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The context

The province of Milan has 17 hospitals with hemodynamics units for
urgent treatment of patients affected by acute myocardial infarction.

Currently they are all on-duty during the nights and the week-ends.

Our goal is to evaluate an alternative scenario, based on a duty
rotation of the hospitals.

We consider optimization from four different viewpoints:

• patients: timeliness of intervention;

• medical doctors: fair distribution of the duties;

• hospital administration: overall number of treated patients;

• regional administration: optimal configuration of hospitals.
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Two scenarios

We consider nights and week-ends.

Scenario 1 (current):

• All hospitals are on duty.

• Patients are carried to the closest hospital.

• Physicians are available on call.

• Time bottleneck is the intervention time of the physician.

Scenario 2 (alternative):

• Some hospitals are on duty (rotation).

• Patients are carried to the closest hospital on duty.

• Physicians are already at the hospital.

• Time bottleneck is the transportation time of the patient.



Introduction Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Conclusions

Talk outline

Five problems:

1. minimization of the travel time from any point of the territory to
the closest hemodynamics unit on duty in any time shift.

2. maximization of the minimum distance in time between two
consecutive duties of a same unit.

3. study of the trade-off between the level of service and the
balance in the assigned demand.

4. study of the effect of closing one or more hemodynamics units.

5. optimization of the transient from the current configuration with
17 units to a final configuration with fewer units.

For each problem I present integer linear programming formulations
and the related computational results obtained with a common PC
and a mathematical programming solvers (CPLEX 11).
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Problem 1: optimization of the travel time

We are given:

• a set I of demand points in given positions
(180 zones + 117 municipalities = 297 demand points);

• a set J of hospitals with hemodynamics units in given positions
(17 units);

• a set of weekly time periods to be assigned
(7 nights + 5 week-end shifts = 12 periods).

• Parameter: a number K of duties for each time period
(K = 17 → Scenario 1).

From a GIS we computed dmax
ij and davg

ij ∀i ∈ I, ∀j ∈ J .
We could associate a population wi to each demand point i ∈ I.
The total population of the territory is W = 2, 920, 444 inhabitants.
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Variables

We search for a cyclic schedule on a planning horizon of T periods
equal to the number of hospitals.

|T | = 17 and the number of periods in a week is 12: they are
relatively prime. A fair rotation is obtained: the schedule repeats in
the same days of the week every 17 weeks.

All units are on duty with the same average frequency in each of the
12 periods of the week.

Binary variables fijt indicate whether demand point i ∈ I is assigned
to unit j ∈ J in period t ∈ T .
Binary variables rjt indicate whether unit j ∈ J is on duty in period
t ∈ T .
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Objectives

We consider two objective functions representing equity and
efficiency respectively:

• zmax
1 is the maximum distance between any demand point in I

and the closest unit on duty in any period;

• zavg
1 is the weighted average distance between any demand point

in I and the closest unit on duty.

Obviously only one of two objective functions can be optimized at any
time.

Their optimal values depend on K : the optimization is repeated for
each value of K = 1, . . . , 17.
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A compact formulation

The problem can be formulated as an assignment problem as follows.

minimize zmax
1 = max

i∈I,j∈J ,t∈T
{dmax

ij fijt}

minimize zavg
1 =

1
|T |

∑

t∈T

∑

i∈I

∑

j∈J

wi

W
davg

ij fijt

s.t. fijt ≤ rjt ∀i ∈ I, ∀j ∈ J , ∀t ∈ T
∑

t∈T

rjt = K ∀j ∈ J

∑

j∈J

rjt = K ∀t ∈ T

∑

j∈J

fijt = 1 ∀i ∈ I, ∀t ∈ T

fijt ≥ 0 ∀i ∈ I, ∀j ∈ J , ∀t ∈ T

rjt binary ∀j ∈ J , ∀t ∈ T .
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A compact formulation

The model is similar to the Location Partitioning Problem with
Balanced Cardinality Shifts (G. Andreatta, L. De Giovanni, P. Serafini,
Optimal shift partitioning of pharmacies, AIRO conference 2012):
NP-hardness results + preliminary computational tests with both
heuristics and branch-and-price methods for determining cyclic
schedules of night duties for pharmacies.

The compact model suffers from a very high degree of symmetry: all
solutions obtained from one another by a permutation of the periods
are equivalent.

The instance of our case study is too large (because of the number of
demand points) to be solved by state-of-the-art integer linear
programming solvers.

We devised a second model, based on an extended formulation.
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An extended formulation

We consider the set S of subsets of J with cardinality K :
each subset S ∈ S represents the units that are on duty
simultaneously.

The number of subsets of cardinality K is combinatorial:
(

|J |
K

)

.

With each subset S ∈ S we associate a cost:

cmax
S = max

i∈I
{min

j∈S
{dmax

ij }}

cavg
S =

∑

i∈I

wi

W
min
j∈S

{davg
ij }

Explicit enumeration and evaluation of the subsets ∀K = 1, . . . , |J |:
17 problem instances of different size.
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Min-max objective function

minimize zmax
1 = max

S∈S
{cmax

S yS}

s.t.
∑

S∈S

ajSxS = K ∀j ∈ J

xS ≤ KyS ∀S ∈ S

yS binary ∀S ∈ S

xS ≥ 0 and integer ∀S ∈ S

yS ∈ {0, 1}: subset S belongs to the solution.
xS ∈ Z+: how many times subset S is used in the solution.
ajS : unit j appears in subset S.
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Linearization

We can get rid of the min-max objective function, as follows.

minimize zmax
1 = z

s.t. z ≥ cmax
S yS ∀S ∈ S

∑

S∈S

ajSxS = K ∀j ∈ J

xS ≤ KyS ∀S ∈ S

yS binary ∀S ∈ S

xS ≥ 0 and integer ∀S ∈ S.
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Hierarchical min-max objective functions.

The optimal value of the min-max extended linearized model only
depends on the selected subset with the largest cost. In other words
the model is insensitive to all decisions concerning the use of subsets
different from the worst one; hence it admits an exponentially large
number of equivalent optimal solutions.

We consider a sequence of hierarchical objective functions: we solve
a sequence of sub-problems aimed at minimizing the worst case, the
second worst case, the third worst case and so on.

(See paper version for the details on the algorithm.)
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Min-avg objective function

When the objective function zavg
1 is optimized, y variables are not

needed.

minimize zavg
1 =

1
|T |

∑

S∈S

cavg
S xS

s.t.
∑

S∈S

ajSxS = K ∀j ∈ J

xS ≥ 0 and integer ∀S ∈ S.

This min-avg extended formulation can be solved directly by an
integer linear programming solver.
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Computational results: min-max
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Figure: The optimal level of service zmax∗
1 as a function of the number K of

units simultaneously on duty.

Improvements with K up to 6. No improvement for K = 6, . . . , 8.
For K = 9 improvement by about 13.6%. No improvements for K > 9.
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Computational results: min-avg
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Figure: The optimal average distance zavg∗
1 as a function of the number K of

units simultaneously on duty.
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Multi-objective optimization
zmax

1 and zavg
1 are conflicting: Pareto-optimal region.

Min.max.dist. Min.avg.dist.

K zmax∗
1 z

avg
1 time zmax

1 z
avg∗
1 time

1 55.656 14.764 0.25 55.656 14.764 -
2 39.148 10.869 0.45 39.655 10.327 0.02
3 35.747 9.331 1.14 35.747 8.948 0.04
4 34.897 8.540 4.72 35.747 8.169 0.03
5 33.243 7.955 10.33 33.243 7.588 0.16
6 32.806 7.557 19.32 32.806 7.114 0.14
7 32.806 7.060 39.16 32.806 6.771 0.26
8 32.806 6.761 82.91 32.806 6.448 0.35
9 28.335 6.439 117.05 28.335 6.204 0.39
10 28.335 6.214 67.59 28.335 6.045 0.60
11 28.335 5.982 53.66 28.335 5.892 0.22
12 28.335 5.802 22.80 28.335 5.747 0.18
13 28.335 5.622 8.90 28.335 5.607 0.10
14 28.335 5.500 1.87 28.335 5.466 0.03
15 28.335 5.329 0.49 28.335 5.326 0.02
16 28.335 5.185 0.33 28.335 5.185 0.02
17 25.034 5.045 0.29 25.034 5.045 -

Table: Values of zmax
1 and zavg

1 with the two objective functions.

For almost all values of K the value of zmax
1 obtained when optimizing

zavg
1 is the optimal one. On the contrary, the optimal values of zavg

1 are
usually missed when zmax

1 is optimized.
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Comparison between Scenario 1 and Scenario 2

Scenario 1: the waiting time for the physician is about 40 minutes.

Scenario 1 is a special case of Scenario 2 when K = 17:

• maximum distance for an ambulance is about 25 Kilometers;

• average distance for an ambulance is about 5 Kilometers.

If we assume an average speed of 50 km/h in the night on
extra-urban roads, then 40 minutes are equivalent to 33.3 Kilometers.

• Min-max: Scenario 2 is better than Scenario 1 for K ≥ 5.

• Min-avg: Scenario 2 is better than Scenario 1 for any value of K .
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Problem 2: Optimization of the schedule

Critical aspects of Scenario 2:

• the frequency with which the units are on duty (problem 2);

• the frequency with which they receive patients (problem 3).

The former one is critical for the medical personnel: intense work
duties in nights and week-ends are especially demanding.

Once Problem 1 has been optimized and an optimal multi-set X of
unit subsets has been selected, they must be sequenced so that the
duties for each unit be as far as possible in time from one another.
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Problem formulation

The optimal solution of Problem 1 is a multi-set X of unit subsets.

Problem 2: find a permutation π of the elements of X that maximizes
the minimum distance in time between any pair of subsets including
the same unit.

The distance in time between two subsets is measured as the
number of positions between them in the permutation.

This distance is computed modulo |J | because the schedule must be
repeated cyclically.

maximize z2 = min
j∈J

{ min
S′

,S′′∈X :j∈S′∩S′′
,S′ 6=S′′

{(π(S′)− π(S′′)) mod |J |}},

where S′ and S′′ are distinct items in the multi-set X , possibly
corresponding to the same subset of units.
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The solution method

z2 is a max-min objective function with a very small range of possible
values.

A tentative feasible value zLB
2 is identified and a feasibility problem is

solved imposing z2 ≥ zLB
2 + 1.

If a feasible solution is found, then zLB
2 := zLB

2 + 1 and repeat;
otherwise stop: zLB

2 is optimal.
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An ILP model

The feasibility problem is the following ILP:
∑

S∈X

ρpS = 1 ∀p = 1, . . . , |J |

∑

p=1,...,|J |

ρpS = 1 ∀S ∈ X

∑

q∈Qp

∑

S∈X

ajSρqS ≤ 1 ∀p = 1, . . . , |J |, ∀j ∈ J

ρpS binary ∀p = 1, . . . , |J |, ∀S ∈ X

• ρpS ∈ {0, 1}: assignment of subset S ∈ X to position p in π;

• Qp = [p, . . . ,min{|J |, p + zLB
2 }] ∪ [1..(p + zLB

2 − |J |)].
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An ILP model

To avoid solving infeasible instances, we solve this ILP which is
always feasible.

maximize β = max{
∑

p=1,...,|J |

∑

S∈X

ρpS}

s.t.
∑

S∈X

ρpS ≤ 1 ∀p = 1, . . . , |J |

∑

p=1,...,|J |

ρpS ≤ 1 ∀S ∈ X

∑

q∈Qp

∑

S∈X

ajSρqS ≤ 1 ∀p = 1, . . . , |J |, ∀j ∈ J

ρpS ∈ {0, 1} ∀p = 1, . . . , |J |, ∀S ∈ X

If β∗ < |J |, then the previous model is infeasible.
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Computational results

The problem is trivial:

• for K = 1 (z∗
2 = |J |)

• for K ≥ |J |/2 (z∗
2 = 1).

Min.max.dist. Min.avg.dist.
K z∗

2 time z∗
2 time

2 7 1.20 7 0.94
3 3 0.19 4 0.71
4 2 148.59 2 3.83
5 1 9.39 2 15.10
6 1 1.67 1 0.05
7 1 0.03 1 0.06
8 1 0.05 1 0.05

Table: Minimum distance z∗

2 between duties for a same unit.

The optimization of the min-avg objective function provides slightly
better results.
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Problem 3: Optimization of the budget balance

In Scenario 1 each hospital j ∈ J receives and treats a different
average number of patients per unit of time. Since hospitals receive
funds in proportion to the number of treatments they provide, it is
important for them not to lose patients in the transition from Scenario
1 to Scenario 2.

Problem 3 has the same objectives and constraints as before, but in
addition we also measure the average fraction of population that
would be assigned to each unit in Scenario 2 and we impose that
such a fraction be similar to the current one.
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Variables

We use flow variables fijt with three indices:

• i ∈ I indicates the town/zone (origin);

• j ∈ J indicates the hemodynamics unit (destination);

• t ∈ T indicates the time period.

Assumption 1. All patients from the same town must be allocated to
the same unit.

Assumption 2. Patients from the same metropolitan area zone can
be allocated to different units.

Assumption 3. The assignment of demand points to the same unit
can be different in different periods even when the same unit subset
is on-duty.
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Constraints

The subsets X obtained from the minimization of zavg
1 (Problem 1) are

fixed.
We assign each selected subset to a time period t ∈ T (Problem 2):
rjt = 1 iff unit j ∈ J belongs to the subset assigned to period t ∈ T .

We only allow for the redistribution of patients in each time period.

We also impose that the maximum distance must not exceed the
value D of zmax

1 obtained from the optimization of zavg
1 .

We impose that the overall demand assigned to each unit j ∈ J be
close to λj , which is the current “market share” of the unit; the overall
absolute deviation is measured by a variable δj for each unit j ∈ J .
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A mixed-integer flow formulation

minimize zavg
3 =

1
|T |

∑

t∈T

∑

i∈I

∑

j∈J

wi

W
davg

ij fijt

minimize zdev
3 = max

j∈J
{
δj

λj
}

s.t.
∑

j∈J

fijt = 1 ∀i ∈ I ∀t ∈ T

fijt ≤ rjt ∀i ∈ I ∀j ∈ J ∀t ∈ T

fijt = 0 ∀t ∈ T ∀i ∈ I ∀j ∈ J : dmax
ij > D

∑

i∈I

∑

t∈T

wi fijt ≥ λj − δj ∀j ∈ J

∑

i∈I

∑

t∈T

wi fijt ≤ λj + δj ∀j ∈ J

fijt binary ∀i ∈ I towns ∀j ∈ J ∀t ∈ T

fijt ≥ 0 ∀i ∈ Izones ∀j ∈ J ∀t ∈ T

δj ≥ 0 ∀j ∈ J .
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Linearization

Objective function zdev
3 is linearized, introducing an auxiliary variable

φ as follows:
minimize zdev

3 = φ

s.t. φ >=
δj

λj
∀j ∈ J .

Patient flows are no longer constrained to comply with the minimum
distance criterion. Hence the same subsets selected in Problem 1
may now correspond to a different value of the objective functions
based on the distances.
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Multi-objective optimization approach.

We consider the two extreme Pareto-optimal solutions:

• Distance first: optimization of zavg
3 ; evaluation of zdev

3 .

• Balance first: optimization of zdev
3 ; optimization of zavg

3 after fixing
φ to its optimal value.
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Computational results

Distance first Balance first

K z
avg∗
3 zdev

3 z
avg
3 zdev∗

3
1 14.764 7.30 14.764 7.30
2 10.327 5.36 12.029 0.39
3 8.948 5.68 10.101 0.69
4 8.169 6.95 10.508 0.07
5 7.588 7.83 10.150 0.04
6 7.115 7.68 8.909 0.00
7 6.772 7.34 8.111 0.00
8 6.448 7.36 7.629 0.00
9 6.204 6.21 7.243 0.00

10 6.045 5.95 6.857 0.00
11 5.892 5.66 6.571 0.00
12 5.747 5.33 6.313 0.00
13 5.607 4.94 6.071 0.00
14 5.466 4.55 5.848 0.00
15 5.326 4.16 5.646 0.00
16 5.185 3.77 5.462 0.00
17 5.052 3.38 5.322 0.00

Table: Results of multi-objective optimization of zavg
3 and zdev

3 .

The analysis can be repeated (∀K ) constraining the worst allowed
value for any of the two objective functions, in order to compute
Pareto-optimal solutions that are intermediate between these two.
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Problem 4: Optimal selection-rotation

We assume the number and the location of hemodynamics units in
the territory to be a variable.

The aim is to provide some insight into the trade-off between the
number of hemodynamics units and their accessibility in Scenario 2.

We study how the optimal solutions of the optimization problems
investigated so far (especially Problem 1) depend on the overall
number and location of the units.

We use H to indicate the number of units available and the number of
periods of the cyclic schedule.

The models are similar to those of Problem 1 with additional binary
variables v indicating which units are active. Each model is solved for
each value of K = 1, . . . ,H.
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Formulation: Min max

minimize zmax
4 = z

s.t. z ≥ cmax
g γg ∀g ∈ G

∑

g∈G,S∈Sg

ajSxS = Kvj ∀j ∈ J

∑

S∈Sg

xS ≤ Kγg ∀g ∈ G

∑

j∈J

vj = H

γg binary ∀g ∈ G

vj binary ∀j ∈ J

xS ≥ 0 and integer ∀S ∈ S.
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Formulation: Min average

minimize zavg
4 =

1
H

∑

S∈S

cavg
S xS

s.t.
∑

S∈S

ajSxS = Kvj ∀j ∈ J

∑

j∈J

vj = H

vj binary ∀j ∈ J

xS ≥ 0 and integer ∀S ∈ S.
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Computational results

K , H 7 8 9 10 11 12 13 14 15 16 17
1 39.655 40.270 41.390 41.933 43.228 44.532 44.532 46.097 46.434 47.760 55.656
2 34.897 33.559 34.897 34.897 35.747 35.747 35.747 38.837 38.987 38.987 39.148
3 32.806 32.806 32.806 33.243 33.243 33.243 33.243 34.897 34.897 35.747 35.747
4 28.335 28.335 32.806 32.806 32.806 32.806 32.806 33.243 33.243 33.243 34.897
5 28.335 28.335 28.335 28.335 32.806 32.806 32.806 32.806 32.806 33.243 33.243
6 28.335 28.335 28.335 28.335 28.335 28.335 28.335 32.806 32.806 32.806 32.806
7 25.034 28.335 28.335 28.335 28.335 28.335 32.806 32.806 32.806 32.806 32.806
8 28.335 28.335 28.335 28.335 28.335 28.335 28.335 28.335 28.335 32.806
9 28.335 28.335 28.335 28.335 28.335 28.335 28.335 28.335 28.335
10 28.335 28.335 28.335 28.335 28.335 28.335 28.335 28.335
11 28.335 28.335 28.335 28.335 28.335 28.335 28.335
12 25.034 28.335 28.335 28.335 28.335 28.335
13 28.335 28.335 28.335 28.335 28.335
14 28.335 28.335 28.335 28.335
15 28.335 28.335 28.335
16 28.335 28.335
17 25.034

Table: Optimization of zmax
4 for different values of K (rows) and H (columns).
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Computational results

K , H 7 8 9 10 11 12 13 14 15 16 17
1 11.929 12.124 12.278 12.499 12.692 12.888 13.078 13.372 13.677 13.995 14.764
2 9.706 9.641 9.762 9.721 9.827 9.808 9.914 9.988 10.101 10.209 10.327
3 8.577 8.624 8.602 8.682 8.725 8.728 8.795 8.823 8.841 8.885 8.948
4 7.779 7.714 7.829 7.888 7.930 7.940 8.017 8.054 8.100 8.129 8.169
5 7.384 7.332 7.270 7.204 7.309 7.372 7.423 7.461 7.496 7.544 7.588
6 6.830 6.920 6.878 6.861 6.834 6.789 6.901 6.973 7.018 7.068 7.114
7 6.203 6.421 6.502 6.507 6.524 6.525 6.531 6.515 6.619 6.691 6.771
8 5.853 6.700 6.170 6.231 6.264 6.293 6.311 6.320 6.336 6.448
9 5.659 5.829 5.944 6.016 6.063 6.107 6.121 6.155 6.204
10 5.482 5.655 5.766 5.840 5.912 5.944 5.988 6.045
11 5.365 5.515 5.617 5.718 5.778 5.830 5.892
12 5.263 5.395 5.523 5.612 5.679 5.747
13 5.172 5.329 5.446 5.527 5.607
14 5.132 5.271 5.376 5.466
15 5.095 5.225 5.326
16 5.066 5.185
17 5.045

Table: Optimization of zavg
4 for different values of K (rows) and H (columns).
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Computational results

With either objective the level of service depends more on K than on
H and the optimal value is almost monotonic with K for fixed H and
with H for fixed K .

This suggests that H can be reduced without negatively affecting the
patients, provided that K is suitably chosen and the cyclic schedule of
duties is optimized.

For instance the maximum distance with H = 8 and K = 4 is smaller
than that for H = 17 and K = 8 (which is counter-intuitive), provided
that the active units and their rotation are chosen optimally.
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Problem 5: Optimization of the transient

Assuming that a target configuration of H hemodynamics units has
been identified, it is expected that it would take a rather long period of
time to actually reach it; therefore the optimization of the transient is
also important.

To optimize the transient we assume that |J | − H hemodynamics
units are closed one at a time: this means that the transient is made
of |J | − H + 1 configurations.

The first one with |J | active units and the last one with H active units
are given. We want to optimize the sequence of the C = |J | − H − 1
intermediate configurations, leading from the former to the latter.
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Variables

J off : subset of units to be sequentially closed.

Assumption. The number of units in each duty, K c , has been
suitably chosen for each intermediate configuration c = 1, . . . ,C.

• Binary variables v indicate whether each unit j ∈ J is active in
each configuration c = 1, . . . ,C.

• Integer variables x indicate how many times pattern S ∈ S is
used in configuration c = 1, . . . ,C.
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An ILP model

minimize zavg
5 =

1
C

C
∑

c=1

1
|J | − c

∑

S∈S

cavg
S xc

S

s.t.
∑

S∈S

ajS xc
S = K cv c

j ∀j ∈ J ∀c = 1, . . . ,C

∑

j∈J

v c
j = |J | − c ∀c = 1, . . . ,C

v c+1
j ≤ v c

j ∀j ∈ J ∀c = 1, . . . ,C − 1

v c
j = 1 ∀j 6∈ J off ∀c = 1, . . . ,C

v c
j binary ∀j ∈ J ∀c = 1, . . . ,C

xc
S ≥ 0 and integer ∀S ∈ S ∀c = 1, . . . ,C.

We solved this model with a min-avg objective function: the same can
be done with a min-max objective.
An additional constraint can be added to forbid distances larger than
a predefined threshold.
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Computational results

Target configuration with H = 10 units (instead of 17) and duties with
K 10 = 5 units.

We set K 16 = K 15 = K 14 = K 13 = 8, K 12 = 7 and K 11 = 6.

The target configuration implies units 1, 2, 4, 6, 7, 15 and 17 to be
turned off.

A threshold of 32.806 Kilometers is imposed on the maximum
distance.

The model was solved in 35 seconds.
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An optimal solution (1)

(H, K ) Hemodynamics units Avg. Max.
x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 dist. dist.

(16, 8) 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 6.351 29.926
8 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 6.321 27.490

(15, 8) 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 6.079 27.490
6 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 6.401 28.335
1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1 6.351 27.490
1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 6.155 27.262
1 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 6.097 27.490
1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 6.320 27.490
1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 6.295 27.490
1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 6.402 27.490
1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 6.322 27.262
1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 6.373 29.112

(14, 8) 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0
2 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 6.002 27.490
2 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 6.401 28.335
2 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 6.451 28.335
2 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 6.421 28.335
2 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 6.344 27.490
2 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 6.407 27.490
2 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 6.159 27.262

Table: Optimization of the transient: from 17 units to 14...
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An optimal solution (2)

(H, K ) Hemodynamics units Avg. Max.
x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 dist. dist.

(13, 8) 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0
2 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 6.002 27.490
1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 6.355 27.262
1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 6.333 28.335
3 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 6.474 28.335
1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 6.590 28.335
2 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 6.344 27.490
2 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 6.159 27.262
1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 6.102 27.490

(12, 7) 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0
2 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 6.293 26.378
1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 6.543 27.490
1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 6.550 27.490
2 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 6.620 29.926
1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 6.676 29.926
2 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 6.429 27.490
2 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 6.695 29.112
1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 6.630 27.490

(11, 6) 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0
1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 6.833 27.262
1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 6.809 27.490
4 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 6.830 29.926
1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 6.782 27.490
1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 6.836 29.112
1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 6.849 27.490
1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 6.931 27.262
1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 7.049 27.490

Transient 6.443 29.926

Table: ...and to 14 to 10.
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Conclusions

The level of service can be improved by switching to Scenario 2 with
about one third of the units on duty.

Costs can be reduced, because K operators on duty may cost less
than |J | operators available-on-call.

Consecutive duties can be avoided only if about one third of the units
are on duty simultaneously.

Keeping 4-6 units on duty is enough to ensure an “equitable” partition
of the demand without harming the transportation time.

It is possible to reduce the number of units on the territory without
worsening the transportation time.

The transient can also be optimized to make the transition smooth
and to avoid time periods with unsatisfactory service level.
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Future developments

Design and implementation of specialized mathematical
programming algorithms to solve larger instances to optimality or
within a small approximation factor.

Paper version:
F. Lazzaroni, G. Righini, submitted to O.R. for Health Care.
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