
Paths and matchings

in an automated warehouse

Michele Barbato, Alberto Ceselli, Giovanni Righini

ODS 2019, Genova



The automated warehouse

Each side of the warehouse is a matrix of locations of size V × H.

On one side, two adjacent locations are taken by the endpoint of the
conveyor (“origin”).

Each location hosts two sites: front and rear.

Hence, there are 2(2 × V × H − 2) sites.



The automated warehouse

Each site contains a box.

Each box can contain several components.

The crane can access any location by moving vertically and

horizontally.

We assume the knowledge of a complete distance (or time or energy
consumption) matrix.

The crane capacity is 2.

To access a site on the rear layer, the crane must pickup the box on
the front layer (if any) first and reinsert it afterwards.



The automated warehouse

Order list:

• pick-up orders: a box must be carried from its site to the
conveyor;

• delivery orders: a box must be taken from the conveyor and
reinserted into its site.

Pick-up operations can be executed in any order.

Delivery operations must be executed in a given order (the arrival
order on the conveyor).

The same component can be located in many boxes (pick-up site

selection sub-problem).
The assignment between boxes and sites can be given or variable

(delivery site selection sub-problem).



Instance size

Instances given by the company under study:

• size of the warehouse: H = 53, V = 8, yielding 1692 sites;

• 4 weighing units simultaneously active;

• about 13 orders per day with an average of 6 components per
order, yielding 78 pick-up and delivery operations on the order

list;

• the speed of the crane corresponds to about 2 horizontal sites

per second and 0.4 vertical sites per second.



Classification

Problem variations:

1. Capacity q of the crane: [1], [2], [q > 2].

2. Dimensions l:

1 : a line or two lines stemming from the origin,

2 : a V × H matrix of locations,

3 : a matrix with double layer (front and rear).

3. Order type o:

P : pickup only,

D : delivery only,

PD : mixed pickups and deliveries.

4. Pickup sites s: fixed [F] or variable [V] pickup sites.

Four fields notation q/l/o/s:

• the letters indicate “any”

• the values in square brackets indicate specific cases.

Objective: minimize the overall traveling distance (or time).



Capacity 1: (1/l/o/s)

The only non-trivial case is with mixed pickups and deliveries

(1/l/PD/s).

Let Pi be the set of sites corresponding to pickup i.

Let djk be the distance between the site of j and that of k .

The problem can be transformed into a minimum cost bipartite
matching problem:

• balance the graph with dummy deliveries or dummy pickups at

the origin, if needed;

• define the cost of matching a pickup i with a delivery j as

d0j +mink∈Pi
{djk + dk0};

• compute a minimum cost bipartite matching between pickups

and deliveries.

Complexity: O(n3), being n the number of orders.



Capacity 1: (1/l/o/s)

 

P1 

P1 

P2 

P2 

P3 

P3 

D3 D2 

D1 



Capacity 2, basic variation (2/1/P/F )

The problem is easily solved by sorting.

• Sort the sites to be visited by non-increasing distance from the
origin (separately for each line, in the case of two lines).

• Pair the orders, so that each trip of the crane visits the two
farthest sites (on the same side of the origin) not yet visited.

In the case with two lines:

• if the number of sites is odd on one of the two lines, the last trip

visits a single site;

• if the number of orders is odd on both lines, the last trip visits the
two sites closest to the origin, one on each line.

 Origin 

Complexity: O(n log n).



One complicating feature: (2/2/P/F )

For each (unordered) pair of sites [i, j] in N we define a matching cost

c[i,j] = min{d0i + dij + dj0, d0j + dji + di0}.

For each site i ∈ N we define a non-matching cost

cii = d0i + di0.
 

i 

j 

 

i 

A similar construction holds also for the case (2/3/P/F ), with some

additional technicalities in the definition of distances if rear layer sites
are involved.



One complicating feature: (2/2/P/F )

Consider a graph G = (N ∪ N ′,E ∪ E ′ ∪ E ′′), where

• N is the set of pickup sites and N ′ is a copy of the same set;

• E includes edges [i, j] ∀i, j ∈ N with weight c[i,j]/2;

• E ′ includes edges [i ′, j ′] ∀i ′, j ′ ∈ N ′ with weight c[i,j]/2;

• E ′′ includes edges [i, i ′] ∀i ∈ N, i ′ ∈ N ′ with weight cii .

A perfect matching in G is made by edges of E ′′, corresponding to

1-site trips, and edges of E and E ′ corresponding to 2-sites trips.

There exists a perfect matching of minimum cost where edges in E
and edges in E ′ form twice the same matching.

 

i 

j 

k 

i i’ 

j j’ 

k k’ 

Complexity: O(n3).



A challenging variation: (2/1/PD/F ).

Also the other variations with only one complicating feature are easily

solvable, with just one exception.

Problem (2/1/PD/F ) cannot be transformed into a matching

problem, because the cost of a trip visiting two pickup and delivery

pairs is not given by the sum of two terms each one depending on a
single pair.

We could devise no straightforward reformulation of this problem into

a polynomially solvable graph optimization problem.

Complexity: open.



Two complicating features: (q/2/P/F ) and (q/3/P/F ).

The problem with generic capacity q > 2 and 2 or 3 dimensions is a

Capacitated Vehicle Routing Problem with unit demands, i.e. the
capacity limits the number of vertices that can be visited in each

route.

Complexity. The problem is known to be NP-hard on general graphs
(see Toth and Vigo, 2002).



Two complicating features: (2/2/D/F ) and (2/3/D/F )

If order i is matched with order j > i + 1 in a same trip, then all orders

between i and j in the input sequence must remain unmatched.
The problem can be reformulated as a shortest path problem on an

acyclic digraph, with

• a node for each order in the input sequences;
• an arc (i, j + 1) ∀i < j with weight

ci,j+1 =















d0,i + di,0 if j = i
min{d0,i + di,j + dj,0, d0,j + dj,i + di,0} if j = i + 1

min{d0,i + di,j + dj,0, d0,j + dj,i + di,0}+

+
∑j−1

k=i+1(d0,k + dk ,0) if j > i + 1
 

j 

i 

k j i k 

Complexity: O(n2).



Two complicating features: (2/2/P/V ) and (2/3/P/V )

Let Pi be the subset of sites from which the pickup order i can be

satisfied.

The problem can be reformulated as a minimum cost perfect

matching problem on a suitable complete graph, where

• there are n nodes, one for each order; if n is odd, add a dummy
pickup at the origin.

• the weight of each edge [i, j] is the cost of the most convenient
trip among those that visit a site in Pi and a site in Pj .

Complexity. If each pickup order can be satisfied in p sites, the

weight of each edge is the minimum among p2 trip costs.
Defining the weighted complete graph: O(n2p2).
Computing a minimum cost perfect matching: O(n3).
Worst-case time complexity: O(n2p2 + n3).



Another challenging variation: (q/1/P/V ).

On a single line, the problem is trivial: it is always optimal to select

the site closest to the origin for each pickup order, which makes the
problem equivalent to the variation with fixed sites (q/1/P/F ).

On two lines, it is optimal to keep only the site closest to the origin on

each line for each pickup order. This reduces p to 2.

Complexity.

For q = 2, the complexity O(n2p2 + n3) reduces to (at most) O(n3)
(likely to be improvable).
For q > 2, open.



Two complicating features: (q/1/D/F )

This variation can be efficiently solved with dynamic programming.

• Consider an order at a time, according to the given sequence.

• For each order u one has to decide whether to keep it on the

crane or to deliver it.

• Case 1: the crane remains at the origin, because moving the

crane without delivering the last loaded order u is always

dominated.

• Case 2: the crane goes at least up to the site of u and along its

way it serves all delivery orders previously accumulated that are
closer than u. The crane can also go further to possibly serve

more delivery orders previously accumulated. Each of these

possible decisions generates a new dynamic programming state.



Two complicating features: (q/1/D/F )

Complexity. The number of iterations is n.

After each iteration u, the number of possible states is bounded by
u + u2 + u3 + . . .+ uq−1, which grows as O(nq−1).

Therefore the number of states grows as O(nq).

From each state at most q + 1 possible extensions must be

considered.

This yields a time complexity O(qnq), that is polynomial for each q

fixed.



Three complicating features: (2/2/D/V ) and (2/3/D/V ).

By enumeration it is possible to select the most convenient sites for

each order served alone and the most convenient pairs of sites for
each pair of orders served in the same trip.

After that, one can still use the transformation of variation (2/1/D/F )
leading to a shortest path problem.

The pre-processing step takes polynomial time as in the previous

cases (for instance (2/2/P/V ) and (2/3/P/V )).

Complexity: O(n2p2 + n3).



Conclusions

For several variations, we could find polynomial-time transformations

that allow the problem to be efficiently solved with existing
polynomial-time graph optimization algorithms such as

• shortest paths,

• min cost bipartite matchings,

• min cost perfect matchings,

• dynamic programming.

Establishing the complexity of two variations, namely (2/1/PD/F )
and (q/1/P/V ), remains open.

Other variations are already NP-hard even in this strongly simplified

version of the original problem.



Conclusions

The knowledge about what features are complicating and how the

others can be efficiently dealt with paves the way for solving the
complete warehouse optimization problem with exact optimization or

approximation algorithms based on suitable decompositions or

relaxations.

The model can be further enriched by considering additional features

such as, for instance,

• deadlines

• energy consumption minimization

• delivery sites selection

• overlaps between orders

• uncertainty

• real-time optimization.




