
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Computers & Operations Research 36 (2009) 1191 – 1203
www.elsevier.com/locate/cor

Decremental state space relaxation strategies and initialization
heuristics for solving the Orienteering Problem with Time Windows

with dynamic programming

Giovanni Righini∗, Matteo Salani1

Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano, Via Bramante 65, 26013 Crema (CR), Italy

Available online 25 January 2008

Abstract

We present an exact optimization algorithm for the Orienteering Problem with Time Windows (OPTW). The algorithm is based
on bi-directional and bounded dynamic programming with decremental state space relaxation. We compare different strategies
proposed in the literature to guide decremental state space relaxation: our experiments on instances derived from the literature show
that there is no dominance between these strategies. We also propose a new heuristic technique to initialize the critical vertex set
and we provide experimental evidence of its effectiveness.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Combinatorial optimization; Traveling salesman problem; Shortest path problem; Dynamic programming

1. Introduction

The Orienteering Problem with Time Windows (OPTW) is a combinatorial problem falling into the realm of Traveling
Salesman Problems (TSPs) with profits. It can be formulated as a special case of the Resource Constrained Elementary
Shortest Path Problem (RCESPP), for which effective dynamic programming algorithms have been recently proposed
by Boland et al. [1] and by Righini and Salani [2]. These algorithms exploit a new technique, called decremental
state space relaxation (DSSR) [2] or state space augmentation [1]. The purpose of this paper is twofold: first, to apply
dynamic programming (DP) with DSSR to solve the OPTW; second, to present some new ideas concerning the heuristic
initialization of the critical vertex set in DSSR algorithms.

1.1. Literature review

The TSP requires the computation of a minimum cost Hamiltonian cycle on an undirected graph. A large number
of extensions of this problem have been proposed in the literature so far: for a detailed review we refer the reader
to the survey paper by Laporte [3]. Several of these extensions belong to the class of TSP with profits (see Feillet
et al. [4]), where a profit is associated with each vertex and the goal is to find a cycle, not necessarily Hamiltonian,

∗ Corresponding author. Tel.: +39 373 898060; fax: +39 373 898010.
E-mail addresses: righini@dti.unimi.it (G. Righini), matteo.salani@epfl.ch (M. Salani).

1 Currently at Ecole Polytechnique Fédérale de Lausanne, Switzerland.

0305-0548/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.01.003

Author's personal copy

1192 G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203

starting from a given vertex and such that the overall collected profit is maximum. The TSP with profits is particularly
relevant because it arises as a pricing subproblem when vehicle routing problems with additional constraints are solved
via column generation. The Orienteering Problem (OP), also called selective TSP, is the problem of maximizing the
collected profits subject to a constraint on the maximum allowed tour length. The OP was introduced by Tsiligrides [5]
and surveyed by Golden et al. [6]. A first exact algorithm for the OP was proposed by Ramesh et al. [7]. More recently
Fischetti et al. [8] presented a branch-and-cut algorithm able to solve 500 cities instances to optimality in some hours.
Another branch-and-cut algorithm was presented by Gendreau et al. [9] for the OP with compulsory vertices.

In this paper we consider the OPTW: a profit, a time window and a service time are associated with each vertex
and a traveling time is associated with each edge. The objective is to find a maximum profit tour such that each vertex
is either visited inside its time window or skipped. We are aware of only two papers on this problem, both dealing
with approximation and heuristics: Kantor and Rosenwein [10] presented a so-called “tree heuristic”, which only
(approximately) solved small instances; more recently Bar-Yehuda et al. [11] studied geometric versions of the OPTW,
with customers located on a line or in the Euclidean plane, and without the limit on the maximum allowed tour duration.
The multi-vehicle version of the OP, with and without time windows, has recently been studied by Boussier et al. [12].

The OPTW can be reformulated as a RCESPP, which in turn can be effectively solved by DP with DSSR, a method
presented in Righini and Salani [2]. DSSR consists in solving through DP a relaxed problem, in which it is allowed to
visit vertices (and to get the corresponding profit) more than once. This relaxation is iteratively tightened by forbidding
multiple visits to a critical vertex set of increasing size. Computational experience shows that an optimal elementary
path is obtained after defining as critical a rather small fraction of the vertices. The same idea, named state space
augmentation, was independently developed and presented by Boland et al. [1], who also compared different strategies
to define new critical vertices at each iteration.

1.2. Original contributions

In this paper we present an exact optimization algorithm for the OPTW based on DP with DSSR and we compare
the strategies proposed by Boland et al. by testing them on the OPTW using Solomon’s data-sets and other instances
derived from a data-set of Cordeau et al. [13]. Our result is that there is no domination between the different strategies.

In addition, we give a further methodological contribution along this research stream: we propose a new heuristic
technique for the initialization of the critical vertex set, and we show that it reduces the number of iterations and the
amount of computing time needed by the DSSR algorithm to converge to an optimal solution. In our experiments the
speed-up obtained in this way positively affected all the DSSR strategies and for some data-sets it was very significant,
in excess of 60%.

1.3. Paper outline

In Section 2 we give a formal statement of the problem; in Section 3 we present a DP algorithm for the OPTW; in
Section 4 we present the DSSR algorithm and we report on computational experiments; in Section 5 we present the
ideas to initialize the critical vertex set and we report on related computational experiments.

2. Problem definition

The OPTW is defined as follows. We are given a complete undirected graph G= (N,E), with a positive weight tij
associated with each edge, representing the travel time between vertices i and j. For each vertex i ∈ N we have the
following data: pi is a positive profit that is collected when the vertex is visited, [ai, bi] is a time window defining the
feasible arrival time at the vertex and si is a non-negative service time, that is the amount of time which is spent to visit
the vertex. Two special vertices, numbered 1 and n, where n = |N|, are the endpoints of the path to be computed. We
have p1 = pn = 0, s1 = sn = 0, a1 = an = 0 and b1 = bn = T , where T is equal to the maximum feasible arrival time at
vertex n, that is T = maxi∈N\{1,n}{bi + si + tin}.

We indicate with �i the arrival time at vertex i. The OPTW requires the computation of an elementary path P
defined as an ordered sequence of vertices, starting from node 1, ending at node n, maximizing

∑
i∈Ppi and such that

ai ��i �bi, ∀i ∈ P. For each pair of vertices (i, j) consecutively visited along P we have �j = max{�i + si + tij , aj }.

Author's personal copy

G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203 1193

3. DP for the OPTW

In DP algorithms for computing optimal paths, a state associated with vertex i represents a path starting at vertex 1
and ending at vertex i. The DP algorithm repeatedly extends each state to generate new states. The extension of a state
corresponds to adding a vertex to a path. To limit the exponential increase of the number of states, suitable dominance
criteria are applied to identify states whose extension cannot produce an optimal solution. Recent references on this
topic are the papers by Feillet et al. [14], Irnich and Desaulniers [15] and Boland et al. [1].

Applying the same idea to the OPTW, one can design a basic DP algorithm, which generates and extends states
represented by labels, that is tuples of the form (S, �, P , i), where S is a binary vector representing the subset of vertices
already visited, � is the overall time elapsed, P is the overall profit collected, and i is the last reached vertex.

This is equivalent to say that the OPTW is a special case of the RCESPP, a general and fundamental NP-hard
network optimization problem, often encountered as a subproblem of more complex routing problems. In the OPTW
we have two resources: one represents time and its consumption is indicated by �; the other is a dummy resource, whose
consumption is indicated by S: there is one resource unit available at each vertex and it is consumed when the vertex
is visited. This method was introduced by Beasley and Christofides [16] to enforce the elementary path constraint.

The RCESPP has recently been attacked by new DP algorithms developed by Dumitrescu and Boland [17] and
Righini and Salani [18]. Hereafter we apply to the OPTW the bi-directional and bounded DP method presented in
[18], which we briefly recall to make this paper self-contained. In bi-directional DP the extension of states is done
both forward from vertex 1 and backward from vertex n. Intuitively the idea is to develop two smaller sets of states
instead of one larger set. Bi-directional search is coupled with bounding, that is the extension of the paths is stopped at
a certain state, and when there is the guarantee that if the state belongs to an optimal path, then the remaining part of
that path has been or will be generated in the other direction. To decide when a path can be stopped, a critical resource
is identified and no path is allowed to exceed a consumption of the critical resource equal to half the overall quantity
of available resource. This technique requires to match forward and backward paths to yield complete solutions.

Hereafter we give the details on extension rules, dominance tests and matching procedures of forward and backward
paths. Extension rules and dominance tests are those commonly used in all DP algorithms to compute shortest paths with
resource constraints, as those presented in the papers cited here above; matching procedures of forward and backward
paths are taken from Righini and Salani [18].

3.1. Extension rules

When a label (S, �, P , i) associated with vertex i is extended to vertex j, it generates a new label (S′, �′, P ′, j)

according to the following rules.
The prize P, initialized to 0 at vertex 1, is updated according to the formula

P ′ = P + pi/2 + pj/2.

This definition allows to preserve symmetry in the bi-directional search algorithm illustrated in the remainder.
The vector S is initialized to 0 and the update rule is

S′
k =

{
Sk + 1, k = j,

Sk, k �= j.

A state (S, �, P , i) can be extended to vertex j only if Sj = 0.
The consumption of time resource � is updated according to the direction of the extension. We define the time

window [abw
i , bbw

i] representing the backward time window of vertex i: it is obtained by adding the service time si to
the forward time window [ai, bi] for each i /∈ {1, n}.

For forward extensions we have

�′ = max{� + si + tij , a
fw
j }

and for backward extensions we have

�′ = max{� + sj + tij , T − bbw
i }.

A forward state (S, �, P , i) is feasible only if ��bi ; a backward state (S, �, P , i) is feasible only if ��T − abw
i .

Author's personal copy

1194 G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203

3.2. Dominance tests

Dominance tests are always performed when states are extended, so that the algorithm records only non-dominated
states. The dominance test is the following. Let L1 = (S1, �1, P1, i) and L2 = (S2, �2, P2, i) be the labels of two states
associated with vertex i and both generated in the same direction; then L1 dominates L2 only if⎧⎪⎨

⎪⎩
S1 �S2,

�1 ��2,

P1 �P2

and at least one of the inequalities is strict.

3.3. Matching forward and backward states

Forward and backward states are matched together to form complete paths from vertex 1 to vertex n. When matching
a forward path (Sfw, �fw, P fw, i) with a backward path (Sbw, �bw, P bw, j) the feasibility conditions are the following:{

Sfw
k + Sbw

k �1 ∀ k ∈ N,

�fw + si + tij + sj + �bw �T

and the overall profit of the resulting path is P = P fw + pi/2 + pj/2 + P bw.

4. Decremental state space relaxation

State space relaxation (SSR) was introduced by Christofides et al. [19] to reduce the number of states to be explored;
with SSR the search space explored by DP is projected onto a lower dimensional space so that only the minimum cost
state is retained among all the corresponding states in the higher dimensional space. The main drawback of this method
is that some original state corresponding to an infeasible solution may be projected onto a state corresponding to a
feasible solution in the lower dimensional space. Therefore the search in the lower dimensional state space does not
guarantee to find an optimal solution but rather a dual bound. In the case of OPTW we apply state space relaxation to
the binary vector S, replacing it with the number of visited vertices

� =
∑

i∈NSi ,

which is constrained to be less than or equal to n to prevent unboundedness. In this way we neglect the information on
the vertices already visited and this results in an algorithm where cycles are no longer forbidden. The dominance test
between two labels L1 and L2 now results as follows:⎧⎪⎨

⎪⎩
�1 ��2,

�1 ��2,

P1 �P2.

In Righini and Salani [2] the authors introduced DSSR, with the idea of iteratively reducing the relaxation of the
state space as needed, according to the structure of the optimal solution of the relaxed problem. Boland et al. [1]
independently proposed the same idea, calling it state space augmenting algorithm. In both cases the idea is to start
with a relaxation of the whole state space induced by the set of binary variables S and to tighten this relaxation at each
iteration as long as the DP algorithm returns an optimal path with cycles. Let us define � as the critical vertex set,
that is the set of vertices for which the elementary path constraint is enforced, forbidding multiple visits. The set �
is initially empty, that is the path can visit all vertices more than once. If the optimal solution of this relaxed problem
is feasible, then it is also optimal for the original problem; otherwise some vertices are identified as critical, they are
inserted into �, thus augmenting the search space of the DP algorithm. The loop is repeated until the optimal solution
of the relaxed problem turns out to be elementary. Every time � is enlarged, the number of dummy resources (i.e. the
number of components of vector S) increases. In turn this increases the number of states that DP must consider and
requires additional memory space and computing time.

Author's personal copy

G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203 1195

In their paper [1] Boland et al. compared different ways of inserting new vertices into the critical vertex set. The
main strategies they took into account are the following:

• HMO: insert one vertex at a time, selecting the vertex visited the largest number of times. In case of ex aequo, choose
one at random;

• HMO-All: insert all vertices visited the maximum number of times;
• MO-All: insert all vertices visited more than once in an optimal path; this is also the strategy used by Righini and

Salani [2];
• M-All: insert all vertices visited more than once in any Pareto-optimal path; we did not consider this strategy because

our bi-directional algorithm does not generate all the Pareto-optimal paths at the final vertex.

In this paper we use the same notation introduced in [1] and we compare the first three strategies above.

4.1. Primal solutions

At each iteration of the DSSR algorithm we solve a relaxation of the original problem, which yields an upper bound
to the optimal solution. Given a feasible solution of the relaxed problem, we compute a feasible solution for the original
problem by skipping all the vertices that are visited more than once. The feasibility with respect to the time window
constraints is guaranteed owing to the triangular inequality: skipping vertices can only reduce the traveling time. More
sophisticated primal solutions can be computed from the solution of the relaxed problem but this goes beyond the
scope of this work. This heuristic gives us a benchmark to evaluate an optimality gap at each iteration of the DSSR
algorithm.

4.2. Data-sets

We tested our algorithms on two classes of instances obtained from the well-known Solomon’s data-set of VRPTW
instances and from instances proposed by Cordeau et al. [13] for the Multi-Depot Periodic Vehicle Routing Problem
(MDPVRP). The first data-set, composed by 29 instances, has been made by considering the first 100 vertices of
Solomon’s instances. Depending on the displacement of the customers, this data-set is divided into random, clustered
and random–clustered categories. Instances belonging to the same category have the customers located in the same way
and with the same demands; they differ only for the time windows. The other data-set has been derived from Cordeau’s
20 instances data-set, considering all customers active in the same day. We considered the delivery demand associated
with vertex i in the original data-set as the prize pi for that vertex. Cordeau’s instances are definitely harder than those
of Solomon: in this data-set there are up to 288 customers and the time windows are larger. Optimal solutions of the
Solomon’s instances contain 9–13 customers, while the largest optimal solutions we could solve in Cordeau’s data-set
contain 31 vertices.

Other authors solved the OP (or equivalently the resource constrained shortest path problem), testing their algorithms
on particular data-sets. For instance, Boland et al. [1] evaluated their algorithms for the OP with capacities and no time
windows on data-sets made of randomly generated graphs with varying size, density and number of negative cost
arcs. We did not make additional experiments using these particular data-sets for two main reasons: first, because the
problem considered is different and hence a meaningful comparison with the results reported in [1] would not have
been possible even if we had used the same instances; second, because the main purpose of this paper is not to compete
with other exact approaches for the solution of the OPTW, but rather to illustrate the effectiveness of some algorithmic
ideas, and this can be clearly appreciated from the results obtained with the well-known data-sets we have used, as
reported in the remainder.

4.3. Experimental results

All tests were performed on a PC equipped with a Pentium IV 1.6 GHz processor with 512 MB RAM. The algorithms
were coded in ANSI-C and compiled with gcc 3.0.4 and were run with a time limit of 2 h.

Tables 1 and 2 report on the experimental comparison between the three DSSR algorithms and the basic DP algorithm
described in Section 3. The first three columns report the instance name, the optimal solution, and the number of vertices

Author's personal copy

1196 G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203

Table 1
Solomons’s instances–100 vertices

Instance name Optimum DSSR HMO DSSR HMO-All DSSR MO-All Basic D.P.

Value Vert. It. � Time (%) It. � Time (%) It. � Time (%) Time

c101_100 320 10 1 0 0.07 0.0 1 0 0.06 0.0 1 0 0.06 0.0 0.14
c102_100 360 11 4 3 5.33 0.0 3 3 3.81 0.0 3 3 4.49 0.0 –
c103_100 400 11 9 8 1081.04 0.0 8 9 1393.38 0.0 6 9 1101.74 0.0 –
c104_100 420 11 9 8 2141.38 0.0 7 8 1856.39 0.0 6 9 2166.79 0.0 –
c105_100 340 10 1 0 0.12 0.0 1 0 0.13 0.0 1 0 0.12 0.0 0.3
c106_100 340 10 1 0 0.14 0.0 1 0 0.15 0.0 1 0 0.15 0.0 0.39
c107_100 370 11 1 0 0.20 0.0 1 0 0.20 0.0 1 0 0.20 0.0 0.51
c108_100 370 11 4 3 1.43 0.0 4 4 1.47 0.0 4 4 1.46 0.0 0.93
c109_100 380 11 12 11 14.01 0.0 8 13 10.65 0.0 8 13 10.57 0.0 11.67

r101_100 198 9 1 0 0.04 0.0 1 0 0.03 0.0 1 0 0.04 0.0 0.08
r102_100 286 11 7 6 233.20 0.0 7 7 260.04 0.0 5 8 310.79 0.0 –
r103_100 293 11 10 9 5498.81 0.0 – – – 0.3 7 10 5729.01 0.0 –
r104_100 303 13 – – – 2.5 – – – 2.5 – – – 2.5 –
r105_100 247 11 3 2 0.35 0.0 2 3 0.23 0.0 2 3 0.23 0.0 0.24
r106_100 293 11 8 7 579.44 0.0 8 8 634.89 0.0 5 8 334.49 0.0 –
r107_100 299 13 9 8 2979.94 0.0 9 10 3483.73 0.0 6 11 3514.80 0.0 –
r108_100 308 13 – – – 16.8 – – – 2.5 – – – 2.5 –
r109_100 277 12 11 10 6.87 0.0 6 9 3.63 0.0 5 9 3.09 0.0 1.67
r110_100 284 13 10 9 78.52 0.0 7 10 72.27 0.0 4 9 30.83 0.0 79.05
r111_100 297 12 11 10 1932.55 0.0 9 10 1807.86 0.0 7 12 1408.80 0.0 –
r112_100 298 12 12 11 2624.42 0.0 9 11 2508.17 0.0 7 14 3177.02 0.0 –

rc101_100 219 9 4 3 0.31 0.0 3 3 0.24 0.0 3 3 0.23 0.0 0.14
rc102_100 266 10 8 7 6.11 0.0 8 9 8.68 0.0 6 11 9.88 0.0 12.75
rc103_100 266 10 14 13 88.12 0.0 12 14 99.25 0.0 9 18 111.44 0.0 401.34
rc104_100 301 11 12 11 304.42 0.0 11 11 268.63 0.0 7 16 264.84 0.0 –
rc105_100 244 11 8 7 2.86 0.0 8 9 3.08 0.0 7 10 2.95 0.0 1.93
rc106_100 252 11 11 10 3.64 0.0 7 10 2.24 0.0 6 13 2.08 0.0 0.90
rc107_100 277 10 14 13 50.76 0.0 14 13 50.82 0.0 10 19 49.19 0.0 59.16
rc108_100 298 11 10 9 77.77 0.0 9 10 71.10 0.0 7 14 68.95 0.0 959.45

Average 7.59 6.59 1107.31 0.66 (27) 6.31 7.08 1177.28 0.18 (26) 5.00 8.37 1127.73 0.17 (27) 3032.05 (17)

Table 2
Cordeau’s instances

Instance name Optimum DSSR HMO DSSR HMO-All DSSR MO-All Basic D.P.

Value Vert. It. � Time (%) It. � Time (%) It. � Time (%) Time

pr01_48 308 21 13 12 3.79 0.0 10 12 2.93 0.0 4 15 1.19 0.0 0.70
pr02_96 404 24 22 21 101.78 0.0 13 23 68.75 0.0 6 24 37.52 0.0 30.70
pr03_144 394 22 26 25 442.45 0.0 19 27 318.79 0.0 8 38 151.73 0.0 265.72
pr04_192 489 24 38 37 3152.74 0.0 20 39 1639.49 0.0 7 40 648.82 0.0 1084.80
pr05_240 595 31 – – – 12.2 – – – 9.3 7 40 6815.82 0.0 –
pr06_288 (501) (26) – – – 29.7 – – – 47.9 – – – 45.1 –
pr07_72 298 17 21 20 12.13 0.0 12 22 6.85 0.0 6 21 3.65 0.0 1.51
pr08_144 463 25 25 24 338.25 0.0 11 25 131.94 0.0 6 31 90.71 0.0 128.60
pr09_216 493 29 – – – 3.3 17 26 3988.45 0.0 8 36 3270.88 0.0 –
pr10_288 (584) (32) – – – 37.3 – – – 11.0 – – – 1.0 –

Average 24.17 23.17 3285.11 8.25 (6) 14.57 24.86 2775.72 6.82 (7) 6.50 30.63 2542.03 4.61 (8) 3031.20 (6)

Author's personal copy

G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203 1197

in the optimal solution. If the optimal value is not known, the best known solution is reported within parentheses. Next,
for the three strategies, we report the number of iterations required, the number of vertices added to the critical set �,
the computing time in seconds, and the percentage gap between the best known solution and the lower bound obtained
in the last iteration within the time limit.

The last column reports the computing time required by the basic DP algorithm. Empty cells in the “Time” column
mean that the corresponding instances were not solved to optimality within the time limit. The last two rows report
the average values and, within parentheses, the number of instances solved within the time limit. The average values
for iterations and number of critical vertices have been computed over the number of solved instances. On the other
hand the average values for computing times and gaps have been computed over the whole set of instances setting the
computing time of the unsolved instances equal to the time limit.

The basic DP algorithm solved only 17 of the 29 Solomon’s instances with 100 vertices, while DSSR allowed
to solve 27 of them; none of the proposed algorithms solved instances R104_100 and R108_100 within 2 h, but the
smallest gaps for the unsolved instances were obtained by DSSR MO-All. Cordeau’s instances are harder to solve:
all algorithms failed to provide reasonable solutions for instances pr11 to pr20 which are not reported here. On
Cordeau’s data-set DSSR MO-All dominated the other DSSR strategies with the only exception of instance pr06,
which is the most difficult one reported here. In this case the HMO policy achieved the best result with a gap as large
as 29.7%.

From the examination of the tables we can observe some regularity in the effects produced by the different DSSR
methods. The HMO policy always provides the smallest critical vertex set, as it is a conservative approach: it inserts
only one critical vertex at each iteration, thus reducing the redundancy of the critical set. The drawback is that it always
needs a number of iterations equal to the size of the final critical set plus one. The MO-All strategy behaves in a
complementary way: it constantly requires the smallest number of iterations but it tends to add useless vertices to the
critical set, so that the size of the critical set is larger, in average, than that obtained with the HMO policy. For Cordeau’s
data-set this difference is particularly evident: the HMO strategy required, in average, 24.17 iterations compared to
6.50 required by the MO-All strategy. There is a trade-off between the increase in the number of iterations and the
increase in the cardinality of the critical set, and in general there is no clear domination between policies HMO and
MO-All. We observe that HMO-All was almost always dominated either by MO-All or by HMO.

In their experiments, made on different randomly generated data-sets, Boland et al. [1] observed that the most
conservative strategy HMO always dominated the others. This was not the case in our experiments: in particular HMO
was never the best strategy on any instance of Cordeau’s data-set.

In the next section we propose some new ideas to initialize the critical vertex set in order to reduce the number of
iterations and the computing time needed by DSSR algorithms.

5. Initialization of the critical vertex set

We observed that the DSSR HMO strategy reduces the number of critical vertices and increases the number of
iterations needed, while the DSSR MO-All strategy reduces the number of iterations against an increase of the number
of critical vertices. We investigated how to initialize the set � in a preprocessing phase, to identify a subset of
vertices that have a high probability to belong to the final critical vertex set. Let us define fij to be a measure of the
“cycling attractiveness” of a vertex i with respect to a vertex j as the ratio of the prize pi over the duration of the
cycle i–j–i:

fij = pi/(si + tij + sj + tj i).

Now we can define an ordering of the vertices based on the following criteria:

• Highest cycling attractiveness (HCA): order by maxj∈N\{i}{fij }.
• Total cycling attractiveness (TCA): order by

∑
j∈N\{i}fij .

• Weighted highest cycling attractiveness (WHCA): order by maxj∈N\{i}{fij (bi − ai)}.

Author's personal copy

1198 G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203

• Weighted total cycling attractiveness (WTCA): order by
∑

j∈N\{i}fij (bi − ai).

5.1. Experimental results

Tables 3–6 report on the average computational results obtained applying the four initialization strategies to Solomon’s
instances with 100 vertices (Tables 3 and 4) and Cordeau’s instances (Tables 5 and 6). For Solomon’s data-set we reported
averages for each different distribution of customers (C, R, and RC classes). From the examination of the number of
vertices in optimal solutions we chose to initialize the critical vertex set with five and 10 vertices. The last row reports
also the percentage speed-up on the computing time. We performed our experiments using HMO and MO-All policies,
because in the previous tests HMO-All was dominated by one of them in most cases.

We can observe that an initialization of the critical vertex set is useful, because it reduces the overall computing
time as well as the size of the final critical set. For Solomon’s instances and the HMO policy (Table 3) we could not
observe a reduction on the size of the critical set, because the most conservative approach usually finds a minimum
critical set. Therefore even with a smart initialization we can expect only a reduction of the number of iterations. This
consideration arises clearly analyzing the average values: except the TCA method initialized with five vertices all other
methods performed worse in term of average computational time and average size of the critical vertex set while the
number of iterations decreased.

For Solomon’s data-set and the MO-All policy (Table 4) we could observe a reduction on both the computing time
and the size of the critical set. As pointed out in the previous section this policy tends to include in the critical set
some vertices which are not needed to compute an elementary path. This undesired behavior is mitigated when the
initialization is used.

A general consideration we can derive from the tables concerning Solomon’s data-set is that an initialization with
five critical vertices can be useful to reduce the computational time. The proposed methods were not able to discover
a good initial critical set with 10 vertices.

For Courdeau’s instances, where the average length of the optimal path is usually twice with respect to Solomon’s
instances, the initialization with 10 vertices gave better results. For all instances solved with the HMO policy we could
observe a relevant reduction of the number of iterations and of the computational time.

For the MO-All policy, which outperformed HMO without initialization, we observed only negligible improvements
in some cases and in general we can conclude that the initialization with 10 vertices performed better.

5.2. Mixed strategy

In general the initialization criteria give different results and none of them is reliable to reveal the necessary vertices
to be put in the critical set. Therefore we devised a mixed strategy (MSm) to initialize the critical vertex set: let us
define HCAm, TCAm, WHCAm and WTCAm to be the sets obtained according to the above criteria considering only
the former m vertices in the correspondent ordering. Now we use as an initial critical vertex set the one obtained from
the intersection of these four sets: �m = HCAm ∩ TCAm ∩ WHCAm ∩ WTCAm. By a suitable choice of the value of m
the set �m can be initialized with the aim of reducing the number of iterations (high m) or reducing the probability of
inserting unnecessary vertices (low m) into it.

5.3. Experimental results

Tables 7 and 8 report on the computational results obtained by MSm on Solomon’s and Cordeau’s data-sets with
strategies HMO and MO-All. From the examination of the number of vertices in the optimal solutions (reported in
Tables 2 and 3) we chose m = 10 and 20. The format of Tables 7 and 8 is the same of Tables 1 and 2 but an additional
column reports on the number of vertices inserted into the critical set in the initialization phase. The last row reports
also the percentage speed-up achieved.

The critical set initialization with the mixed strategy definitely improved the performance of both HMO and MO-All
algorithms. Remarkably all the instances were solved within the time limit. Both algorithms needed fewer iterations to
converge to an elementary solution.

Author's personal copy
G

.R
ighini,M

.Salani/C
om

puters
&

O
perations

R
esearch

36
(2009)

1191
–

1203
1199

Table 3
Solomon’s instances—100 vertices—DSSR HMO

Instance set DSSR w/o initialization DSSR tca 5 DSSR tca 10 DSSR hca 5 DSSR hca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%)

C Class (9) 4.7 3.7 360.4 0.0 (9) 2.7 6.7 349.9 0.0 (9) 1.8 10.8 1089.3 0.0 (9) 3.4 7.4 688.2 0.0 (9) 2.3 11.3 555.8 0.0 (9)

R Class (12) 8.2 7.2 2361.2 1.6 (10) 4.4 8.4 2156.7 0.4 (10) 2.9 11.9 2472.2 1.6 (10) 4.7 8.7 2212.7 0.4 (10) 3.6 12.6 2364.3 1.6 (10)

RC Class (8) 10.1 9.1 66.7 0.0 (8) 6.6 10.6 58.6 0.0 (8) 4.3 13.3 65.3 0.0 (8) 6.3 10.3 37.1 0.0 (8) 4.5 13.5 34.5 0.0 (8)

Average (29) 7.6 6.6 1107.3 0.7 (27) 4.5 8.5 1017.2 0.2 (27) 2.9 11.9 1379.1 0.7 (27) 4.7 8.7 1139.4 0.2 (27) 3.4 12.4 1160.3 0.7 (27)

Speed up (%) 8.1 −24.5 −2.9 −4.8

Instance set DSSR w/o initialization DSSR wtca 5 DSSR wtca 10 DSSR whca 5 DSSR whca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%)

C Class (9) 4.7 3.7 360.4 0.0 (9) 2.7 6.7 624.4 0.0 (9) 1.6 10.6 1158.7 0.0 (8) 2.8 6.8 611.3 0.0 (9) 1.6 10.6 1058.7 0.0 (8)

R Class (12) 8.2 7.2 2361.2 1.6 (10) 4.8 8.8 2268.6 1.6 (10) 3.3 12.3 2533.8 1.6 (10) 4.7 8.7 2260.1 0.4 (10) 3.2 12.2 2516.6 1.6 (10)

RC Class (8) 10.1 9.1 66.7 0.0 (8) 6.8 10.8 74.1 0.0 (8) 4.5 13.5 121.3 0.0 (8) 6.4 10.4 54.2 0.0 (8) 4.5 13.5 62.6 0.0 (8)

Average (29) 7.6 6.6 1107.3 0.7 (27) 4.7 8.7 1152.9 0.7 (27) 3.2 12.2 1441.5 0.7 (26) 4.6 8.6 1139.9 0.2 (27) 3.1 12.1 1387.2 0.7 (26)

Speed up(%) −4.1 −30.2 −2.9 −25.3

Table 4
Solomon’s instances—100 vertices—DSSR MO-All

Instance set DSSR w/o initialization DSSR tca 5 DSSR tca 10 DSSR hca 5 DSSR hca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%)

C Class (9) 3.4 4.2 365.1 0.0 (9) 2.3 7.0 405.3 0.0 (9) 1.7 10.8 1087.6 0.0 (9) 2.8 7.8 610.7 0.0 (9) 1.9 11.4 456.5 0.0 (9)
R Class (12) 4.9 8.4 2409.1 0.4 (10) 3.0 8.8 1988.6 0.4 (10) 2.4 12.1 2316.5 0.4 (10) 3.0 9.0 1857.3 0.4 10) 2.6 12.7 2179.4 0.4 (10)
RC Class (8) 6.9 13.0 63.7 0.0 (8) 4.9 12.4 66.9 0.0 (8) 3.4 14.6 85.1 0.0 (8) 4.9 13.1 48.3 0.0 (8) 3.8 15.1 40.6 0.0 (8)
Average (29) 5.0 8.4 1127.7 0.2 (27) 3.3 9.3 967.1 0.2 (27) 2.4 12.4 1319.5 0.2 (27) 3.5 9.8 971.4 0.2 (27) 2.7 13.0 1054.7 0.2 (27)

Speed up (%) 14.2 −17.0 13.9 6.5

Instance set DSSR w/o initialization DSSR wtca 5 DSSR wtca 10 DSSR whca 5 DSSR whca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time(s) (%) It. � Time (s) (%)

C Class (9) 3.4 4.2 365.1 0.0 (9) 2.3 7.0 629.8 0.0 (9) 1.5 10.6 1158.9 0.0 (8) 2.3 7.0 444.1 0.0 (9) 1.5 10.6 1058.9 0.0 (8)
R Class (12) 4.9 8.4 2409.1 0.4 (10) 2.9 9.2 2044.1 0.4 (10) 2.3 12.5 2197.2 0.4 (10) 3.0 9.1 2084.0 0.4 (10) 2.2 12.5 2212.7 0.4 (10)
RC Class (8) 6.9 13.0 63.7 0.0 (8) 4.9 12.4 71.0 0.0 (8) 3.8 15.0 141.8 0.0 (8) 5.0 12.4 105.9 0.0 (8) 3.8 14.9 100.9 0.0 (8)
Average (29) 5.0 8.4 1127.7 0.2 (27) 3.3 9.4 1060.9 0.2 (27) 2.5 12.7 1307.9 0.2 (26) 3.4 9.4 1029.4 0.2 (27) 2.5 12.7 1272.1 0.2 (26)

Speed up (%) 5.9 −16.0 8.7 −12.8

Author's personal copy
1200

G
.R

ighini,M
.Salani/C

om
puters

&
O

perations
R

esearch
36

(2009)
1191

–
1203

Table 5
Cordeau’s instances—DSSR HMO

DSSR w/o initialization DSSR tca 5 DSSR tca 10 DSSR hca 5 DSSR hca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%)

Average (10) 24.2 23.2 3285.1 8.3 (6) 20.6 24.6 3204.6 7.9 (7) 16.0 25.0 3241.0 4.2 (6) 19.9 23.9 3039.8 7.9 (7) 15.4 24.4 3019.5 7.9 (7)

Speed-up (%) 2.45 1.34 7.47 8.09

DSSR w/o initialization DSSR wtca 5 DSSR wtca 10 DSSR whca 5 DSSR whca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%)

Average (10) 24.2 23.2 3285.1 8.3 (6) 20.6 24.6 3153.1 7.9 (7) 17.4 26.4 3160.4 7.9 (7) 19.9 23.9 3035.4 7.9 (7) 16.1 25.1 2985.7 7.9 (7)

Speed-up (%) 4.02 3.80 7.60 9.11

Table 6
Cordeau’s instances—DSSR MO-All

DSSR w/o initialization DSSR tca 5 DSSR tca 10 DSSR hca 5 DSSR hca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%)

Average (10) 6.5 30.6 2542.0 4.6 (8) 6.3 28.7 2544.3 5.8 (7) 5.9 31.8 2615.9 4.0 (8) 6.4 28.0 2491.9 5.8 (7) 5.6 29.0 2336.3 4.0 (8)

Speed-up (%) −0.09 −2.90 1.97 8.09

DSSR w/o initialization DSSR wtca 5 DSSR wtca 10 DSSR whca 5 DSSR whca 10

It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%) It. � Time (s) (%)

Average (10) 6.5 30.6 2542.0 4.6 (8) 6.0 29.7 2519.1 4.0 (7) 6.0 31.1 2605.4 5.0 (7) 6.3 28.1 2579.4 4.7 (7) 6.0 28.3 2518.9 4.2 (7)

Speed-up (%) 0.90 −2.49 −1.47 0.91

Author's personal copy
G

.R
ighini,M

.Salani/C
om

puters
&

O
perations

R
esearch

36
(2009)

1191
–

1203
1201

Table 7
Solomon’s instances—100 vertices

DSSR HMO w/o initialization MS10 MS20

It. � Time (s) (%) Init It. � Time (s) (%) Init It. � Time (s) (%)

Average 7.59 6.59 1107.31 0.66 (27) 4.21 4.55 7.72 425.96 0.0 (29) 9.38 3.10 11.48 671.72 0.0 (29)

Speed-up (%) 61.53 39.33

DSSR MO-All w/o initialization MS10 MS20

It. � Time (s) (%) Init It. � Time (s) (%) Init It. � Time (s) (%)

Average 5.00 8.37 1127.73 0.17 (27) 4.21 3.28 8.66 432.81 0.0 (29) 9.38 2.72 12.14 708.57 0.0 (29)

Speed-up (%) 61.62 37.17

Table 8
Cordeau’s instances

DSSR HMO w/o initialization MS10 MS20

It. � Time (s) (%) Init It. � Time (s) (%) Init It. � Time (s) (%)

Average 24.17 23.17 3285.11 8.25 (8) 3 21 23.7 3112.60 6.36 (7) 8 16 24 3135.00 9.73 (6)

Speed-up (%) 5.25 4.57

DSSR MO-All w/o initialization MS10 MS20

It. � Time (s) (%) Init It. � Time (s) (%) Init It. � Time (s) (%)

Average 6.50 30.63 2542.03 4.61 (8) 3 6.6 28.6 2517.07 5.76 (7) 8 5.4 25 2379.52 4.04 (8)

Speed-up (%) 0.98 6.39

Author's personal copy

1202 G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203

We also observed that in some difficult cases (most Solomon’s rc instances and Cordeau’s instances) the number of
final critical vertices considered by MO-All algorithm with initialization (m = 10) was less than without initialization:
this means that a smart choice of the initial critical vertices cannot only save computing time in the early iterations of
the DSSR algorithm but it may also have beneficial effects on the final cardinality of � and hence on the computing
time of the last iteration. This is even more remarkable when referred to HMO strategy, which usually produces the
smallest critical sets as shown in Tables 1 and 2. We observed that in some few cases the number of critical vertices at
the end of the HMO algorithm was smaller when the critical set had been initialized.

The initialization with our mixed strategy also yielded a substantial speed-up: for Solomon’s data-set the reduction
of the average computing time of the DSSR MO-All algorithm was 61.62% with MS10 and 37.17% with MS20 and the
reduction of the average computing time for the DSSR HMO algorithm was 61.53% with MS10 and 39.33% with MS20.
The reported speed-up has been computed considering the time limit of 2 h for the unsolved instances. Therefore it is a
lower bound on the real speed-up for those instances. For Cordeau’s data-set the initialization of the critical vertex set
produced a smaller average speed-up: 5.25% with DSSR HMO algorithm and m = 10, and 6.39% with DSSR MO-All
algorithm and m = 20.

As a rule of thumb coming from our experiments, we could observe that the best results were obtained when the
initial cardinality of the critical set was about half the expected number of vertices in an optimal solution. With the
mixed strategy this results is obtained, in average, by setting the parameter m to the expected number of vertices in an
optimal tour.

6. Conclusions

We have presented an exact optimization algorithm for the OPTW based on DSSR and we have compared three
different strategies proposed by Boland et al. to iteratively increase the size of the critical vertex set. The outcome of
our experiments is that there is no domination between the different strategies. In addition, we have proposed a new
heuristic technique for the initialization of the critical vertex set, showing that it significantly reduces the number of
iterations and the amount of computing time needed by the DSSR algorithm to converge to an optimal solution.

Acknowledgments

We acknowledge the useful comments of two anonymous referees. This work has been partially supported by the
Italian Ministry for University and Research—project PRIN 2005 “Routing and packing problems in the optimization
of transportation systems”.

References

[1] Boland N, Dethridge J, Dumitrescu I. Accelerated label setting algorithms for the elementary resource constrained shortest path. Operations
Research Letters 2006;34:58–68.

[2] Righini G, Salani M. New dynamic programming algorithms for the resource constrained elementary shortest path. Networks, in press,
doi:10.1002/net.20212.

[3] Laporte G. The Traveling Salesman Problem: an overview of exact and approximate algorithms. European Journal of Operational Research
1992;59:231–47.

[4] Feillet D, Dejax P, Gendreau M. Traveling Salesman Problems with profits: an overview. Transportation Science 2005;39:188–205.
[5] Tsiligrides T. Heuristic methods applied to orienteering. Journal of the Operational Research Society 1984;35:797–809.
[6] Golden BL, Levy L, Vohra R. The Orienteering Problem. Naval Research Logistics 1987;34:307–18.
[7] Ramesh R, Yong Seok Y, Karwan MH. An optimal algorithm for the orienteering tour problem. ORSA Journal on Computing 1992;4:

155–65.
[8] Fischetti M, Salazar JJ, Toth P. Solving the Orienteering Problem through branch-and-cut. INFORMS Journal on Computing 1998;10:

133–48.
[9] Gendreau M, Laporte G, Semet F. A branch-and-cut algorithm for the undirected selective traveling salesman problem. Networks 1998;32:

263–73.
[10] Kantor MG, Rosenwein MB. The orienteering problem with time windows. Journal of the Operational Research Society 1992;43:629–35.
[11] Bar-Yehuda R, Even G, Shahar S. On approximating a geometric prize-collecting traveling salesman problem with time windows. Lecture

notes in computer science, vol. 2832, Berlin, Springer, 2003, p. 55–66.
[12] Boussier S, Feillet D, Gendreau M. An exact algorithm for the team orienteering problem. 4OR 2007;5:211–30.

Author's personal copy

G. Righini, M. Salani / Computers & Operations Research 36 (2009) 1191–1203 1203

[13] Cordeau JF, Gendreau M, Laporte G. A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks 1997;30:
105–19.

[14] Feillet D, Dejax P, Gendreau M, Gueguen C. An exact algorithm for the elementary shortest path problem with resource constraints: application
to some vehicle routing problems. Networks 2004;44:216–29.

[15] Irnich S, Desaulniers G. Shortest path problems with resource constraints. In: Desaulniers G, Desrosiers J, Solomon MM, editors. Column
generation. US: Springer; 2005. p. 33–65.

[16] Beasley JE, Christofides N. An algorithm for the resource constrained shortest path problem. Networks 1989;19:379–94.
[17] Dumitrescu I, Boland N. Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem. Networks

2003;42:135–53.
[18] Righini G, Salani M. Symmetry helps: bounded bi-directional dynamic programming for the elementary shortest path problem with resource

constraints. Discrete Optimization 2006;3:255–73.
[19] Christofides N, Mingozzi A, Toth P. State-space relaxation procedures for the computation of bounds to routing problems. Networks 1981;11:

145–64.

