4.69% 75.78
R1b 263.5 0.25 1817.93 1818.08 1913.68 5.00% 195.54
R1c 273.33 0.25 1507.56 1507.85 1587.04 4.99% 131.98
R1 230.14 0.28 2440.85 2441.06 2564.91 4.83% 134.43
C1a 217.33 0 6748.58 6748.58 7268.95 7.16% 15.31
C1b 310.67 0 2255.65 2255.65 2423.46 6.92% 281.19
C1c 328.22 0 1590.39 1590.39 1656.1 3.97% 565.06
C1 285.41 0 3606.2 3606.2 3782 4.65% 287.19
RC1a 210.13 2.88 4815.69 4819.78 5015.69 3.91% 425.1
RC1b 281.5 5 2056.25 2062.52 2192.92 5.95% 144.42
RC1c 289.75 6.25 1690.33 1697.2 1802.7 5.85% 69.78
RC1 260.46 4.71 2854.09 2859.83 3003.77 4.79% 213.1

Tabella: Lower bounds, data-set 1, aggregated results.



The problem The algorithm Computational results

Exact optimization

Data-set Liu and Shen 2

File CG iterations Cuts LB LBC UB Gap Time
R201b 1806 0 1633.54 1633.54 1776.18 8.03% 1171.26
R201c 948 0 1408.81 1408.81 1550.14 9.12% 377.06
C201a 5832 0 5210.94 5210.94 5741.14 9.24% 2172.41
C201b 1553 0 1590.94 1590.94 1737.93 8.46% 102.58
C205b 2125 0 1588.32 1588.32 1761.36 9.82% 262.1
C206b 2473 0 1587.67 1587.67 1758.98 9.74% 707.15
C201c 890 0 1131.26 1131.26 1221.14 7.36% 43.54
C205c 1751 0 1128.08 1128.08 1225.45 7.95% 151.94
C206c 2112 0 1127.91 1127.91 1230.23 8.32% 392.28
C208c 1985 0 1127.29 1127.29 1237.32 8.89% 901.9
RC201a 298 0 4255.48 4255.48 4458.86 4.56% 1022.6
RC201b 388 0 1904.63 1904.63 1998.57 4.70% 475.44
RC201c 396 0 1596.17 1596.17 1702.05 6.22% 189.69

Tabella: Lower bounds, data-set 2, aggregated results.



The problem The algorithm Computational results

Exact optimization

Data-set Cordeau

instance customers depots duration capacity best known LB gap time
pr01 48 4 500 200 1074.12 1074.12 0.00% 2.21
pr02 96 4 480 195 1762.21 1740.87 1.21% 434.47
pr07 72 6 500 200 1418.22 1414.79 0.24% 23.88
pr08 144 6 475 190 2096.73 - - -

Tabella: Lower bounds, Cordeau data-set.



The problem The algorithm Computational results

Exact optimization

Comments

Data-set 1: CG could compute a valid lower bound at the
root node for all instances but one within 1 hour.
The average gap is around 5% but upper bounds are not
guaranteed to be optimal.
2-path inequalities are useless.
Data-set 2: CG could compute a valid lower bound for 13
instances.
Data-set Cordeau: the gap is less than 2%.



The problem The algorithm Computational results

Exact optimization

Branch-and-Price

Tests were done on reduced instances with 25 and 50
customers.
Branch-and-Price solved:

79 instances in Data-set 1 (87) and 57 in Data-set 2 (81)
with 25 customers.
35 instances in Data-set 1 (87) and 9 in Data-set 2 (81) with
50 customers.
5 instances with 100 customers.
2 instances in Data-set Cordeau (4).



The problem The algorithm Computational results

Approximation

Heuristic results

Heuristic solutions can be obtained by solving the RMP with the
columns generated.

We used CPLEX 11.0 as an ILP solver with two different time
limits: 1 hour and 10 minutes.

Comparing the solutions with those obtained by Liu and Shen
and by Belfiore and Favero (one depot only) for some instances
this method obtained results up to 28% better, in other cases
up to 30% worse.


	The problem
	Introduction
	Formulation

	The algorithm
	Pricing algorithms

	Computational results
	Exact optimization
	Approximation


