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The resource constrained elementary shortest path prob-
lem (RCESPP) arises as a pricing subproblem in branch-
and-price algorithms for vehicle-routing problems with
additional constraints. We address the optimization of
the RCESPP and we present and compare three meth-
ods. The first method is a well-known exact dynamic-
programming algorithm improved by new ideas, such as
bidirectional search with resource-based bounding. The
second method consists in a branch-and-bound algo-
rithm, where lower bounds are computed by dynamic-
programming with state-space relaxation; we show how
bounded bidirectional search can be adapted to state-
space relaxation and we present different branching
strategies and their hybridization. The third method,
called decremental state-space relaxation, is a new one;
exact dynamic-programming and state-space relaxation
are two special cases of this new method. The exper-
imental comparison of the three methods is definitely
favorable to decrement state-space relaxation. Compu-
tational results are given for different kinds of resources,
arising from the capacitated vehicle-routing problem, the
vehicle-routing problem with distribution and collection,
and the vehicle-routing problem with capacities and time
windows. © 2007 Wiley Periodicals, Inc. NETWORKS, Vol. 51(3),
155–170 2008
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1. INTRODUCTION

Branch-and-price is one of the most effective techniques
for the exact optimization of vehicle-routing problems (VRP)
with additional constraints. At each node of a branch-and-
bound tree, a relaxation of the set covering reformulation
of the problem is solved via column generation. Algorithms
based on this technique can solve constrained VRP instances
with more than 100 vertices (see for instance, Kohl et al. [21]).
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When vehicle-routing problems with additional constraints
are solved via column generation and branch-and-price, the
pricing problem requires to find a resource constrained ele-
mentary path of minimum cost between two given vertices
of a weighted graph, with positive costs on the arcs and non-
negative prizes on the vertices. The cost of the path is given
by the sum of the costs of the arcs traversed minus the sum of
the prizes collected at the vertices visited. Exact optimization
is needed to find new columns with negative-reduced cost or
to prove that none of them exists. For a detailed exposition of
branch-and-price methods, for vehicle-routing problems, we
recommend the reader to refer Desrosiers et al. [12], Bramel
and Simchi-Levi [5], and Cordeau et al. [7].

If the underlying graph may have negative cost cycles
(this is the case when there are prizes on the vertices),
the resource constrained elementary shortest path problem
(RCESPP) is strongly NP-hard: the proof is due to Dror [14].
The most commonly used technique to solve the RCESPP to
optimality is dynamic-programming, relying upon the sem-
inal work by Desrochers and Soumis [9] for the resource
constrained shortest path problem (RCSPP) in which the
solution is not required to be elementary. Methods based on
Lagrangean relaxation were proposed by Handler and Zang
[18] and Beasley and Christofides [3], and were recently
examined by Dumitrescu and Boland [15], who proposed
improved preprocessing and bounding techniques. However,
these methods require a graph free from negative-cost cycles,
so that the Lagrangean subproblem is a polynomially solv-
able shortest path problem. For a recent survey on models and
algorithms for the RCSPP and the RCESPP, we recommend
the reader to refer Irnich and Desaulniers [19].

In this paper, we consider the problem of computing
optimal solutions to the RCESPP, as in Feillet et al. [16],
and we present three different approaches: exact dynamic-
programming, branch-and-bound based on state-space relax-
ation, and decremental state-space relaxation. All of them
use dynamic-programming but in different ways: in the first
case, an exact dynamic-programming algorithm computes
the optimal solution of the RCESPP; this approach was taken
for instance by Feillet et al. [16] and Righini and Salani [23].
In the second case, a dynamic-programming algorithm with
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state-space relaxation is used to optimize the RCSPP, where
cycles are allowed. This gives lower bounds corresponding
to nonelementary paths and these lower bounds are exploited
in a branch-and-bound framework. The third method, decre-
mental state-space relaxation, is original and includes both
exact dynamic-programming and state-space relaxation as
special cases.

The performance of exact dynamic-programming algo-
rithms for the RCESPP can be significantly improved through
bidirectional search and resource-based bounding, as shown
by Righini and Salani [23]. In this paper, we review them
and we show that they can be also applied to dynamic-
programming with state-space relaxation and decremental
state-space relaxation. We report on the outcome of exper-
imental comparisons between these methods when solving
RCESPPs with different kinds of resource constraints. In par-
ticular, we consider three variations of the RCESPP arising
from three well-known vehicle-routing problems with addi-
tional constraints, namely the capacitated vehicle-routing
problem (CVRP), the vehicle-routing problem with distri-
bution and collection (VRPDC), and the vehicle-routing
problem with capacities and time windows (CVRPTW).

The outline of this paper is gives as follows: in Section 2,
we formally define the RCESPP; in Section 3, we review
the dynamic-programming algorithms for its exact opti-
mization; in Section 4, we review bounded bidirectional
dynamic-programming; in Section 5, we analyze state-space
relaxation to compute lower bounds; in Section 6, we present
the branch-and-bound algorithm; in Section 7, we introduce
decremental state-space relaxation; in Section 8, we report
on computational results; in Section 9, we point out some
conclusions.

The content of Sections 3 and 4 is a review of concepts
already described in [23], which have been recalled here to
make this paper self-contained.

The idea of decremental state-space relaxation presented
in Section 7 was also independently developed by Boland
et al. [4] with the name of “Space Augmenting Algo-
rithm.” They made computational tests on randomly gen-
erated instances of a generic resource constrained shortest
path problem with one resource and mainly on noncomplete
graphs. In Section 8, we present computational results on
three different types of resource constrained shortest path
problems, coming from VRP applications, with different
resources, using instances taken from the VRP literature.

2. PROBLEM DEFINITION

The RCESPP is defined as follows: a graph G(V , A) is
given, where the vertex set V is made by a set of vertices
N representing N customers and two vertices s and t repre-
senting the depot. A non-negative cost cij is associated with
each arc (i, j) ∈ A; arc costs correspond to shortest paths and
therefore they satisfy the triangle inequality. A non-negative
prize λi is associated with each vertex i ∈ N , and a non-
negative cost λ0 is associated with the depot. A vehicle must
go from s to t, visiting a subset of the other vertices; no cycles

are allowed. The objective is to minimize the cost, given by
the sum of the costs of the arcs traversed minus the sum of
the prizes collected at the vertices visited. In a column gen-
eration framework, this corresponds to generate columns of
minimum reduced cost for the linear relaxation of the set
covering reformulation of a VRP: λi is the dual multiplier
associated with the covering constraint of vertex i and λ0

is the dual multiplier associated with the constraint on the
maximum number of available vehicles.

These definitions of the problem are common to all
RCESPP versions arising from the different routing problems
we consider. Additional constraints that depend on the kind
of vehicle-routing problem at hand are modeled as resource
constraints and they are specified hereafter.

2.1. Capacity

In the CVRP (see Toth and Vigo [24]), a positive integer
demand di is associated with each vertex i ∈ N and a positive
integer vehicle capacity Q is given. The sum of the demands
of the nodes visited by the same vehicle cannot exceed Q.

2.2. Distribution and Collection

In the VRPDC (see Dell’Amico et al. [8]), each vertex i
has two positive integer quantities pi and di associated with
it, representing the amount of load to be collected and to
be delivered at that vertex respectively. Each vehicle has
a positive integer capacity Q, and it leaves the depot car-
rying the total amount of load it must deliver and returns
to the depot carrying the total amount of load it has col-
lected. The capacity cannot be exceeded anywhere along the
path.

2.3. Capacity and Time Windows

In the CVRPTW (see Cordeau et al. [7]), a positive inte-
ger demand di, a non-negative integer service time θi and a
time window [ai, bi], defined by two non-negative integers
are associated with each vertex i ∈ N and the service at each
visited vertex must start inside its time window. If the vehicle
arrives at vertex i before time ai, it waits until ai. The travel-
ing time from any vertex i to any vertex j is a positive integer
datum vij.

We chose these three problems because they offer a sig-
nificant mix of different characteristics. In the CVRP, there
is only one resource, whose consumption depends on the
vertices visited. In the VRPDC, there are two resources asso-
ciated with the vertices visited and they are interacting: the
consumption of one of them also depends on the consump-
tion of the other. In the CVRPTW, there are two resources:
one associated with the vertices visited and the other associ-
ated with the arcs traversed. In all cases, resources are subject
to a global constraint on their overall consumption along the
s-t path, with the exception of the case with time windows,
where a resource (time) is subject to local constraints, one
for each vertex visited.
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3. EXACT DYNAMIC-PROGRAMMING

The starting point for our exposition is the reaching label-
setting algorithm of Desrochers and Soumis [9] for the
RCSPP, that is, an extension of the well-known shortest path
algorithm of Ford and Bellman (see [2]). The algorithm of
Desrochers and Soumis assigns states to each vertex: each
state associated with vertex i represents a path from s to i.
Each state includes a resource consumption vector R whose
component Rr represents the quantity of resource r used along
the corresponding path. Each state has an associated cost C
and the optimal solution corresponds to a minimum cost state
associated with vertex t. The algorithm repeatedly extends
each state to generate new states. The extension of a state cor-
responds to appending an additional arc (i, j) to a path from
s to i, obtaining a path from s to j. This operation is repeated
until all states have been extended in all feasible ways. This
dynamic-programming algorithm, devised for the RCSPP,
can be adapted to solve the RCESPP on graphs with neg-
ative cost cycles. To this purpose, Beasley and Christofides
[3] proposed to add to the state an additional binary resource
for each vertex i ∈ N ; there is only one unit available for
each dummy resource and it is consumed when the corre-
sponding vertex is visited. The consumption of the N dummy
resources is indicated by a vector S initialized at 0. Note that
the vector S does not keep any information about the order
in which the vertices are visited. Hence, in the basic exact
dynamic-programming algorithm for the RCESPP, each state
is represented by a label of the form (S, R, C, i).

When a label (S, R, C, i) associated with vertex i is
extended to generate another feasible label (S′, R′, C′, j) asso-
ciated with vertex j, the resource consumption vectors and the
cost are updated and the new state is checked for feasibility,
as follows.

3.1. Cost

The cost is initialized at 0 at vertex s and it is updated
according to the formula

C′ = C − λi/2 + cij − λj/2 (1)

where λi = −λ0 if i = s and λj = −λ0 if j = t.

3.2. Dummy Resources

The dummy resources vector S is initialized at 0 at vertex
s and the update rule is

S′
k =

{
Sk + 1 k = j

Sk k �= j.

A state (S, R, C, i) corresponds to an elementary path only if
Sk ≤ 1 ∀k ∈ N .

According to the different kind of resources considered,
the extension rules and the feasibility test on R take different
forms.

3.3. Capacity

The capacity constraint is modeled by a single resource,
representing the amount of capacity still available along the
path. Let q be the amount of resource consumed. When a
vehicle leaves vertex s all the resource is available, that is,
q = 0. Every time a vertex is visited, q is increased by the
demand of that vertex. Hence the extension rule is

q′ = q + dj. (2)

A state (S, q, C, i) is feasible only if q ≤ Q.

3.4. Distribution and Collection

In this case, the capacity constraint is taken into account
by two additional resources, whose consumption is indicated
by π and δ, respectively. The first resource at vertex i is the
amount of load that the vehicle can pick-up after visiting
vertex i; the second resource at vertex i indicates the amount
of load that the vehicle can deliver after visiting vertex i. The
consumption of the first resource, indicated by π , increases
after every pick-up operation, because visiting vertex i the
vehicle consumes pi units of capacity. Hence π is initialized at
0 and is not allowed to exceed the capacity Q. The maximum
amount the vehicle can deliver after visiting vertex i is equal
to the minimum residual capacity that the vehicle has had
since its departure from the depot s up to vertex i. Hence its
consumption δ is equal to the maximum amount of load that
has been on board up to the visit at vertex i. For this reason,
the maximum amount the vehicle can deliver after visiting
vertex i cannot be greater than the maximum amount it can
pick-up after visiting vertex i. Hence both consumptions π

and δ are initialized at 0 and the extension rule is

π ′ = π + pj

δ′ = max{δ + dj, π + pj}.
A state (S, π , δ, C, i) is feasible only if π ≤ Q and δ ≤ Q.
Note that for the definition of π and δ the latter condition
implies the former.

3.5. Capacity and Time Windows

In this case, the time elapsed is a consumed resource and
the consumption monotonically increases along the path.
To represent the capacity constraint and the time window
constraints, we need two resources, whose consumption is
respectively indicated by q and τ : they are the capacity and the
time consumed up to the beginning of service at each vertex.
Both of them are initialized at 0 and the extension rules are

q′ = q + dj

τ ′ = max{τ + θi + vij, aj}.
A state (S, q, τ , C, i) is feasible only if q ≤ Q and τ ≤ bi.

The effectiveness of the dynamic-programming algorithm
heavily depends on the number of states generated. Hence it
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is essential to fathom feasible states, which cannot lead to the
optimal solution. To this purpose, suitable dominance tests
are always performed when states are extended, so that the
algorithm records only nondominated states. The dominance
test is the following. Let (S′, R′, C′, i) and (S′′, R′′, C′′, i)
be the labels of two states associated with vertex i; then
(S′, R′, C′, i) dominates (S′′, R′′, C′′, i) only if

S′ ≤ S′′

R′ ≤ R′′

C′ ≤ C′′

and at least one of the inequalities is strict.
When the consumption of some resource is non-negative

and obeys the triangle inequality, the domination rule can be
made stronger, as pointed out by Feillet et al. [16]. The idea
is to identify vertices, which cannot be visited in any feasible
extension of a given state owing to the limits on the resources.
These vertices are called unreachable. When a vertex is found
to be unreachable from a given state, the consumption of the
corresponding dummy resource in that state can be set to 1,
as if the vertex had already been visited. This allows the
dynamic-programming algorithm to identify a larger number
of dominated states and to fathom them, thus reducing the
computation time. We incorporated this method in all the
algorithms we considered. The triangle inequality is certainly
satisfied by the resources whose consumption occurs at the
vertices, such as the RCESPP with capacity and the RCESPP
with distribution and collection. The applicability to the case
with time windows, where resource τ is consumed on the arcs,
depends on whether the traveling times satisfy the triangle
inequality or not; to apply the techniques of Feillet et al. [16]
to the time resource, we assumed vij = cij ∀(i, j) ∈ A in our
tests.

The order in which the states are extended may be very
important for the effectiveness of the overall algorithm. We
consider label-correcting algorithms like those of Desrosiers
et al. [13] and Feillet et al. [16]. States are explored according
to the vertices they are associated with. All vertices are cycli-
cally visited and for each vertex the algorithm extends all
states that have not yet been extended. States associated with
the same vertex can be sorted according to a secondary cri-
terion, for instance, according to the cost or the consumption
of a certain resource. In the three cases, we have considered
states associated with the same vertex are sorted according
to the values of q, π , and τ , respectively.

Label-setting algorithms have been proposed (see, for
instance, Desrochers and Soumis [9]), but they require an
hypothesis stronger than resource consumption monotonic-
ity: in particular, there must exist a resource whose con-
sumption is not less than a certain known amount β at each
extension. In this case, it is possible to define buckets of size
β and to mark as permanent all those labels for which the
resource consumption falls in the range of the first bucket not
yet extended. For a more detailed exposition of label-setting
algorithms, we refer the reader to Desrosiers et al. [12].

4. BOUNDED BIDIRECTIONAL
DYNAMIC-PROGRAMMING

We recall here the main concepts of bounded bidirectional
dynamic-programming that has been recently introduced
by Righini and Salani [23] to improve the exact dynamic-
programming algorithm described earlier. In bidirectional
dynamic-programming, states are extended both forward
from vertex s to its successors and backward from vertex
t to its predecessors (see for instance [22] for an application
of this idea to the constrained TSP). With each vertex i ∈ V ,
we associate forward states indicated by (Sfw, Rfw, Cfw, i) and
backward states indicated by (Sbw, Rbw, Cbw, i). A path from s
to t is detected each time, and a forward state (Sfw, Rfw, Cfw, i)
and a backward state (Sbw, Rbw, Cbw, j) can be feasibly
joined. Hereafter, we describe backward extension rules and
feasibility tests for backward states. Dominance tests on
backward states are identical to those for forward states.
We also illustrate the operation of joining forward and back-
ward states to produce s-t paths and we review the idea of
resource-based bounding.

4.1. Backward Extension and Feasibility Tests

The backward cost Cbw is initialized at 0 at vertex t and
whenever a backward state (Sbw, Rbw, Cbw, j) is extended
to a backward state (S′bw, R′bw, C′bw, i) the cost is updated
according to the formula:

C′bw = Cbw − λi/2 + cij − λj/2

where λi = −λ0 if i = s and λj = −λ0 if j = t.
The dummy resources vector Sbw is initialized at 0 at

vertex t and the extension rule is

S′bw
k =

{
Sbw

k + 1 k = i

Sbw
k k �= i.

A backward path is feasible only if Sbw
k ≤ 1 ∀k ∈ N .

4.1.1. Capacity. Resource consumption qbw in a backward
state associated with vertex j represents the overall demand
of customers visited from j (included) to t. The consumption
qbw is initialized at 0 at vertex t. When a feasible backward
path is extended along arc (i, j) from a state (Sbw, qbw, Cbw, j)
to a state (S′bw, q′bw, C′bw, i), the extension rule is

q′bw = qbw + di. (3)

A backward path is feasible only if qbw ≤ Q.

4.1.2. Distribution and Collection. Two resources, whose
consumption is indicated by πbw and δbw, are associated with
each backward state. Their meaning, initialization, and exten-
sion rules are symmetrical to those of forward labels: δbw

indicates the amount of load delivered between j and t and
πbw indicates the maximum overall amount of load on board
of the vehicle between j and t. When a backward path is
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extended along arc (i, j) from a state (Sbw, πbw, δbw, Cbw, j)
to a state (S′bw, π ′bw, δ′bw, C′bw, i), the extension rule is

π ′bw = max{δbw + di, π
bw + pi}

δ′bw = δbw + di.

A backward path is feasible only if πbw ≤ Q and δbw ≤ Q
(the former condition implies the latter).

4.1.3. Capacity and Time Windows. In the case of time
windows for the sake of symmetry it is useful to define for-
ward and backward time windows [afw

i , bfw
i ] and [abw

i , bbw
i ]

as follows:

afw
i = ai

bfw
i = bi

abw
i = ai + θi

bbw
i = bi + θi.

The forward time window represents the range of feasible
arrival times at vertex i, while the backward time window
represents the range of feasible departure times from vertex i.
The overall resource availability T is equal to the maximum
feasible arrival time at vertex t, that is, T = maxi∈N∪{s}{bfw

i +
θi + vit}. The resource consumption τ bw in a backward state
associated with vertex j represents the minimum time which
must be consumed since the departure from j up to the arrival
at t not later than at time T . When a feasible backward path is
extended along arc (i, j) from a state (Sbw, qbw, τ bw, Cbw, j)
to a state (S′bw, q′bw, τ ′bw, C′bw, i), the extension rules are:

q′bw = qbw + di

τ ′bw = max
{
τ bw + θj + vij, T − bbw

i

}
.

A backward label associated with vertex j is feasible only if
qbw ≤ Q and τ bw ≤ T − abw

j .

4.2. Joining Forward and Backward States

Forward and backward paths must be joined together to
produce complete s-t paths. When a forward path (Sfw, qfw,
Cfw, i) is joined with a backward path (Sbw, qbw, Cbw, j) the
cost of the resulting s-t path is equal to

Cfw − λi/2 + cij − λj/2 + Cbw.

The join is subject to certain feasibility conditions on
the resources. In particular, the feasibility test on dummy
resources S imposes that a same vertex cannot be visited by
both paths.

Sfw
k + Sbw

k ≤ 1 ∀k ∈ N .

The feasibility test on problem-dependent resources R
imposes that for each resource the consumption in the over-
all s-t path can not exceed the overall amount of available
resource. Hereafter, we define the feasibility tests for each
specific kind of resource constraints considered.

4.2.1. Capacity. The feasibility test on the capacity for
joining a forward path (Sfw, qfw, Cfw, i) with a backward path
(Sbw, qbw, Cbw, j) is

qfw + qbw ≤ Q.

4.2.2. Distribution and Collection. The feasibility con-
ditions to join a forward path (Sfw, π fw, δfw, Cfw, i) with a
backward path (Sbw, πbw, δbw, Cbw, j) are:

π fw + πbw ≤ Q

δfw + δbw ≤ Q.

4.2.3. Capacity and Time Windows. The feasibility con-
ditions to join a forward path (Sfw, qfw, τ fw, Cfw, i) with a
backward path (Sbw, qbw, τ bw, Cbw, j) are

qfw + qbw ≤ Q

τ fw + θi + vij + θj + τ bw ≤ T .

4.3. Resource-Based Bounding

Since all forward and backward states generated by the
bidirectional search algorithm are tentatively joined, it is
crucial to reduce their number as much as possible. To this
purpose, we select a critical resource (r̂), whose consump-
tion is monotone along the paths, and we do not extend states
in which at least half of the available amount of that resource
(R̂) has been consumed. This allows to greatly reduce the
number of states generated still guaranteeing that the opti-
mal solution will be found. Hereafter, we describe how we
have chosen the critical resource for each different kind of
problem.

4.3.1. Capacity. The critical resource in this case is capac-
ity. Forward and backward states are extended only if
their associated resource consumption value, qfw or qbw

respectively, is less than Q/2.

4.3.2. Distribution and Collection. In this case, there are
two resources; we consider as a critical resource the sum of
the resource consumptions ρfw = π fw + δfw for forward
states and ρbw = πbw + δbw for backward states and in both
directions we extend only those states for which ρ < Q.

4.3.3. Capacity and Time Windows. In this last case, we
consider time as the critical resource and we extend only
forward states for which τ fw < T/2 and backward states for
which τ bw < T/2.

The combination of bidirectional search with resource-
based bounding allows to solve larger instances (or
the same instances in less time) than monodirectional
dynamic-programming; detailed experimental results are
reported in [23]. In the next section, we show how
bidirectional search and resource-based bounding can be
incorporated into dynamic-programming algorithms based
on state-space relaxation.
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Algorithm 1. RCESPP—Bidirectional dynamic program-
ming

// Initialization //
�fw

s ← {(0, 0, 0, s)}
�bw

t ← {(0, 0, 0, t)}
for all i ∈ V \ {s} do �fw

i ← ∅
for all i ∈ V \ {t} do �bw

i ← ∅
E ← {s, t}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Forward extension //
for all li = (Si, Ri, Ci, i) ∈ �fw

i do
if r̂i < R̂/2 then

for all j ∈ 	+
i such that Si

j = 0 do
lj ← Extendfw(li, j)
�fw

j ← EFF(�fw
j , lj)

if �fw
j has changed then E ← E ∪ {j}

// Backward extension //
for all li = (Si, Ri, Ci, i) ∈ �bw

i do
if r̂i < R̂/2 then

for all k ∈ 	−
i such that Si

k = 0 do
lk ← Extendbw(li, k)

�bw
k ← EFF(�bw

k , lk)
if �bw

k has changed then E ← E ∪ {k}
E ← E \ {i}

until E = ∅
// Join between forward and backward paths //
for all i ∈ V

for all li = (Si, Ri, Ci, i) ∈ �fw
i

for all j ∈ V
for all lj = (Sj, Rj, Cj, j) ∈ �bw

j
if Feasible(li, lj) then Save(li, lj)

In Algorithm 1, we report the pseudocode of the bounded
bidirectional algorithm where �fw

i and �bw
i are the lists of

forward and backward states associated with vertex i; 	+
i

and 	−
i are the sets of successors and predecessors of vertex

i; E is the set of vertices to be examined; Extendfw(l, k) and
Extendbw(l, k) are the forward and backward extension pro-
cedures, respectively they extend the state specified as a first
argument to a vertex specified as a second argument; these
procedures check the resource constraints and produce only
feasible states; finally EFF(�, l) is the procedure that inserts
state l into set � applying the domination rules; Feasible(li, lj)
checks the resource compatibility of states li and lj according

to problem-dependent rules; Save(li, lj) saves the solution
obtained from the two states li and lj.

5. STATE SPACE RELAXATION

State space relaxation was introduced by Christofides
et al. [6] in 1981. The state-space S explored by the
dynamic-programming algorithm is projected onto a lower
dimensional space T , so that each state in T retains the
minimum cost among those of its corresponding states in
S (assuming the objective function must be minimized). In
this way, the number of states to be explored is drastically
reduced; the drawback is that some original state correspond-
ing to an infeasible solution in S may be projected onto a state
corresponding to a feasible solution in T and therefore the
search in the relaxed state-space does not guarantee to find
an optimal solution but rather a lower bound.

State space relaxation has been used as a method alterna-
tive to exact optimization of the pricing problem in branch-
and-price algorithms for the VRP with additional constraints
(see for instance Desrochers et al. [10]): instead of the optimal
value of the pricing problem, a lower bound is obtained. This
allows faster convergence of the column generation algorithm
at the expense of a weaker lower bound. Columns con-
taining cycles must be eliminated through branching. Here,
on the contrary, we focus on the use of state-space relax-
ation for the exact optimization of the pricing problem by a
branch-and-bound algorithm.

Our state-space relaxation consists of mapping each state
(S, R, C, i) onto a new state (σ , R, C, i), where σ = ∑N

k=1 Sk

represents the length of the path, that is, the number of
vertices visited (excluding s). In our algorithm, we also
count unreachable vertices as if they were already visited,
exploiting the technique of Feillet et al. [16]. Since each
component of the resource consumption vector R may take
on a finite number of values and σ can vary between 0
and N , a dynamic-programming algorithm based on state-
space relaxation must explore only a pseudopolynomial
number of states. From the viewpoint of complexity and
computing time, this makes a big difference with respect
to the exact dynamic-programming algorithm in which vec-
tor S yields an exponential number of possible states. The
surrogate resource consumption σ is initialized at 0 and
increased by one unit each time a state is extended. Since
the state does no longer keep information about the set
of already visited vertices, cycles are no longer forbidden;
therefore, the path is guaranteed to be feasible with respect
to the resource constraints but it is not guaranteed to be
elementary.
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FIG. 1. On the left: an s-t path made of nonelementary paths s-i and j-t. On the right: a nonelementary s-t path made of elementary paths s-i and j-t.
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Algorithm 2. RCSPP—Bidirectional state space relax-
ation

// Initialization //
�fw

s ← {(0, 0, 0, s)}
�bw

t ← {(0, 0, 0, t)}
for all i ∈ V \ {s} do �fw

i ← ∅
for all i ∈ V \ {t} do �bw

i ← ∅
E ← {s, t}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Forward extension //
for all li = (σ i, Ri, Ci, i) ∈ �fw

i do
if r̂i < R̂/2 then

for all j ∈ 	+
i do

lj ← Extendfw(li, j)
�fw

j ← EFF(�fw
j , lj)

if �fw
j has changed then E ← E ∪ {j}

// Backward extension //
for all li = (σ i, Ri, Ci, i) ∈ �bw

i do
if r̂i < R̂/2 then

for all k ∈ 	−
i do

lk ← Extendbw(li, k)

�bw
k ← EFF(�bw

k , lk)
if �bw

k has changed then E ← E ∪ {k}
E ← E \ {i}

until E = ∅
// Join between forward and backward paths //
for all i ∈ V

for all li = (σ i, Ri, Ci, i) ∈ �fw
i

for all j ∈ V
for all lj = (σ j, Rj, Cj, j) ∈ �bw

j
if Feasible(li, lj) and HalfWay(li, lj) then

Save(li, lj)

In the state-space relaxation algorithm, the domination
rule is modified as follows: a state (σ ′, R′, C′, i) dominates a
state (σ ′′, R′′, C′′, i) only if

σ ′ ≤ σ ′′

R′ ≤ R′′

C′ ≤ C′′

and at least one of the inequalities is strict.
This state-space relaxation of the RCESPP into the RCSPP

can be tightened by eliminating all cycles of length two. This
is easily accomplished by a duplication of the labels (see, for
instance, Desrochers et al. [10]). Irnich and Villeneuve [20]
proposed a method to eliminate cycles of length k ≥ 3, but
the computational complexity of their method dramatically
increases with k. Hence, we incorporated in our algorithms
the technique to avoid cycles of length two.

The definitions above apply to both forward and back-
ward states when bidirectional search is employed. In such

case, σ fw and σ bw represent, respectively, the number of
forward extensions from s and the number of backward exten-
sions from t. We bound bidirectional search in the same way
described earlier, that is, on the basis of the value of a critical
resource.

When bounded bidirectional search is coupled with state-
space relaxation, the join of forward and backward paths
becomes critical: both the forward path and the backward
path to be joined may contain cycles; moreover, a cycle
can be produced by the join, even if the two paths are
elementary. These two cases are illustrated in Figure 1.
In addition, there may be many different ways to join
forward and backward paths providing the same solution.
The former issue is addressed in the next section, where
branching strategies are illustrated; the latter is addressed
hereafter.

Algorithm 3. RCESPP—Decremental state space relax-
ation
// Initialization //
� = ∅
� = ∅
repeat

� = � ∪ �

�fw
s ← {(0, 0, 0, s)}

�bw
t ← {(0, 0, 0, t)}

for all i ∈ V \ {s} do �fw
i ← ∅

for all i ∈ V \ {t} do �bw
i ← ∅

E ← {s, t}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Forward extension //
for all li = (Si

�, Ri, Ci, i) ∈ �fw
i do

if r̂i < R̂/2 then
for all j ∈ 	+

i such that j /∈ � or Si
j = 0 do

lj ← Extendfw(li, j)
�fw

j ← EFF(�fw
j , lj)

if �fw
j has changed then E ← E ∪ {j}

// Backward extension //
for all li = (Si

�, Ri, Ci, i) ∈ �bw
i do

if r̂i < R̂/2 then
for all k ∈ 	−

i such that k /∈ � or Si
k = 0 do

lk ← Extendbw(li, k)

�bw
k ← EFF(�bw

k , lk)
if �bw

k has changed then E ← E ∪ {k}
E ← E \ {i}

until E = ∅
// Join between forward and backward paths //
for all i ∈ V

for all li = (Si
�, Ri, Ci, i) ∈ �fw

i
for all j ∈ V

for all lj = (Sj
�, Rj , Cj , j) ∈ �bw

j
if Feasible(li, lj) and HalfWay(li, lj) then

Save(li, lj)
// Search for vertices visited more than once //
� = MultipleVisits()

until � = ∅
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TABLE 1. RCESPP with capacity—50 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c_50_01 30 0.00 1 0.00 — 1 0.00 — 1 0 0.00
c_50_02 104 0.00 1 0.00 — 1 0.00 — 1 0 0.00
c_50_03 277 0.00 7 0.01 — 1 0.00 — 1 0 0.00
c_50_04 812 0.02 19 0.08 — 10 0.05 — 3 2 0.02
c_50_05 1978 0.03 11 0.05 — 22 0.09 — 2 2 0.01
c_50_06 8185 0.04 87 0.48 — 116 0.91 — 3 3 0.04
c_50_07 10694 0.78 35 0.24 — 52 0.33 — 2 3 0.02
c_50_08 43525 14.99 315 3.19 — 124 1.81 — 5 7 0.25
c_50_09 51467 19.66 673 5.80 — 224 1.78 — 4 8 0.18
c_50_10 211951 298.45 3919 44.56 — 3039 53.34 — 5 10 1.82

r_50_01 40 0.00 1 0.00 — 1 0.00 — 1 0 0.00
r_50_02 129 0.01 1 0.01 — 1 0.00 — 1 0 0.00
r_50_03 296 0.01 7 0.04 — 1 0.00 — 3 3 0.02
r_50_04 616 0.02 7 0.06 — 1 0.00 — 2 3 0.02
r_50_05 1224 0.05 591 6.64 — 7 0.09 — 6 7 0.17
r_50_06 2349 0.11 271 4.49 — 83 1.18 — 4 6 0.12
r_50_07 4269 0.24 6009 90.34 — 122 1.12 — 2 4 0.06
r_50_08 7731 0.32 3149 38.75 — 95 0.98 — 5 11 0.48
r_50_09 13638 0.97 191 6.12 — 17 0.53 — 4 9 0.40
r_50_10 22709 2.37 59 1.16 — 7 0.26 — 3 8 0.34

rc_50_01 21 0.00 1 0.00 — 1 0.00 — 1 0 0.00
rc_50_02 87 0.00 1 0.00 — 1 0.00 — 1 0 0.00
rc_50_03 136 0.00 11 0.02 — 1 0.01 — 4 3 0.00
rc_50_04 300 0.01 725 1.58 — 73 0.17 — 5 4 0.02
rc_50_05 421 0.01 1573 4.21 — 173 0.42 — 4 4 0.02
rc_50_06 865 0.03 73573 562.40 — 1774 8.29 — 7 8 0.09
rc_50_07 1006 0.04 3417 19.66 — 84 0.50 — 4 7 0.05
rc_50_08 1827 0.07 239467 — 6.25 10505 49.19 — 7 11 0.20
rc_50_09 2026 0.08 29021 348.97 — 960 7.68 — 6 11 0.20
rc_50_10 3721 0.18 254931 — 2.0 16679 156.19 — 6 11 0.27

5.1. Paths Join and Solutions Uniqueness

The bounded bidirectional dynamic-programming algo-
rithm can provide duplicate solutions: consider for instance
an s-t path including vertices i, j, and k in this order. If the
constraint on the critical resource is not tight, it is possible
that forward states for vertices i and j and backward states
for vertices j and k are generated. Therefore, the same s-t
path can be obtained by joining a forward state of i with
a backward state of j as well as joining a forward state of
j with a backward state of k. This is unpleasant when we
solve the RCESPP as the pricing problem in a branch-and-
price framework, because in that context we search for many
different columns with negative reduced cost. To overcome
this drawback, we devised an additional test: we accept an
s-t path only when it is produced by the join of a forward
state and a backward state, for which the forward and back-
ward consumptions of the critical resource are as close as
possible to half the overall consumption for that s-t path,
that is, the two states are as close as possible to the “half
way point” along the s-t path. Let r̂fw and r̂bw be the criti-
cal resource consumptions in forward and backward paths.
Among all possible pairs of forward and backward states
producing the same s-t path, we choose the one for which
φ = |r̂fw− r̂bw| is minimum. The test is done in constant time

for each candidate pair of states, since the position closest to
the “half-way point” is detected by direct comparison with
the next position along the path if r̂fw < r̂bw and with the
previous position if r̂fw > r̂bw. In case of tie between two
positions for which φ is minimum, we choose the one with
r̂fw > r̂bw. This test guarantees that each s-t path is generated
only once.

In Algorithm 2, we report the pseudocode of the state-
space relaxation algorithm, using the same notation as in
Algorithm 1. In the joining phase, the procedure HalfWay(li,
lj) checks whether the s-t path obtainable from the two states
li and lj satisfies the “half-way-point” conditions.

6. BRANCH-AND-BOUND

In this section, we describe a branch-and-bound algo-
rithm that solves the RCESPP to optimality, exploiting the
RCSPP lower bound given by the bounded bidirectional
dynamic-programming algorithm with state-space relax-
ation. In Section 6.1, we describe the branching policies
needed to eliminate cycles: every time the optimal solution of
the RCSPP is not elementary, the current node of the search
tree is replaced by children nodes in which some additional
constraints are added to the RCSPP.
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TABLE 2. RCESPP with capacity—100 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c_100_01 55 0.00 1 0.00 — 1 0.00 — 1 0 0.00
c_100_02 205 0.01 1 0.01 — 1 0.01 — 1 0 0.00
c_100_03 579 0.03 7 0.04 — 1 0.02 — 2 1 0.03
c_100_04 2093 0.18 19 0.26 — 10 0.15 — 3 2 0.06
c_100_05 4722 0.26 43 0.36 — 22 0.31 — 3 4 0.07
c_100_06 22505 4.42 193 5.19 — 699 16.31 — 4 5 0.21
c_100_07 30871 5.94 65 1.84 — 99 2.65 — 3 6 0.18
c_100_08 171703 178.04 1275 77.50 — 517 30.53 — 6 10 1.34
c_100_09 2176993 226.04 8125 326.11 — 862 32.71 — 6 14 2.02
c_100_10 — — 11465 627.08 — 12076 910.73 — 6 13 7.68

r_100_01 150 0.00 15 0.04 — 10 0.04 — 3 3 0.02
r_100_02 972 0.05 459 3.61 — 225 1.45 — 2 4 0.06
r_100_03 4285 0.41 5337 126.87 — 776 15.03 — 4 5 0.59
r_100_04 17054 3.14 7639 306.49 — 1819 69.68 — 4 7 2.80
r_100_05 72202 32.04 81677 7.3 4464 198.93 — 3 5 2.87
r_100_06 270466 371.13 51755 9.5 13209 1282.61 — 4 8 34.64
r_100_07 — — 31121 — 11.2 29182 — 1.1 5 10 143.63
r_100_08 — — 12548 — 25.4 18741 — 6.3 5 11 281.62
r_100_09 — — 6912 — 51.1 12549 — 18.9 6 11 1002.30
r_100_10 — — 2551 — 67.4 6118 — 43.2 — — —

rc_100_01 21 0.00 1 0.00 — 1 0.00 — 1 0 0.00
rc_100_02 251 0.01 1 0.01 — 1 0.00 — 1 0 0.00
rc_100_03 699 0.03 31 0.33 — 10 0.13 — 1 0 0.00
rc_100_04 1823 0.14 7 0.20 — 10 0.27 — 2 1 0.07
rc_100_05 4527 0.38 1669 71.45 — 64 2.35 — 4 4 0.29
rc_100_06 11400 1.27 71 2.52 — 60 3.01 — 3 4 0.35
rc_100_07 24787 4.09 4403 376.85 — 752 59.22 — 4 5 0.92
rc_100_08 55665 15.51 5735 353.00 — 254 25.00 — 4 7 1.77
rc_100_09 110506 53.62 739 109.08 — 391 28.76 — 3 5 1.40
rc_100_10 230054 209.30 25055 — 3.7 7385 1191.96 — 5 10 7.33

6.0.1. Search Policy. The search policy we use to explore
the branch-and-bound tree is best-first, that is, the open nodes
of the tree are ranked according to the value of their associated
lower bound and the most promising node is explored first.

6.0.2. Upper Bounding. At each node of the branch-and-
bound tree and at each iteration of the column generation
algorithm a feasible solution is computed with a nearest
neighbor heuristic. Starting from the depot s the most con-
venient vertex among the feasible ones is chosen until the
path reaches t. For a vertex to be feasible, we check that no
resource constraint is exceeded and that the vertex has not
been visited yet. At each vertex i, the algorithm chooses the
next feasible vertex j such that j ∈ argmink{cik − λk}.

6.1. Branching Strategies

We present three different ways to perform branching,
namely branching on cycles, branching on arcs, and branch-
ing on resources. Our algorithm uses hybrid branching
strategies in which all these techniques are exploited.

6.1.1. Branching on Cycles. First, we determine the min-
imum length cycle in the optimal RCSPP solution. Then k
children nodes are generated, where k is the length of the

cycle on vertices v1, v2, . . . , vk , that is, the number of arcs
traversed between two visits to the same vertex. At child
node h = 0, . . . , k − 1, the consecutive vertices v1, . . . , vh

are merged into a macrovertex and the arc from vh to vh+1

is forbidden. We experimentally observed that forbidding the
cycles of length two, we often obtained cycles of length three.

6.1.2. Branching on Arcs. This binary branching scheme
consists in selecting a vertex entered or left by more than one
arc in the RCSPP solution. Let (i1, j) and (i2, j) be two arcs
entering vertex j in the RCSPP solution. Then, we partition
the arcs entering j into two subsets I1 and I2 such that i1 ∈ I1

and i2 ∈ I2 and we forbid all arcs in I1 in one child node and
all arcs in I2 in the other.

6.1.3. Branching on Resources. When the optimal solu-
tion of the RCSPP has a cycle, there exists at least one vertex
ı̂ that is visited more than once. The branching strategy con-
sists of adding a constraint on the quantity of critical resource
consumed up to the visit of vertex ı̂. This idea was proposed
by Gélinas et al. [17] for routing problems with time win-
dows and it can be adapted to any problem with a critical
resource whose consumption r̂ is strictly monotone along the
path. Given a branching vertex ı̂, let r̂′ and r̂′′ be the two
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TABLE 3. RCESPP with distribution and collection—50 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c_50_01 25 0.00 1 0.00 — 1 0.00 — 1 0 0.00
c_50_02 85 0.00 1 0.00 — 1 0.00 — 1 0 0.00
c_50_03 188 0.01 1 0.02 — 1 0.01 — 2 1 0.00
c_50_04 632 0.02 7 0.02 — 10 0.04 — 2 1 0.01
c_50_05 1535 0.07 15 0.07 — 22 0.10 — 2 2 0.02
c_50_06 5507 0.27 27 0.17 — 122 0.94 — 3 3 0.05
c_50_07 10578 0.69 17 0.16 — 53 0.48 — 2 3 0.03
c_50_08 33588 7.23 83 0.90 — 91 1.44 — 5 7 0.47
c_50_09 56812 16.95 69 0.88 — 207 2.47 — 3 5 0.19
c_50_10 181699 140.59 119 3.56 — 129 3.66 — 5 10 2.20

r_50_01 51 0.00 1 0.00 — 1 0.00 — 1 0 0.00
r_50_02 116 0.00 5 0.02 — 7 0.02 — 2 1 0.01
r_50_03 298 0.01 1 0.01 — 1 0.01 — 3 3 0.01
r_50_04 585 0.02 1 0.03 — 1 0.03 — 2 3 0.02
r_50_05 1222 0.04 11 0.14 — 7 0.08 — 5 6 0.13
r_50_06 2345 0.09 17 0.28 — 45 0.62 — 3 5 0.07
r_50_07 4312 0.22 3 0.07 — 3 0.08 — 2 4 0.06
r_50_08 7772 0.50 71 0.97 — 122 1.13 — 4 7 0.19
r_50_09 13866 1.20 13 0.42 — 19 0.59 — 3 7 0.21
r_50_10 23788 3.03 5 0.21 — 5 0.21 — 3 7 0.25

rc_50_01 23 0.00 1 0.00 — 1 0.00 — 1 0 0.00
rc_50_02 58 0.00 1 0.00 — 1 0.00 — 1 0 0.01
rc_50_03 111 0.01 1 0.01 — 1 0.01 — 3 2 0.01
rc_50_04 247 0.01 55 0.12 — 73 0.14 — 5 4 0.02
rc_50_05 377 0.02 171 0.51 — 114 0.28 — 4 5 0.03
rc_50_06 639 0.02 3321 19.86 — 1156 5.01 — 6 7 0.09
rc_50_07 967 0.03 397 3.00 — 233 1.40 — 6 7 0.09
rc_50_08 1463 0.05 595 6.41 — 405 4.07 — 4 7 0.05
rc_50_09 2119 0.10 4363 63.94 — 666 8.13 — 7 9 0.22
rc_50_10 3201 0.15 12045 210.69 — 6551 79.95 — 6 11 0.24

values of resource consumption in two states associated with
ı̂ with r̂′ < r̂′′. Then an integer value r̄ is chosen such that
r̂′ < r̄ ≤ r̂′′. Two children nodes are generated imposing that
the value of r̂ at vertex ı̂ satisfies r̂ ≥ r in one child node and
r̂ ≤ r − 1 in the other.

It is remarkable that the dynamic-programming algorithm
that computes the lower bound can easily take into account the
constraints imposed by all branching techniques. In particu-
lar, when arc (i, j) is forbidden, it is simply deleted from the
graph. The consequence of branching on the critical resource
is that each vertex has an associated window [ar̂ , br̂] of fea-
sible values for the critical resource; when a path reaches
that vertex with a critical resource consumption less than
ar̂ , the consumption is set to ar̂ ; when it reaches the ver-
tex with a critical resource consumption greater than br̂ , it
is declared infeasible and it is discarded. This rule can be
applied to both forward and backward states, with different
resource windows for constraining forward and backward
consumptions.

6.1.4. Hybrid Branching. We obtained the best results
when we employed hybrid branching strategies in our branch-
and-bound algorithm. If either the forward path or the
backward path forming the optimal RCSPP solution contain

a cycle, we branch on the critical resource: we choose for
branching the first vertex visited more than once, which is
encountered moving along the forward (resp. backward) path
from s to t (resp. from t to s); we consider r̂′ and r̂′′ as the
resource consumptions at the first (resp. last) two visits of the
branching vertex and we choose r̄ = ⌈ r̂′+r̂′′

2

⌉
. If the forward

and the backward paths are both elementary but a cycle is
generated by their join, we branch on arcs or cycles. When
we branch on arcs, the branching vertex is the first vertex
visited more than once, which is encountered when moving
along the path from the half way point forward.

We could not observe a clear domination between the
hybrid branching strategies on resource/arcs and resource/
cycles. In Section 8, we report on computational results
obtained with each of them.

7. DECREMENTAL STATE-SPACE RELAXATION

The exact dynamic-programming algorithm forbids multi-
ple visits to the vertices, while the algorithm with state-space
relaxation does not. We pursued a compromise between these
two extreme cases by the following idea: some vertices are
identified as critical, according to the structure of the optimal
RCSPP solution obtained with state-space relaxation, and
in the subsequent run, the dynamic-programming algorithm
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TABLE 4. RCESPP with distribution and collection—100 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c_100_01 47 0.00 1 0.00 — 1 0.00 — 1 0 0.00
c_100_02 166 0.00 1 0.00 — 1 0.00 — 1 0 0.02
c_100_03 381 0.02 1 0.00 — 1 0.00 — 2 1 0.02
c_100_04 1426 0.12 7 0.10 — 10 0.13 — 3 2 0.06
c_100_05 3689 0.22 15 0.26 — 22 0.40 — 3 4 0.10
c_100_06 14800 2.04 15 0.54 — 597 17.26 — 4 5 0.25
c_100_07 29977 5.10 35 1.24 — 101 3.67 — 3 6 0.27
c_100_08 123907 82.29 175 6.56 — 192 12.57 — 6 10 2.17
c_100_09 229386 218.82 239 15.83 — 884 58.01 — 5 11 2.34
c_100_10 737 89.37 — 952 11.27 — 7 15 20.64

r_100_01 153 0.00 1 0.00 — 1 0.00 — 1 0 0.00
r_100_02 994 0.06 801 7.47 — 222 1.52 — 2 4 0.06
r_100_03 4706 0.55 7275 186.84 — 831 16.90 — 4 5 0.64
r_100_04 18995 4.44 15297 790.61 — 1814 69.59 — 3 5 1.34
r_100_05 83158 47.10 40991 3503.40 — 5242 357.35 — 3 5 3.71
r_100_06 351405 686.55 42932 — 5.0 14627 1074.52 — 4 8 39.63
r_100_07 — — 36124 — 8.9 24782 — 1.4 5 10 180.41
r_100_08 — — 19733 — 22.3 30764 — 12.5 4 10 217.66
r_100_09 — — 8153 — 45.5 11489 — 22.0 6 11 1200.36
r_100_10 — — 3559 — 62.8 4025 — 61.0 — — —

rc_100_01 47 0.00 1 0.00 — 1 0.00 — 1 0 0.00
rc_100_02 229 0.01 1 0.00 — 1 0.00 — 1 0 0.00
rc_100_03 642 0.04 7 0.10 — 10 0.13 — 2 1 0.03
rc_100_04 1776 0.15 7 0.19 — 10 0.26 — 2 1 0.07
rc_100_05 4331 0.49 27 1.16 — 61 2.25 — 4 4 0.30
rc_100_06 10794 1.54 23 1.18 — 54 2.98 — 3 4 0.33
rc_100_07 24657 5.83 801 74.78 — 736 58.96 — 4 5 0.97
rc_100_08 55131 31.83 361 44.60 — 242 24.13 — 3 5 1.11
rc_100_09 116239 87.50 235 23.30 — 389 29.55 — 3 5 1.55
rc_100_10 242383 688.90 5671 971.28 — 7162 1207.45 — 4 8 6.11

prevents multiple visits to those vertices, allowing multiple
visits to the others. This is easily accomplished by extending
the state-space relaxation labels with a binary vector Ŝ play-
ing the same role as S in exact dynamic-programming. The
size of Ŝ is however restricted only to the critical vertices.
When Ŝ contains all the vertices, the algorithm is equivalent
to exact dynamic-programming; when Ŝ is empty it is equiv-
alent to the algorithm with state-space relaxation. Therefore,
we indicate this algorithm by decremental state-space relax-
ation (DSSR). The algorithm is run iteratively: every time it
produces an optimal solution with cycles, the vertices vis-
ited more than once are marked as critical and the algorithm
restarts. Let �′ be the set of critical vertices at the current
iteration. Let � be the set of vertices visited more than once
in the optimal solution computed by the DSSR algorithm. If
� is not empty, then another iteration is performed with a
set of critical vertices equal to �′′ = �′ ∪ �. Hence the set
of critical vertices increases at each iteration and eventually
the algorithm provides the optimal solution to the RCESPP
without having recourse to branching. In Algorithm 3, we
report the pseudo-code of the decremental state-space relax-
ation algorithm, with the same notation as in Algorithm 1.
In addition procedure, MultipleVisits returns the set of ver-
tices visited more than once in the current optimal path and

S� indicates the binary vector S restricted to the components
corresponding to the critical vertices.

8. EXPERIMENTAL RESULTS

For our experiments, we used the same instances as in
Righini and Salani [23] and Feillet et al. [16]; they are derived
from the well-known Solomon’s CVRPTW benchmark. For
each kind of RCESPP problem, we tested our algorithms on
two classes of instances obtained from Solomon’s instances
by considering the first 50 and 100 nodes. These data sets
are divided into random, clustered, and random-clustered
categories, according to the displacement of the customers.
Instances belonging to the same data-set have the customers
located in the same way and with the same delivery requests;
these instances differ only for the time windows.

When solving the RCESPP with capacities, we considered
one instance taken from each one of the three Solomon’s data-
sets (namely c101, r101, and rc101); we kept the original
customer locations and delivery requests and we neglected
the time windows. Then we derived from each original
instance 10 RCESPP instances with 50 nodes and 10 RCESPP
instances with 100 nodes, by choosing 10 different values for
the vehicle capacity from 10 to 100.
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TABLE 5. RCESPP with capacity and time windows—50 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c101_50 500 0.02 1 0.00 — 1 0.00 — 1 0 0.00
c102_50 2747 0.22 15 0.19 — 12 0.19 — 2 2 0.12
c103_50 27656 13.73 2533 127.32 — 966 27.74 — 4 6 14.06
c104_50 — — 35781 — 1.2 24785 1835.47 — 6 11 342.67
c105_50 603 0.02 1 0.02 — 1 0.02 — 1 0 0.01
c106_50 509 0.02 1 0.03 — 1 0.03 — 1 0 0.02
c107_50 661 0.03 1 0.04 — 1 0.04 — 1 0 0.02
c108_50 924 0.04 1 0.04 — 1 0.04 — 1 0 0.04
c109_50 2177 0.20 81 1.90 — 78 1.69 — 8 11 1.35

r101_50 189 0.00 1 0.00 — 1 0.00 — 1 0 0.00
r102_50 642 0.03 5 0.05 — 4 0.04 — 4 5 0.08
r103_50 1950 0.11 817 9.83 — 103 1.07 — 3 4 0.27
r104_50 10592 1.22 83 2.46 — 264 7.08 — 3 5 0.77
r105_50 368 0.01 1 0.01 — 1 0.01 — 1 0 0.00
r106_50 882 0.04 13 0.14 — 9 0.08 — 4 6 0.18
r107_50 2349 0.16 15435 248.92 — 268 3.10 — 4 5 0.47
r108_50 11253 1.33 5 0.15 — 5 0.15 — 2 4 0.48
r109_50 741 0.02 1 0.02 — 1 0.02 — 1 0 0.02
r110_50 1769 0.10 1 0.04 — 1 0.04 — 1 0 0.04
r111_50 2202 0.15 43 0.73 — 46 0.66 — 3 5 0.33
r112_50 3760 0.32 1 0.05 — 1 0.05 — 1 0 0.05

rc101_50 357 0.00 1 0.00 — 1 0.00 — 1 0 0.01
rc102_50 1020 0.03 17 0.13 — 17 0.13 — 3 3 0.09
rc103_50 3448 0.18 112 3.45 — 6168 90.88 — 5 11 0.95
rc104_50 8926 0.84 258 7.65 — 312 8.31 — 7 15 4.77
rc105_50 1000 0.03 63 0.48 — 60 0.32 — 3 4 0.11
rc106_50 999 0.03 71 0.52 — 676 4.64 — 4 7 0.16
rc107_50 3479 0.15 29567 653.53 — 13452 195.907 — 6 9 0.83
rc108_50 8671 0.53 34205 1143.65 — 58476 1474.19 — 6 13 2.12

For the RCESPP with distribution and collection, we kept
the original delivery requests and we derived the pick-up
requests as follows: pi = 
0.8di� if i is odd and pi = 
1.2di�
if i is even. We generated 10 instances with 50 nodes and 10
instances with 100 nodes as before.

Finally, for the RCESPP with capacities and time win-
dows, we considered the original instances of Solomon’s
data-set. In addition, we also defined another data-set built
on the difficult Solomon’s instance c_104; for each vertex
i, we kept the original starting time of the time window, ai,
and we set the end time as follows: bi = ai + (1 + γ )θi for
γ = 0.25 ∗ k and k = 0, . . . , 24, where θi is the given service
time at vertex i.

For each set of instances, we generated the prizes λi as
random integer variables uniformly distributed in [0, . . . , 20];
we set λ0 = 0. This data generation technique was devised
by Feillet et al. [16] to have a reasonable number of negative
cycles. We rounded up all the Euclidean distances between
customers to integer values.

All tests were performed on a PC equipped with a
PentiumIV 1.6 GHz processor with 512 MB RAM. The algo-
rithms were coded in ANSI-C and compiled with gcc 3.0.4.

Tables 1–8 report on the experimental comparison
between the elementary bidirectional algorithm with bounds
described in [23], the state-space relaxation algorithm

coupled with branch-and-bound and the decremental
state-space relaxation algorithm. For the elementary
bidirectional algorithm with bounds, named Exact D.P. in
the tables, we report the total number of nondominated
labels and the computing time. For the branch-and-bound
algorithm based on state-space relaxation, we report the
total number of nodes of the search tree, the computing
time, and the percentage gap between the upper and the
lower bounds; the reported results have been obtained with
hybrid arcs/resources branching and hybrid cycles/resources
branching. For the decremental state-space algorithm, named
DSSR, we report the number of iterations, that is, the num-
ber of times the dynamic-programming algorithm has been
invoked, the number of critical nodes in the last iteration
and the computing time. Empty cells mean that the optimal
solution was not found within the time limit of one hour.

8.1. Capacities

Results reported in Tables 1 and 2 show that for 50 vertices
instances the decremental state-space relaxation algorithm
clearly outperformed all other algorithms on all classes of
instances except for the rc-class, where exact bidirectional
and bounded dynamic-programming was quite fast. However,
these are very easy instances for all algorithms considered:
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TABLE 6. RCESPP with capacity and time windows—100 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c101_100 1039 0.14 1 0.02 — 1 0.02 — 1 0 0.02
c102_100 9759 3.97 15 0.89 — 12 0.67 — 2 2 0.63
c103_100 95138 148.50 2539 507.78 — 3075 485.68 — 5 9 40.15
c104_100 — — 17553 — 17.8 23402 — 16.5 7 16 919.41
c105_100 1256 0.22 1 0.06 — 1 0.06 — 1 0 0.06
c106_100 1502 0.33 1 0.07 — 1 0.07 — 1 0 0.07
c107_100 1378 0.30 1 0.08 — 1 0.08 — 1 0 0.08
c108_100 2109 0.58 1 0.17 — 1 0.17 — 1 0 0.17
c109_100 4816 1.90 111 14.18 — 101 12.66 — 8 13 9.19

r101_100 765 0.05 1 0.00 — 1 0.00 — 1 0 0.00
r102_100 13021 4.51 4203 438.82 — 1003 96.25 — 3 6 21.69
r103_100 75599 105.77 377 128.71 — 252 61.10 — 4 7 159.74
r104_100 349866 1278.57 4531 — 0.9 1945 1013.04 — 3 5 78.32
r105_100 1679 0.17 1 0.03 — 1 0.03 — 1 0 0.03
r106_100 19411 11.03 26059 — 3.4 3344 467.29 — 4 7 71.60
r107_100 83422 141.20 1417 717.37 — 732 232.91 — 5 13 136.36
r108_100 312346 1094.81 1593 1098.05 — 1451 611.61 — 3 5 146.58
r109_100 4417 0.87 49 3.39 — 49 3.45 — 3 5 2.93
r110_100 22744 12.71 307 69.25 — 406 77.55 — 3 6 19.31
r111_100 44094 39.38 2669 866.34 — 361 129.24 — 3 7 53.16
r112_100 269888 1019.10 2167 2227.74 — 665 385.00 — 7 14 316.91

rc101_100 1038 0.08 1 0.02 — 1 0.02 — 1 0 0.02
rc102_100 5209 0.82 17 1.12 — 21 1.34 — 4 4 3.17
rc103_100 22618 9.87 861 110.78 — 6494 587.39 — 4 8 35.37
rc104_100 137013 202.25 607 194.68 — 1054 203.36 — 4 8 102.56
rc105_100 3288 0.41 7 0.43 — 13 0.67 — 4 6 1.14
rc106_100 3124 0.37 31 1.85 — 12 0.56 — 3 3 1.01
rc107_100 10651 2.17 87 8.50 — 27 2.79 — 4 6 3.65
rc108_100 39880 20.12 239 32.34 — 143 12.43 — 3 5 4.84

TABLE 7. RCESPP with capacity and time windows—c_104, 50 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c104_50_01 100 0.00 1 0.01 — 1 0.01 — 1 0 0.01
c104_50_02 157 0.00 1 0.01 — 1 0.01 — 1 0 0.01
c104_50_03 229 0.01 1 0.01 — 1 0.01 — 1 0 0.01
c104_50_04 235 0.01 1 0.01 — 1 0.01 — 1 0 0.01
c104_50_05 244 0.01 1 0.01 — 1 0.01 — 1 0 0.01
c104_50_06 323 0.01 1 0.02 — 1 0.02 — 1 0 0.02
c104_50_07 532 0.01 1 0.02 — 1 0.02 — 1 0 0.02
c104_50_08 637 0.04 1 0.02 — 1 0.02 — 1 0 0.02
c104_50_09 772 0.05 1 0.02 — 1 0.02 — 1 0 0.02
c104_50_10 841 0.06 1 0.02 — 1 0.02 — 1 0 0.02
c104_50_11 1479 0.11 1 0.03 — 1 0.03 — 1 0 0.03
c104_50_12 2349 0.24 1 0.03 — 1 0.03 — 1 0 0.03
c104_50_13 3827 0.46 1 0.04 — 1 0.04 — 1 0 0.04
c104_50_14 4081 0.53 19 0.24 — 13 0.18 — 2 3 0.14
c104_50_15 5556 0.76 13 0.22 — 9 0.12 — 3 4 0.49
c104_50_16 9463 2.16 39 0.88 — 12 0.25 — 3 4 0.53
c104_50_17 18631 5.15 45 1.09 — 15 0.35 — 3 4 0.60
c104_50_18 21792 6.63 145 3.53 — 76 1.66 — 3 4 0.61
c104_50_19 25698 9.42 77 2.43 — 64 1.41 — 3 5 1.20
c104_50_20 36875 23.86 85 2.02 — 91 2.35 — 4 6 2.11
c104_50_21 82108 76.42 179 5.95 — 144 3.99 — 4 6 2.69
c104_50_22 106183 115.17 199 5.35 — 91 2.52 — 3 6 2.31
c104_50_23 127235 157.86 255 11.00 — 214 9.34 — 8 11 17.45
c104_50_24 159960 302.80 276 19.70 — 238 17.98 — 5 7 13.43
c104_50_25 335617 1166.70 321 18.36 — 381 19.83 — 4 7 13.31
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TABLE 8. RCESPP with capacity and time windows—c_104, 100 vertices.

Instance
name

Exact D.P. Resources + Arcs Resource + Cycles DSSR

Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c104_100_01 205 0.01 1 0.04 — 1 0.04 — 1 0 0.04
c104_100_02 286 0.01 1 0.05 — 1 0.05 — 1 0 0.05
c104_100_03 415 0.03 1 0.06 — 1 0.06 — 1 0 0.06
c104_100_04 463 0.05 1 0.07 — 1 0.07 — 1 0 0.07
c104_100_05 477 0.06 1 0.07 — 1 0.07 — 1 0 0.07
c104_100_06 603 0.06 1 0.08 — 1 0.08 — 1 0 0.08
c104_100_07 975 0.12 1 0.08 — 1 0.08 — 1 0 0.08
c104_100_08 1232 0.22 1 0.09 — 1 0.09 — 1 0 0.09
c104_100_09 1475 0.34 1 0.09 — 1 0.09 — 1 0 0.09
c104_100_10 1645 0.42 1 0.09 — 1 0.09 — 1 0 0.09
c104_100_11 2738 0.65 1 0.11 — 1 0.11 — 1 0 0.11
c104_100_12 4595 1.36 1 0.12 — 1 0.12 — 1 0 0.12
c104_100_13 7437 2.63 1 0.11 — 1 0.11 — 1 0 0.11
c104_100_14 8579 3.58 33 1.76 — 11 0.74 — 3 3 1.49
c104_100_15 11053 4.86 65 3.24 — 21 1.05 — 2 3 1.26
c104_100_16 19267 10.42 249 15.12 — 23 1.62 — 2 3 1.56
c104_100_17 39260 24.91 211 20.02 — 21 1.60 — 2 3 1.65
c104_100_18 53823 41.34 75 8.64 — 30 3.54 — 2 3 1.65
c104_100_19 66373 58.19 45 5.85 — 30 2.99 — 4 6 6.32
c104_100_20 92042 112.48 59 4.66 — 42 2.04 — 4 5 7.84
c104_100_21 198464 350.88 67 7.29 — 48 4.26 — 4 5 8.79
c104_100_22 318067 740.42 89 10.78 — 59 5.94 — 3 6 7.54
c104_100_23 441254 1238.62 53 7.94 — 53 7.60 — 7 9 32.06
c104_100_24 554831 2087.82 141 31.02 — 143 33.46 — 5 7 29.87
c104_100_25 — — 187 47.05 — 17 44.32 — 4 7 27.74

the computing times are all smaller than 1 s. The branch-
and-bound algorithms sometimes dominated exact dynamic-
programming but they also failed to terminate within a rea-
sonable computing time or even within the time-out in some
cases. For 100 vertices instances, the exponential growth of
the computing time required by exact dynamic-programming
is evident. Decremental state-space relaxation dramatically
reduced the computing time up to two orders of magnitude.
The branch-and-bound algorithms had performances similar
to those of exact dynamic-programming and the two hybrid
branching strategies did not dominate each other.

8.2. Distribution and Collection

When solving the RCESPP with distribution and collec-
tion, we obtained results similar to those above: they are
reported in Tables 3 and 4. The decremental state-space relax-
ation algorithm solved all instances except instance r_100_10
in less than 1200 s, outperforming the other algorithms and
reducing the computing time by two orders of magnitude in
some cases.

8.3. Capacities and Time Windows

All Solomon’s instances with 50 and 100 nodes were
solved by the decremental state-space relaxation algorithm.
It should be pointed out that the most difficult instance,
namely instance c_104, was solved within 920 s. For the
other original Solomon’s instances, the branch-and-bound
algorithms were not competitive, because of the tightness and
the displacement of the time windows that often allowed exact

dynamic-programming to go faster, because of the relatively
small number of feasible solutions.

8.4. Tightness of the Constraints

The last two tables, namely Tables 7 and 8, show that
the difficulty of a RCESPP instance does not depend only
on its size but it is strongly affected by the tightness of the
constraints. When time windows become larger and larger,
the number of nondominated states increases and so does the
computing time. The growth in the number of states and com-
puting time is due to the local nature of the time windows con-
straints. In these experiments, the superiority of algorithms
based on state-space relaxation is evident. Both branch-and-
bound algorithms and the decremental state-space relaxation
algorithm solved all instances in a few seconds, whereas
exact dynamic-programming showed a dramatic growth in
computing time. When constraints are very tight decre-
mental state-space relaxation and branch-and-bound have
comparable computational performances.

The number of critical nodes in decremental state-space
relaxation we observed was never greater than 16. We remark
that our current implementation of the decremental state-
space relaxation algorithm does not exploit reoptimization:
information computed in the previous run could be used
to speed-up successive runs. In this way, the computational
performances of the algorithm can be further improved.

Last but not the least, we observed that the implementation
of decremental state-space relaxation is by far easier than that
of the competitor algorithms considered here.
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9. CONCLUSIONS

We have presented and compared three different meth-
ods for the solution of the RCESPP. The first method is
exact dynamic-programming: though being a well-known
method that has been used for nearly two decades, since
the seminal work of Desrosiers et al. [13], we have shown
how it can be improved by new ideas, such as bidirectional
search with resource-based bounding. The second method is
branch-and-bound, where the lower bound is computed by
dynamic-programming with state-space relaxation. We have
outlined how bounded bidirectional search can be adapted
to state-space relaxation and we have presented different
branching strategies and their hybridization, pointing out that
the lower bounding algorithm can easily handle the additional
restrictions introduced by branching operations at each node
of the branch-and-bound tree. The third method is a new
one: decremental state-space relaxation. Both exact dynamic-
programming and state-space relaxation are special cases of
this new method.

The experimental comparison of the three methods is def-
initely favorable to decremental state-space relaxation, while
no clear dominance has been observed between the other
methods and not even between different hybrid branching
strategies within the branch-and-bound framework. Exact
dynamic-programming is less robust to the constraints tight-
ness: when the number of nondominated states grows, the
computing time tends to explode very quickly.

Further improvements to the basic DSSR algorithm pre-
sented here are possible in at least two directions: first
by incorporating reoptimization techniques like those of
Desrochers and Soumis [11], so that each iteration of the
algorithm does not restart from scratch but can reuse part of
the information coming from the previous iteration; second,
by guessing a clever initial subset � of critical nodes, instead
of starting with � = ∅.

The main motivation of this study is that the RCE-
SPP arises as a pricing subproblem in branch-and-price
algorithms for the vehicle-routing problem with additional
constraints. A natural extension of this research is the com-
parison between solving the pricing problem to optimality
and solving it with state-space relaxation or other methods
for relaxed pricing. The strategy of solving a relaxation of
the pricing subproblem was adopted for instance by Agarwal
et al. [1] for solving the CVRP and by Desrochers et al. [10]
for solving the CVRPTW, while recently Feillet et al. [16]
suggested the use of exact pricing for solving the CVRPTW,
by proving that tighter lower bounds (and sometimes integer
optimal solutions) can be achieved at the root node by col-
umn generation with no dramatic increase in computing time.
Hence the trade-off between computing time and lower bound
tightness definitely deserves further investigation and it will
be subject of future research. Although we cannot claim that
the comparison analyzed in this paper can be directly trans-
ferred to the choice between exact pricing and relaxed pricing,
we conjecture that the experiments reported here can give use-
ful suggestions about the trade-off between the quality of the

lower bound and the computing time required to compute
it, depending on the kind of resource constraints and their
tightness.
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