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Abstract

When vehicle routing problems with additional constraints, such as capacity or time windows, are solved via column generation
and branch-and-price, it is common that the pricing subproblem requires the computation of a minimum cost constrained path on
a graph with costs on the arcs and prizes on the vertices. A common solution technique for this problem is dynamic programming.
In this paper we illustrate how the basic dynamic programming algorithm can be improved by bounded bi-directional search and
we experimentally evaluate the effectiveness of the enhancement proposed. We consider as benchmark problems the elementary
shortest path problems arising as pricing subproblems in branch-and-price algorithms for the capacitated vehicle routing problem,
the vehicle routing problem with distribution and collection and the capacitated vehicle routing problem with time windows.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Vehicle routing problems require us to compute a set of tours for a fleet of vehicles that must provide a certain
kind of service to a given set of customers. Each vehicle starts from a given depot and goes back to it after visiting a
subset of customers. The objective is to minimize the total distance traveled. The structure of vehicle routing problems
suggests to reformulate them as set covering problems and to apply column generation, because a solution is made
by a set of sub-tours, one for each vehicle of the fleet, which can be computed independently provided that they
cover the set of customers to be visited. A comprehensive treatment of column generation approaches to vehicle
routing problems can be found in [7] and in [5]. In a column generation approach the master problem is a set covering
problem as follows:

minimize
∑
f ∈F

c f z f

subject to
∑
f ∈F

xi f z f ≥ 1 ∀i ∈ N (1)
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−

∑
f ∈F

z f ≥ −V (2)

z f ∈ {0, 1} ∀ f ∈ F (3)

where N is the set of customers, F is the set of feasible vehicle routes, V is the number of available vehicles, c f is
the cost of route f ∈ F and xi f is the number of times route f ∈ F visits customer i ∈ N . The linear relaxation of
this set covering reformulation usually yields very tight lower bounds (see for instance Bramel and Simchi-Levi [4]
and the references therein). However since in general F contains an exponential number of columns, only a subset F ′
is kept in a restricted linear master problem and further feasible routes must be generated on the fly, by the iterated
solution of a pricing problem. The pricing problem consists in finding routes with negative reduced cost or proving
that none exists. The reduced cost of route f ∈ F is:

c f = c f −
∑
i∈N

xi f λi + λ0

where (λ, λ0) is the vector of non-negative dual variables corresponding to constraints (1) and (2) in the restricted
linear master problem. It is common that the routes of the vehicles must satisfy some additional constraints, due for
instance to capacity, precedence constraints or time windows. Such constraints do not modify the structure of the
master problem, but rather they are taken into account in the pricing problem, that is they restrict the set F of feasible
routes.

The kind of pricing problem arising in this context is therefore a shortest path problem with some special
characteristics: first, it is formulated on a graph with costs on the arcs and prizes on the vertices. This is equivalent
to formulating it on a graph with no prizes but with negative cost arcs and possibly negative cost cycles. Therefore
the requisite that the path must be elementary does not come for free from cost minimization but it must be explicitly
enforced. Second, the pricing problem may be subject to a number of additional restrictions, as mentioned above.
These constraints are usually represented as resource constraints, since distances, costs, time, and capacities can
all be interpreted as resources that are consumed every time a vehicle travels along an arc or visits a customer.
Therefore the pricing problem turns out to be a resource constrained elementary shortest path problem (RCESPP).
If the underlying graph may have negative cost cycles, the resource constrained elementary shortest path problem is
strongly NP-hard [9].

The shortest path problem with resource constraints has been addressed with methods based on the Lagrangian
relaxation of the resource constraints; recent results along this research stream are those of Melhorn and
Ziegelmann [13] and Dumitrescu and Boland [10]. Their methods are effective when the Lagrangian subproblem
is a polynomially solvable shortest path problem, that is when arc costs are non-negative. Dumitrescu and Boland [10]
also presented preprocessing and bounding techniques for the RCSPP; although they can be applied to the RCESPP
as well, they are especially effective on graphs without negative cost cycles. The first attempt to solve the RCESPP
on graphs with negative cost cycles via dynamic programming is due to Beasley and Christofides [2]; their idea
was further developed by other authors: see for instance the recent papers by Feillet et al. [11] and Boland, et al.
[3]. For a survey on models and algorithms for the RCSPP and the RCESPP we also refer the reader to Irnich and
Desaulniers [12].

In this paper we consider dynamic programming algorithms for the resource constrained elementary shortest path
problem (RCESPP), following the same approach of Feillet et al. [11] and we suggest and evaluate some ideas to
improve their performance. In particular we consider bi-directional search and its combination with suitable bounds
to reduce the computing time. We present two different uses of bounds, namely for fathoming unpromising states and
for stopping the extension of the non-dominated states. We compare two different ways to achieve this second goal,
namely arc bounding and resource bounding. We also describe how to avoid duplicate columns when the RCESPP
is solved for pricing purposes in branch-and-price algorithms. Computational results show the effectiveness of bi-
directional bounded dynamic programming with respect to the classical mono-directional implementation.

The paper is organized as follows. In Section 2 we provide the definition of the RCESPP and we survey the basic
dynamic programming algorithm for its solution. In particular we consider three variants of the RCESPP arising from
the set covering reformulation of the capacitated vehicle routing problem (CVRP), the vehicle routing problem with
distribution and collection (VRPDC) and the capacitated vehicle routing problem with time windows (CVRPTW).
In Section 3 we illustrate our main ideas to improve the dynamic programming algorithm. In Section 4 we provide
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the results of our computational experiments on instances derived from Solomon’s data-set with up to 100 nodes.
Conclusions are outlined in Section 5.

2. Dynamic programming algorithms for the RCESPP

2.1. Problem definition

The RCESPP is the problem of finding the minimum cost elementary path from a node s to a node t of a given
graph such that the overall amounts of resources consumed do not exceed some given limits; resources are consumed
when visiting nodes or traversing arcs. A graph G(V,A) is given: its vertex set V is made by N vertices representing
customers and two special vertices s and t representing the depot. Let N indicate the set of the customers; hence we
have V = N ∪ {s, t}. A non-negative integer cost ci j is associated with each arc (i, j) ∈ A and these costs satisfy
the triangle inequality. A non-negative prize λi is associated with each vertex i ∈ N and a non-negative cost λ0 is
associated with the depot. A vehicle must go from s to t , visiting a subset of the other vertices; no cycles are allowed.
The objective is to minimize the cost, given by the sum of the costs of the arcs traversed minus the sum of the prizes
collected at the vertices visited.

These definitions of the problem are common to all RCESPP versions arising from the different routing problems
we consider. Additional constraints must be taken into account, depending on the kind of vehicle routing problem at
hand. All these additional constraints are modeled as resource constraints and they will be specified in the remainder.

2.2. Dynamic programming

The basic dynamic programming approach to the RCESPP is based on the algorithm devised by Desrochers et al.
[8] for the RCSPP. It is an extension of the Bellman-Ford algorithm with the addition of resource constraints. The
algorithm assigns states to each vertex: each state of vertex i represents a path from s to i . Each state has an associated
resource consumption vector R and each component of R represents the consumption of a different resource along the
path. Each state has an associated cost C and the optimal solution is given by the minimum cost state associated with
t . Different states associated with the same vertex i correspond to different feasible paths reaching i . Hence states
are represented by a label of the form (R,C, i). The dynamic programming algorithm repeatedly extends states to
generate other states. When a state (R,C, i) is extended to generate another feasible state (R′,C ′, j), the cost and the
resource consumption vector of the new state must be computed and those states for which one or more components
of R′ exceed the available capacity are fathomed. The cost is initialized at 0 at vertex s and it is updated according to
the formula

C ′ = C − λi/2+ ci j − λ j/2

where λi = −λ0 if i = s and λ j = −λ0 if j = t . The resource vector R is initialized and updated according to the
specific problem at hand. In addition dominance rules are applied in order to delete dominated states.

2.3. Resource constraints

Hereafter we consider three different specializations of the resource constraints arising from the CVRP, the VRPDC
and the CVRPTW. We chose these three problems to validate our approach, because they offer a significant mix of
different characteristics of resource types. In the first case there is only one resource, whose consumption depends
on the vertices visited. In the second case there are two resources associated with the vertices visited and they are
interacting: the consumption of one of them also depends on the consumption of the other. In the third case there are
two resources, one associated with the vertices visited and the other associated with the arcs traversed. Resources are
subject to a global constraint on their overall consumption along the s–t path, with the exception of the case with time
windows, where a resource (time) is subject to different local constraints at each vertex.
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Table 1
An example of a path with simultaneous delivery and collection

Node s 1 2 3 4 5 t

p 0 2 4 3 1 1 0
d 0 3 3 2 2 1 0
π 0 2 6 9 10 11 11
δ 0 3 6 9 11 12 12
Load 11 10 11 12 11 11 11

Capacity
In the CVRP a positive integer demand di is associated with each vertex i ∈ N and a positive integer vehicle

capacity Q is given. The sum of the demands of the nodes visited by the same vehicle cannot exceed Q. This constraint
is modeled by one resource, representing the amount of available capacity. Let q be the amount of resource consumed.
When a vehicle leaves vertex s, it is empty, that is q = 0. Every time a vertex i is visited, q is increased by its demand.
Each state is represented by a label (q,C, i), where q is the amount of demand satisfied from s to i (included). Each
time a state is extended along arc (i, j) from a label (q,C, i) to a label (q ′,C ′, j), the resource consumption update
rule is

q ′ = q + d j .

A state (q,C, i) is feasible if and only if q ≤ Q.

Distribution and collection
In the VRPDC each vertex i has two non-negative integer quantities pi and di associated with it, representing

respectively the amount of load to be picked-up and delivered at that vertex. We assume pi + di > 0. Each vehicle
has a positive integer capacity Q, it leaves the depot carrying the total amount of load it must deliver and returns to
the depot carrying the total amount of load it has picked-up. The capacity cannot be exceeded anywhere along the
path. In the corresponding RCESPP the capacity constraint is taken into account by two additional resources, whose
consumption is indicated by π and δ. The first resource at vertex i is the amount of load that the vehicle can pick-up
after visiting i . Its consumption π increases after every pick-up operation, because when the vehicle visits vertex i , it
consumes pi units of this resource. The second resource at node i indicates the amount of load that the vehicle can
deliver after visiting i . Initially Q units are available for this resource and the available resource decreases each time
a delivery operation is performed; however it may decrease also after pick-up operations, since the maximum amount
the vehicle can deliver after visiting i cannot be greater than the maximum amount it can pick-up after visiting i .
Hence both π and δ are initialized at 0 and when a path is extended along arc (i, j) from a state (π, δ,C, i) to a state
(π ′, δ′,C ′, j), the update rule for the resource consumptions π and δ is:

π ′ = π + p j

δ′ = max{δ + d j , π + p j }.

A state (π, δ,C, i) is feasible if and only if π ≤ Q and δ ≤ Q; for the formulae above the latter condition implies the
former. A small example is shown in Table 1.

Capacity and time windows
In the CVRPTW a non-negative integer service time θi and a time window [ai , bi ] are associated with each vertex

i ∈ N and each visited vertex must be reached inside its time window. If the vehicle arrives at i before ai , it waits until
time ai . The traveling time from i to j is indicated by a positive integer datum vi j . The time elapsed is a consumed
resource, monotonically increasing along the path. In the well-known Solomon’s instances, which are commonly
used as benchmarks for routing algorithms, a capacity constraint is also considered as in the CVRP. Hence in the
corresponding RCESPP we need two resources, whose consumption is indicated by τ and q, that are respectively the
time and the capacity consumed up to the beginning of service at each vertex. Both of them are initialized at 0 and
each time a feasible path is extended along arc (i, j) from a state (τ, q,C, i) to a state (τ ′, q ′,C ′, j) the update rules
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for τ and q are:

τ ′ = max{τ + θi + vi j , a j }

q ′ = q + d j .

A state (τ, q,C, i) is feasible if and only if τ ≤ bi and q ≤ Q.

2.4. Elementary path constraints

The dynamic programming algorithm described above solves the RCSPP with pseudo-polynomial worst-case time
complexity. The same algorithm can be used to solve the RCESPP, where feasible paths are not allowed to contain
cycles. For this purpose Beasley and Christofides [2] proposed to add to the state an additional binary resource for each
vertex i ∈ N . There is only one unit available for each dummy resource and it is consumed when the corresponding
vertex is visited. Hence we consider N resources, whose consumption is indicated by a vector S initialized at 0. When
a feasible path is extended along arc (i, j) from a state (S, R,C, i) to a state (S′, R′,C ′, j), the update rule for S is

S′k =

{
Sk + 1, k = j
Sk, k 6= j.

A state (S, R,C, i) corresponds to an elementary path if and only if Sk ≤ 1 ∀k ∈ N . Note that S does not keep any
information about the order in which the vertices are visited.

2.5. Dominance tests

The effectiveness of the dynamic programming algorithm outlined above heavily relies upon the possibility of
fathoming feasible states that cannot lead to an optimal solution. For this purpose suitable dominance tests are always
performed when states are extended, so that the algorithm only records non-dominated states. Each state is represented
by a label, that is a tuple (S, R,C, i), where S is a vector indicating the vertices already visited, R is a vector indicating
the consumption of resources, C is the cost and i is the last reached vertex. The dominance test between two states,
or labels, is the following. Let (S1, R1,C1, i) and (S2, R2,C2, i) be the labels of two states associated with vertex i .
Then the former dominates the latter if

S1 ≤ S2

R1 ≤ R2

C1 ≤ C2

and at least one of the inequalities is strict.
Extended states are not deleted, because they can be useful to dominate other states not yet generated. This implies

to keep all non-dominated states in memory, but allows one to recognize dominations earlier than they would be if
extended states were canceled. From our experiments on this trade-off we concluded that keeping all non-dominated
states yields better results in terms of computing time and memory occupation.

Dealing with the RCESPP arising as a pricing subproblem in branch-and-price algorithms for the VRPTW, Feillet
et al. [11] observed that it is sometimes possible to identify vertices that cannot be visited in any feasible extension
of a given state because of the resource limitations. These vertices are called unreachable. It is useful to set the
consumption of the dummy resources corresponding to the unreachable vertices to 1, as if they had already been
visited. This enhancement allows the dynamic programming algorithm to fathom a larger number of states and to
reduce the computation time.

This method can be applied to all three versions of the RCESPP considered here. Demands are associated to
the vertices and therefore they obviously satisfy the triangle inequality. In Solomon’s instances we used for our
experiments the cost of each arc is equal to the traveling time between the two endpoints, that is vi j = ci j . Hence
capacity and time consumptions are positive and satisfy the triangle inequality.

In the case of multiple resources, as for the problem with distribution and collection and the problem with capacity
and time windows, all of them are used to identify unreachable vertices.
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In Algorithm 1 we report the dynamic programming algorithm of Feillet et al. [11]. The notation we use is the
following: for each vertex i ∈ V , we indicate with Γi the set of labels associated with the vertex, with Γ i ⊆ Γi the
subset of labels not extended so far and with ∆+i the set of successors of i . E is the set of vertices to be examined;
Extend(l, k) is the extension procedure: it extends the state l specified as a first argument to a vertex k specified as a
second argument; this procedure checks the resource constraints and produces only feasible states; it also recognizes
and marks unreachable nodes as described by Feillet et al. [11]. Finally EFF(Γ , l) is the procedure that inserts state l
into set Γ applying the domination rules.

Algorithm 1 RCESPP — Mono-directional dynamic programming
// Initialization //
Γs ← {(0, 0, 0, s)}
for all i ∈ V \ {s} do

Γi ← ∅

end for
E ← {s}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Extension //
for all li = (Si , Ri ,C i , i) ∈ Γ i do

for all j ∈ ∆+i such that Si
j = 0 do

l j ← Extend(li , j)
Γ j ← EFF(Γ j , l j )

if Γ j 6= ∅ then
E ← E ∪ { j}

end if
end for

end for
E ← E \ {i}

until E = ∅

3. Bounded bi-directional dynamic programming

The dynamic programming algorithm outlined in the previous section generates a number of states rapidly
increasing with the size of the problem instance at hand. Every time a label of vertex i is extended, it generates
as many other labels as the number of possible successors of i . Therefore in the worst case the number of labels grows
exponentially with the number of arcs in the path. States are fathomed only when they are dominated.

We propose here two ideas that work well together: bi-directional dynamic programming and bounding. Bi-
directional dynamic programming has been sometimes considered as a useful technique to speed up Dijkstra’s
algorithm for the computation of an s–t shortest path on a digraph with non-negative arc weights [1]. In the RCESPP,
when labels are propagated both forward from s to t and backward from t to s, the algorithm must examine two
subsets of states, whose size grows exponentially with the number of arcs in the corresponding forward and backward
paths. Due to the exponential dependence on the number of steps, it is intuitive that generating shorter paths may yield
a significant advantage in terms of number of states considered, provided that duplicate solutions are avoided. This
is precisely the effect of bounding, whose purpose is to limit the length of the paths corresponding to non-dominated
states. Hereafter we formally define our bounded bi-directional dynamic programming algorithm.

3.1. Bi-directional search

In bi-directional search states are extended both forward from vertex s to its successors and backward from vertex
t to its predecessors. States, recurrence equations and domination rules are symmetrical to those presented above.
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We use Γ fw
i and Γ bw

i to indicate the sets of forward and backward labels associated with vertex i . A path from s to

t is detected each time a forward state in Γ fw
i and a backward state in Γ bw

j can be feasibly joined through arc (i, j).
The cost of backward labels is initialized at 0 at vertex t and whenever a backward state (S, R,C, j) is extended

to a state (S′, R′,C ′, i) the cost is updated according to the formula:

C ′ = C − λi/2+ ci j − λ j/2

where λi = −λ0 if i = s and λ j = −λ0 if j = t .

Forward and backward paths must be joined together to produce complete s–t paths. Let (S1, R1,C1, i) ∈ Γ fw
i be

a forward path and (S2, R2,C2, j) ∈ Γ bw
j be a backward path. When they are joined, the cost of the resulting s–t path

is C1 − λi/2+ ci j − λ j/2+ C2.
The two paths can be joined subject to certain feasibility conditions on the resources. A feasibility test on dummy

resources S imposes that a same vertex cannot be visited by both paths, that is

S1 + S2 ≤ 1 ∀k ∈ N .

In addition feasibility tests on problem-dependent resources represented by vector R impose that for each resource
the consumption in the overall path does not exceed the overall amount of available resource. Hereafter we define the
feasibility tests for each specific case considered.

Capacity
The resource consumption qbw in a backward state associated with vertex j represents the amount of demand of

customers visited from j (included) to t . Therefore a label (S, q,C, j) ∈ Γ bw
j corresponds to an elementary backward

path of cost C , originating at j , terminating at t , visiting the vertices indicated by S and consuming q units of capacity.
Initialization and extension of backward labels follow the same rules of forward labels.

The feasibility test on the capacity for joining a forward path (S1, q1,C1, i) with a backward path (S2, q2,C2, j)
is

q1 + q2 ≤ Q.

Distribution and collection

Two resources, whose consumption is indicated by π and δ, are associated with each backward state. Their
meaning, initialization and extension rules are symmetrical to those of forward labels: δ indicates the amount of
load delivered between j and t and π indicates the maximum overall amount of load on board of the vehicle between
j and t . When a backward path is extended along arc (i, j) from a state (S, π, δ,C, j) to a state (S′, π ′, δ′,C ′, i), the
update rule is:

π ′ = max{δ + di , π + pi }

δ′ = δ + di .

A backward path is feasible if and only if π ≤ Q and δ ≤ Q.
The feasibility conditions to join a forward path (S1, π1, δ1,C1, i) with a backward path (S2, π2, δ2,C2, j)

are:

π1 + π2 ≤ Q

δ1 + δ2 ≤ Q.

Capacity and time windows

In the case of time windows it is useful to define forward and backward time windows [a fw
i , b fw

i ] and [abw
i , bbw

i ]

as follows:

a fw
i = ai

b fw
i = bi
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abw
i = ai + θi

bbw
i = bi + θi .

The forward time window represents the range of feasible arrival times at vertex i , while the backward time window
represents the range of feasible departure times from vertex i . The overall resource availability T is equal to the
maximum feasible arrival time at vertex t , that is T = maxi∈V {b

fw
i + θi + vi t }.

The time resource consumption τ in a backward path associated with vertex j represents the time between the
departure from j and the arrival at t . The capacity, whose consumption in backward states is indicated by q, follows
the same rules as in the RCESPP arising from the CVRP.

When a feasible backward path is extended along arc (i, j) from a state (S, τ, q,C, j) to a state (S′, τ ′, q ′,C ′, i),
the update rules are:

τ ′ = max{τ + θ j + vi j , T − bbw
i }

q ′ = q + di .

A backward path (S, τ, q,C, j) ∈ Γ bw
j is feasible if and only if τ ≤ T − abw

j and q ≤ Q.
The feasibility conditions to join a forward path (S1, τ1, q1,C1, i) with a backward path (S2, τ2, q2,C2, j) are:

τ1 + θi + vi j + θ j + τ2 ≤ T

q1 + q2 ≤ Q.

3.2. Search strategy

The set of states generated by the dynamic programming algorithm can be explored according to different search
strategies, and the order in which the states are extended may be very important for the effectiveness of the overall
algorithm. In label-correcting algorithms, like those of Desrosiers et al. [8] and Feillet et al. [11], states are explored
according to the vertices they are associated with. All vertices are cyclically visited and for each vertex the algorithm
extends all states that have not yet been extended. States associated with the same vertex can be sorted according to a
secondary criterion, for instance according to the cost or the consumption of a certain resource.

Label-setting algorithms have been proposed (see for instance Desrochers and Soumis [6]) but they require
a hypothesis stronger than resource consumption monotonicity: in particular there must exist a resource whose
consumption is not less than a certain known amount β at each extension. In this case it is possible to define buckets
of size β and to mark as permanent all those labels for which the resource consumption falls in the range of the first
bucket not yet extended. For a more detailed exposition of label-setting algorithms we refer the reader to [7].

In order to have a more significant comparison with the algorithm of Feillet et al. [11], we developed label-
correcting algorithms, where for each vertex the states are ordered by non-decreasing resource consumption. In the
three cases we have considered, states associated with the same vertex are sorted according to the values of q, π
and τ respectively. When examining a vertex, the bi-directional algorithm extends both forward and backward states
associated with it.

In bi-directional algorithms we keep all non-dominated states in memory, in same way described in Section 2.5 for
the mono-directional algorithm.

In Algorithm 2 we illustrate the bi-directional dynamic programming algorithm. The notation is analogous to the
one used in Algorithm 1. The extension functions recognize and mark unreachable vertices as in the mono-directional
case. Function Join is explained in the remainder.

3.3. Bounding

In our algorithms bounding is used for two different purposes: (i) to recognize and fathom the states that cannot
produce optimal solutions and (ii) to stop the extension of forward and backward paths in order to reduce the number
of states generated, while preserving the guarantee that the optimal solution will be found. Without this latter limitation
the bi-directional algorithm would simply produce twice as many labels, compared to the mono-directional one. The
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Algorithm 2 RCESPP — Bi-directional dynamic programming
// Initialization //
Γ fw

s ← {(0, 0, 0, s)}
Γ bw

t ← {(0, 0, 0, t)}
for all i ∈ V \ {s} do

Γ fw
i ← ∅

end for
for all i ∈ V \ {t} do

Γ bw
i ← ∅

end for
E ← {s, t}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Forward extension //
for all li = (Si , Ri ,C i , i) ∈ Γ

fw
i do

for all j ∈ ∆+i such that Si
j = 0 do

l j ← Extend fw(li , j)

Γ fw
j ← EFF(Γ fw

j , l j )

if Γ
fw
j 6= ∅ then

E ← E ∪ { j}
end if

end for
end for
// Backward extension //
for all li = (Si , Ri ,C i , i) ∈ Γ

bw
i do

for all k ∈ ∆−i such that Si
k = 0 do

lk ← Extendbw(li , k)
Γ bw

k ← EFF(Γ bw
k , lk)

if Γ
bw
k 6= ∅ then

E ← E ∪ {k}
end if

end for
end for
E ← E \ {i}

until E = ∅
// Join between forward and backward paths //
Join

idea is that we can stop extending a path in one direction when we have the guarantee that the remaining part of the
path will be generated in the other direction and therefore no optimal solution will be lost.

Hereafter we first present the bounding technique we use for fathoming unpromising states (Section 3.3.1) and
then two different ways of bounding the paths to stop their extension (Sections 3.3.2 and 3.3.3): one is based on the
number of arcs and another is based on the consumption of a selected resource.

First we introduce the necessary notation. We have so far indicated with S and R the two vectors representing the
vertices visited and the resource consumptions in the labels of the states. Here below we indicate with S the set of
visited vertices corresponding to the binary vector S. LetR be the set of resources and r ∈ R be a generic resource, so
that Rr indicates the amount of resource r consumed by a path reaching vertex i with label (S, R,C, i). Let us indicate
with Ar the overall amount available for each resource r ∈ R. We first consider forward paths and for a given resource
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r we define mr (S, i, j) to be a lower bound to the consumption of resource r when vertex j is added to the forward
path corresponding to (S, R,C, i) for each vertex j 6∈ S. In particular we define mr (S, i, j) = mink 6∈S\{i}{w

r
k j },

where wr
k j is the consumption of resource r when the vehicle traverses arc (k, j) and visits vertex j . We also define

mr (S, i, 0) = mink 6∈S\{i}{w
r
k0}, where index 0 represents depot t . Finally we define u j as an upper bound to the prize

collected when visiting vertex j ∈ N along the path, that is

u j = λ j − min
k 6∈S\{i}

{ck j }

and

u0 = λ0/2− min
k 6∈S\{i}

{ck0}

where 0 represents depot t .
Analogous definitions apply to backward paths: if (S, R,C, i) is the label of a backward path, we define

mr (S, i, j) = mink 6∈S\{i}{w
r
jk} and mr (S, i, 0) = mink 6∈S\{i}{w

r
0k}, where index 0 represents depot s. We also have

u j = λ j − min
k 6∈S\{i}

{c jk}

and

u0 = λ0/2− min
k 6∈S\{i}

{c0k}

where 0 represents depot s.

3.3.1. Bounding for fathoming
For each newly generated non-dominated state (S, R,C, i), we compute an upper bound P to the following

optimization subproblem, in which each variable y j indicates whether node j is visited along the path.

maximize
∑

j∈N \S
u j y j + u0

subject to Rr +
∑

j∈N \S
mr (S, i, j)y j + mr (S, i, 0) ≤ Ar ∀r ∈ R

y j ∈ {0, 1} ∀ j ∈ N \ S.

In particular we consider one constraint (resource) at a time, we solve the linear relaxation of the resulting binary
knapsack problem instance and we keep as P the minimum of the |R| upper bounds obtained in this way. The value P
is an upper bound to the maximum gain (prizes collected minus costs paid) that the vehicle can achieve by completing
the path. Hence the state under examination can be fathomed if C − P ≥ U B, where U B is the incumbent upper
bound, that is the value of a known feasible solution.

3.3.2. Arc bounding
For each state (S, R,C, i) we can compute an upper bound on the number of arcs that can be added to the

corresponding path without exceeding the resource constraints. This is achieved by solving the following multi-
knapsack problem:

maximize
∑

j∈N \S
y j + 1

subject to Rr +
∑

j∈N \S
mr (S, i, j)y j + mr (S, i, 0) ≤ Ar ∀r ∈ R

y j ∈ {0, 1} ∀ j ∈ N \ S.

As before we consider one resource at a time, we optimize the resulting knapsack problem instance (this is done in
polynomial time owing to the particular objective function) and we keep the minimum upper bound obtained. This
gives an upper bound on the maximum number of vertices that can be visited along the path after the last reached
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Table 2
Bi-directional construction of the solution (s, 1, 2, 3, 4, 5, t)

Node s 1 2 3 4 5 t

p 0 2 4 3 1 1 0
d 0 3 3 2 2 1 0

π fw 0 2 6
δ fw 0 3 6
ρ fw 0 5 12

πbw 10 6 3 1 0
δbw 8 5 3 1 0
ρbw 18 11 6 2 0

Table 3
RCESPP with capacity — 50 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c 50 01 30 0.00 30 0.00 30 0.00
c 50 02 104 0.00 121 0.00 104 0.00
c 50 03 311 0.01 433 0.01 277 0.00
c 50 04 885 0.05 1 012 0.06 812 0.03
c 50 05 2 593 0.28 2 864 0.32 1 978 0.04
c 50 06 8 707 2.47 8 304 0.94 8 185 0.57
c 50 07 30 973 26.30 20 512 5.21 10 694 0.78
c 50 08 111 814 287.50 84 142 33.97 43 525 14.99
c 50 09 393 680 3240.86 148 116 96.62 51 467 19.66
c 50 10 504 944 981.46 211 951 298.45

r 50 01 40 0.00 40 0.00 40 0.00
r 50 02 135 0.00 154 0.00 129 0.01
r 50 03 312 0.00 409 0.01 296 0.01
r 50 04 652 0.04 922 0.04 616 0.02
r 50 05 1 345 0.09 1 394 0.09 1 224 0.04
r 50 06 2 868 0.24 2 785 0.20 2 349 0.08
r 50 07 6 296 0.77 5 614 0.64 4 269 0.13
r 50 08 14 226 2.91 11 308 2.14 7 731 0.32
r 50 09 32 561 12.25 25 444 7.85 13 638 0.97
r 50 10 73 456 52.40 58 948 17.79 22 709 2.37

rc 50 01 21 0.00 21 0.00 21 0.00
rc 50 02 87 0.00 76 0.00 87 0.00
rc 50 03 164 0.00 228 0.01 136 0.00
rc 50 04 302 0.01 381 0.01 300 0.01
rc 50 05 511 0.02 666 0.03 421 0.01
rc 50 06 876 0.05 1 011 0.05 865 0.03
rc 50 07 1 331 0.10 1 202 0.08 1 006 0.03
rc 50 08 2 038 0.18 2 009 0.10 1 827 0.08
rc 50 09 3 115 0.35 2 950 0.15 2 026 0.09
rc 50 10 4 846 0.67 4 184 0.22 3 721 0.18

vertex i . If this number is less than |S|, then the path has reached its half-way point and the extension is stopped. The
remaining part of the path will be generated in all possible ways as a set of paths in the other direction, owing to the
bi-directional dynamic programming algorithm.

3.3.3. Resource bounding
Another way to stop the extension of paths is to select a critical resource, whose consumption is monotone along

the paths, and to stop the extension of the states in which at least half of the available amount of that resource has
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Table 4
RCESPP with capacity — 100 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c 100 01 55 0.00 106 0.00 55 0.00
c 100 02 205 0.01 237 0.01 205 0.01
c 100 03 640 0.09 720 0.09 579 0.04
c 100 04 2 136 0.41 2 106 0.38 2 093 0.18
c 100 05 7 056 2.49 5 898 0.78 4 722 0.26
c 100 06 26 135 21.87 24 552 7.50 22 505 4.42
c 100 07 116 247 327.42 60 082 28.44 30 871 5.94
c 100 08 282 184 502.66 171 703 178.04
c 100 09 217 699 226.04
c 100 10

r 100 01 163 0.00 96 0.00 150 0.00
r 100 02 1 076 0.09 1 088 0.05 972 0.05
r 100 03 5 106 1.24 4 962 0.60 4 285 0.41
r 100 04 25 613 19.59 20 356 5.42 17 054 3.14
r 100 05 133 007 417.56 106 610 106.44 72 202 32.04
r 100 06 732 786 2332.08 270 466 371.13
r 100 07
r 100 08
r 100 09
r 100 10

rc 100 01 21 0.00 64 0.00 21 0.00
rc 100 02 257 0.01 196 0.01 251 0.01
rc 100 03 705 0.06 856 0.09 699 0.03
rc 100 04 1 857 0.28 2 506 0.32 1 823 0.14
rc 100 05 5 024 1.20 7 748 1.31 4 527 0.38
rc 100 06 14 260 5.86 23 662 4.86 11 400 1.27
rc 100 07 40 375 31.40 68 422 29.35 24 787 4.09
rc 100 08 111 591 181.25 166 649 137.11 55 665 15.51
rc 100 09 299 056 1086.05 227 468 690.88 110 506 53.62
rc 100 10 230 054 209.30

been consumed. Our stopping criterion requires that a positive consumption of the critical resource is associated with
every arc. Hereafter we describe how we have defined the critical resource for each different vehicle routing problem.

Capacitated VRP
The critical resource in this case is capacity. Forward and backward states are extended only if their associated

resource consumption value q is less than Q/2, where Q is the vehicle capacity.

VRP with distribution and collection
In this case there are two resources; we consider as a critical resource ρ the sum of the resource consumptions

π + δ and we extend only those states for which π + δ < Q.

Capacitated VRP with time windows
In this last case we consider time as the critical resource and we extend only states for which τ < T/2.
Note that the arc bounding technique can be considered as a special case of resource bounding, in which the critical

resource is the number of allowed visits and its available amount is recomputed in every state.

3.4. Solutions uniqueness

Another issue to be considered comes from the need of generating many different columns with negative reduced
cost when we solve the RCESPP as a pricing problem in a branch-and-price framework. The bounded bi-directional
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Table 5
RCESPP with distribution and collection — 50 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c 50 01 25 0.00 26 0.00 25 0.00
c 50 02 191 0.00 168 0.04 85 0.00
c 50 03 1 127 0.01 562 0.06 188 0.01
c 50 04 4 788 0.19 1 852 0.09 632 0.02
c 50 05 21 420 4.30 4 876 1.28 1 535 0.07
c 50 06 88 706 79.75 14 381 4.41 5 507 0.27
c 50 07 346 218 1201.05 26 022 7.95 10 578 0.69
c 50 08 55 462 35.46 33 588 7.23
c 50 09 140 364 165.21 56 812 16.95
c 50 10 335 670 672.28 181 699 140.59

r 50 01 51 0.00 58 0.00 51 0.00
r 50 02 207 0.01 204 0.01 116 0.01
r 50 03 633 0.01 498 0.03 298 0.01
r 50 04 1 910 0.04 1 126 0.04 585 0.02
r 50 05 5 338 0.23 2 096 0.10 1 222 0.05
r 50 06 13 925 1.53 3 986 0.32 2 345 0.09
r 50 07 34 947 9.65 7 186 0.98 4 312 0.22
r 50 08 83 238 52.00 14 136 1.63 7 772 0.50
r 50 09 188 997 257.86 22 386 5.25 13 866 1.20
r 50 10 410 572 1695.94 38 107 8.19 23 788 3.03

rc 50 01 23 0.00 23 0.00 23 0.00
rc 50 02 96 0.00 92 0.00 58 0.00
rc 50 03 231 0.01 202 0.01 111 0.01
rc 50 04 511 0.01 416 0.02 247 0.01
rc 50 05 1 104 0.02 790 0.03 377 0.02
rc 50 06 2 080 0.07 1 306 0.06 639 0.02
rc 50 07 3 797 0.19 1 915 0.14 967 0.03
rc 50 08 6 807 0.63 2 641 0.19 1 463 0.05
rc 50 09 12 367 2.17 3 633 0.36 2 119 0.09
rc 50 10 22 823 7.55 5 018 0.60 3 201 0.14

dynamic programming algorithm can provide duplicate solutions: consider for instance an s–t path including vertices
i , j and k in this order. If the resource constraints are not tight, it is possible that forward states for vertices i and j and
backward states for vertices j and k are generated. Therefore the same solution is obtainable by joining a forward state
of i with a backward state of j as well as joining a forward state of j with a backward state of k. If only the optimal
solution is sought, these duplicates are discarded with no additional computational effort, when they are evaluated,
since they have the same cost. But if one needs to store in some data structure all columns with negative reduced cost,
the duplicate columns cannot be discarded on the basis of their cost and their identification may be computationally
expensive.

For this reason we have devised an additional test, represented by the function HalfWay. The meaning of this test is
that we accept an s–t path only when it is produced by the join of a forward state and a backward state, for which the
forward and backward consumptions of the critical resource are as close as possible to half the overall consumption
for that s–t path, that is the two states are as close as possible to the half-way point along the s–t path. Let ρ fw and
ρbw be the critical resource consumptions in forward and backward paths. Among all possible pairs of forward and
backward states producing the same s–t path we choose the one for which φ = |ρ fw

− ρbw
| is minimum. The test is

done in constant time for each candidate pair of states, since the position closest to the half-way point is detected by
direct comparison with the next position along the path if ρ fw < ρbw and with the previous position if ρ fw > ρbw.
In the case of a tie between two positions for which φ is minimum, we choose the one with ρ fw > ρbw. This test
guarantees that each s–t path is generated only once.

Algorithm 3 refers to the procedure Join of the bi-directional bounded dynamic programming algorithm, when
it is solved as a pricing problem and hence duplications must be avoided. We use the following terminology:
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Algorithm 3 RCESPP — Bi-directional dynamic programming: Join
for all i ∈ V do

if ψ fw
i − λi/2+min j∈N \{i}{ci j } −max j∈N {λ j/2} + ψbw < U B then

for all li = (S fw, R fw,C fw, i) ∈ Γ fw
i do

if C fw
− λi/2+min j∈N \{i}{ci j } −max j∈N {λ j/2} + ψbw < U B then

for all j ∈ V do
if C fw

− λi/2+ ci j − λ j/2+ ψbw
j < U B then

for all l j = (Sbw, Rbw,Cbw, j) ∈ Γ bw
j do

if C fw
− λi/2+ ci j − λ j/2+ Cbw < U B then

if Feasible(li , l j ) AND HalfWay(li , l j ) then
Save(li , l j )

end if
end if

end for
end if

end for
end if

end for
end if

end for

Feasible(li , l j ) checks the resource compatibility of states li and l j according to problem-dependent rules;
HalfWay(li , l j ) checks if the s–t path obtainable joining the two states li and l j satisfies the half-way point conditions
defined above; Save(li , l j ) saves the solution obtained from the two states li and l j .

When implementing the Join procedure it is possible to avoid the evaluation of all pairs of forward and backward
labels, exploiting some bounds on the label costs, as shown in Algorithm 3. We indicate with ψbw the minimum cost
among all backward labels, with ψ fw

i the minimum cost among all labels in Γ fw
i and with ψbw

j the minimum cost

among all labels in Γ bw
j .

To give an example of how the function HalfWay works, we further elaborate on the example presented in Table 1,
referred to the VRPDC. Table 2 shows how the same path of Table 1 can be constructed by the bi-directional search
algorithm. We have added a superscript fw or bw to identify forward and backward resource consumptions.

The forward extension stops at vertex 2, because the critical resource consumption is 12, that is Q. The backward
extension stops at vertex 2, because the critical resource consumption is 18, that is greater than Q. The path can
be generated by joining the forward label of vertex 1 with the backward label of vertex 2, yielding an unbalance
Φ = |ρ fw(1)− ρbw(2)| = |5− 18| = 13, as well as by joining the forward label of vertex 2 with the backward label
of vertex 3, yielding an unbalance Φ = |ρ fw(2)− ρbw(3)| = |12− 11| = 1. Therefore the function HalfWay returns
“false” in the former case and “true” in the latter.

4. Computational results

4.1. Instances

We derived our test instances from the well-known Solomon’s data-set of VRPTW instances. For each kind
of RCESPP problem we tested our algorithms on two classes of instances obtained from Solomon’s instances by
considering the first 50 and 100 nodes. These data-sets are divided into random, clustered and random-clustered
categories, according to the displacement of the customers. Instances belonging to the same data-set have the
customers located in the same way and with the same demands; the instances differ only for the time windows.

When solving the RCESPP with capacity we considered one instance taken from each one of the three Solomon’s
data-sets, we kept the original customer locations and demands and we neglected the time windows. Then we derived
from each original instance ten RCESPP instances with 50 nodes and ten RCESPP instances with 100 nodes. In both
cases the vehicle capacity varies from 10 to 100 with an increasing step of 10.
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Table 6
RCESPP with distribution and collection — 100 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c 100 01 47 0.00 48 0.00 47 0.00
c 100 02 382 0.00 363 0.01 166 0.00
c 100 03 2 415 0.08 1 244 0.06 381 0.02
c 100 04 13 009 1.42 3 950 0.64 1 426 0.12
c 100 05 83 462 49.91 12 982 0.89 3 689 0.22
c 100 06 520 592 1999.5700 34 342 3.62 14 800 2.04
c 100 07 80 098 14.82 29 977 5.10
c 100 08 209 776 89.44 123 907 82.29
c 100 09 545 612 523.66 229 386 218.82
c 100 10

r 100 01 245 0.01 253 0.00 153 0.00
r 100 02 3 688 0.21 1 986 0.08 994 0.06
r 100 03 43 242 20.67 11 622 1.05 4 706 0.55
r 100 04 409 513 1806.75 50 204 19.34 18 995 4.44
r 100 05 201 088 144.00 83 158 47.10
r 100 06 704 226 1640.25 351 405 686.55
r 100 07
r 100 08
r 100 09
r 100 10

rc 100 01 72 0.00 67 0.01 47 0.00
rc 100 02 401 0.00 501 0.01 229 0.01
rc 100 03 1 950 0.07 1 422 0.34 642 0.04
rc 100 04 8 290 0.70 4 640 1.17 1 776 0.15
rc 100 05 32 216 8.19 10 988 2.25 4 331 0.49
rc 100 06 117 793 98.23 26 644 6.18 10 794 1.54
rc 100 07 418 620 1109.8000 53 871 19.13 24 657 5.83
rc 100 08 131 416 52.61 55 131 31.83
rc 100 09 223 042 225.25 116 239 87.50
rc 100 10 242 383 688.90

For the RCESPP with distribution and collection we kept the original delivery requests and we derived the pick-up
requests as follows: pi = b0.8dic if i is odd and pi = b1.2dic if i is even. We varied the capacity of the vehicle as in
the previous case.

Finally, for the RCESPP with capacity and time windows we considered the original instances of Solomon’s data-
set.

In addition we also defined another data-set built on the difficult Solomon’s instance c 104; we kept the original
starting times of the time windows, ai , and we set the end times as follows: bi = ai + (1 + γ )θi for γ = 0.25k and
k = 0, . . . , 24, where θi is the original service time at vertex i .

We generated the dual variables λi as random integer variables uniformly distributed in {0, . . . , 20}, as proposed
by [11], in order to have a reasonable number of negative arcs. We rounded up all the Euclidean distances between
customers to integer values.

All tests were performed on a PC equipped with a Pentium IV 1.6 GHz processor with 512 MB RAM. The
algorithms were coded in ANSI-C and compiled with gcc 3.0.4.

4.2. Preprocessing

Dumitrescu and Boland [10] proposed very effective preprocessing techniques for the RCSPP, which is equivalent
to the RCESPP with no negative cost cycles. These techniques are mainly based on the computation of a lower bound
on the resource consumption that is necessary to complete a partial solution returning to the depot. There are two
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Table 7
ESPPRC with capacity and time windows — 50 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c101 50 524 0.02 678 0.02 500 0.02
c102 50 4 548 0.93 3 920 0.30 2 747 0.22
c103 50 106 795 393.47 41 106 26.76 27 656 13.73
c104 50
c105 50 609 0.03 726 0.03 603 0.02
c106 50 565 0.03 686 0.03 509 0.02
c107 50 652 0.04 827 0.04 661 0.03
c108 50 1 019 0.07 1 114 0.07 924 0.04
c109 50 2 255 0.22 2 378 0.23 2 177 0.20

r101 50 166 0.00 274 0.01 189 0.00
r102 50 663 0.03 982 0.04 642 0.03
r103 50 2 546 0.16 3 352 0.19 1 950 0.11
r104 50 32 697 10.55 30 228 4.72 10 592 1.22
r105 50 344 0.01 398 0.01 368 0.01
r106 50 970 0.04 1 294 0.06 882 0.04
r107 50 3 457 0.24 4 334 0.26 2 349 0.16
r108 50 34 460 12.36 32 640 5.62 11 253 1.33
r109 50 683 0.03 768 0.03 741 0.02
r110 50 2 003 0.12 2 254 0.13 1 769 0.10
r111 50 2 571 0.19 3 041 0.19 2 202 0.15
r112 50 4 552 0.39 5 213 0.39 3 760 0.32

rc101 50 386 0.01 394 0.01 357 0.00
rc102 50 1 368 0.04 1 101 0.04 1 020 0.03
rc103 50 4 788 0.42 4 900 0.27 3 448 0.18
rc104 50 12 805 3.47 12 584 1.69 8 926 0.84
rc105 50 1 208 0.03 976 0.03 1 000 0.03
rc106 50 1 194 0.04 957 0.03 999 0.03
rc107 50 5 380 0.31 3 663 0.18 3 479 0.15
rc108 50 12 780 2.29 11 465 0.62 8 671 0.53

reasons for which such techniques are not effective in our case. First, the graphs we have considered are complete:
hence every partial path can be closed by an arc directly reaching the depot. Second, in the CVRP and VRPDC the
resource consumption is associated with the nodes, not with the arcs; therefore the depot can always be reached with
no resource consumption; in the CVRPTW, where the resource consumption is associated with the arcs, the time
resource is always enough to complete any feasible path, by definition of the maximum arrival time T . Therefore we
could obtain no simplification of our instances through preprocessing.

4.3. Results

Tables 3–10 report on the experimental comparison between the mono-directional dynamic programming
algorithm, the bi-directional algorithm with arc bounding and the bi-directional algorithm with resource bounding.
For each algorithm we report the total number of non-dominated states that are in memory at the end of the extension
procedure and the time needed to compute the optimal path. Empty cells mean that the solution has not been computed
within the time limit of one hour.

Capacity
Results reported in Tables 3 and 4 show that the bi-directional algorithm with resource bounding outperforms the

other two in all instances, where the computing time is significant (greater than 0.01 s). For the loosely constrained
instances it reduces the computing time by one order of magnitude and it reduces significantly the number of non-
dominated states. The bi-directional algorithm with arc bounding outperforms the mono-directional algorithm when
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Table 8
RCESPP with capacity and time windows — 100 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c101 100 994 0.16 1 394 0.19 1 039 0.14
c102 100 18 126 22.53 16 301 8.65 9 759 3.97
c103 100 195 398 527.36 95 138 148.50
c104 100
c105 100 1 149 0.23 1 514 0.27 1 256 0.22
c106 100 1 448 0.37 1 849 0.41 1 502 0.33
c107 100 1 225 0.31 1 691 0.37 1 378 0.30
c108 100 2 094 0.64 2 449 0.71 2 109 0.58
c109 100 4 739 2.03 5 326 2.12 4 816 1.90

r101 100 746 0.04 1 005 0.05 765 0.05
r102 100 36 969 49.66 35 037 15.79 13 021 4.51
r103 100 418 229 1053.52 75 599 105.77
r104 100 349 866 1278.57
r105 100 2 191 0.21 1 947 0.20 1 679 0.17
r106 100 52 182 126.21 52 210 39.18 19 411 11.03
r107 100 467 533 1488.83 83 422 141.20
r108 100 312 346 1094.81
r109 100 6 389 1.35 4 631 1.06 4 417 0.87
r110 100 39 042 47.09 38 200 21.91 22 744 12.71
r111 100 145 671 187.36 44 094 39.38
r112 100 269 888 1019.10

rc101 100 1 196 0.09 1 552 0.01 1 038 0.08
rc102 100 8 268 1.73 8 612 1.59 5 209 0.82
rc103 100 76 457 100.67 81 085 56.53 22 618 9.87
rc104 100 878 304 2946.87 137 013 202.25
rc105 100 3 253 0.45 3 842 0.55 3 288 0.41
rc106 100 3 130 0.44 3 426 0.48 3 124 0.37
rc107 100 14 224 3.56 152 257 3.64 10 651 2.17
rc108 100 57 637 46.54 69 200 31.45 39 880 20.12

the resource capacity grows, while for tightly constrained instances it produces more labels. For instances with 100
vertices the memory space and the computing time grow very quickly for all three algorithms. However the resource
bounded bi-directional algorithm solves more and larger instances than the mono-directional algorithm and it reduces
the computing time by one order of magnitude. The computational results show that the bi-directional algorithm is
a bit faster than the mono-directional one also when it considers more labels (see for instance the computing time
for r 100 02 and rc 100 07); this is due to the implementation of the Join procedure illustrated in Section 3.4, which
allows us to discard entire subsets of labels.

Distribution and collection
When solving the RCESPP with distribution and collection we obtained results similar to those above: they are

reported in Tables 5 and 6. The resource bounded bi-directional algorithm solved all instances with 50 vertices in
less than 150 s and it failed to solve 5 instances with 100 vertices within one hour, while the bi-directional algorithm
with arc bounding failed to solve 6 instances. On this problem also the bi-directional algorithm with arc bounding
dominates the mono-directional one in almost all cases.

Capacity and time windows
All but one of Solomon’s instances with 50 and 100 vertices were solved by the resource bounded bi-directional

algorithm as reported in Tables 7 and 8. Instance c 104 is nasty for all algorithms. The irregular growth in the number
of states and computing time is due to the local nature of the time windows constraints. The superiority of both
bounded bi-directional algorithms is quite evident and systematic for loosely constrained instances. For some tightly
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Table 9
RCESPP with capacity and time windows — Instance c 104, 50 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c104 50 01 96 0.00 150 0.00 100 0.00
c104 50 02 166 0.00 250 0.01 157 0.00
c104 50 03 246 0.01 355 0.01 229 0.00
c104 50 04 257 0.01 357 0.01 235 0.01
c104 50 05 271 0.01 388 0.01 244 0.01
c104 50 06 370 0.01 412 0.01 323 0.01
c104 50 07 614 0.02 636 0.01 532 0.01
c104 50 08 730 0.04 737 0.04 637 0.04
c104 50 09 871 0.05 865 0.05 772 0.05
c104 50 10 991 0.07 935 0.07 841 0.06
c104 50 11 1 751 0.11 1 621 0.12 1 479 0.11
c104 50 12 2 664 0.23 2 470 0.24 2 349 0.24
c104 50 13 4 158 0.48 3 892 0.47 3 827 0.46
c104 50 14 4 495 0.58 4 154 0.58 4 081 0.53
c104 50 15 6 257 0.93 5 695 0.90 5 556 0.76
c104 50 16 10 426 2.55 9 595 2.25 9 463 2.16
c104 50 17 20 072 6.01 18 728 5.49 18 631 5.15
c104 50 18 23 086 7.52 21 901 6.99 21 792 6.63
c104 50 19 27 539 11.12 25 851 10.51 25 698 9.42
c104 50 20 39 652 27.11 37 009 24.72 36 875 23.86
c104 50 21 89 920 97.87 82 258 82.11 82 108 76.42
c104 50 22 112 830 136.46 106 349 127.05 106 183 115.17
c104 50 23 135 902 189.24 127 474 166.10 127 235 157.86
c104 50 24 170 507 350.34 160 154 311.12 159 960 302.80
c104 50 25 338 839 1345.13 335 617 1166.70

constrained instances the bi-directional algorithms produce more labels than the mono-directional one, while the
computing times are almost the same.

Tightness of the constraints
Tables 9 and 10 show that the difficulty of a RCESPP instance does not depend only on its size but it is

strongly affected by the tightness of the constraints. When time windows become larger and larger, the number of
non-dominated states increases dramatically. Also in these experiments the superiority of bounded bi-directional
algorithms is clear. For tightly constrained instances the bi-directional algorithm with arc bounding produces more
labels than the mono-directional one. As expected, the arc bounding technique is useful only when the optimal path
is made of a significant number of arcs.

5. Conclusions

In this paper we have proposed an improved technique, bounded bi-directional dynamic programming, for the
exact optimization of the resource constrained elementary shortest path problem. We have shown how bounded bi-
directional dynamic programming can be applied to the RCESPP with one or more resource constraints, interacting
or independent resources, local or global constraints, and resource consumptions depending on visited vertices or
traversed arcs. Our experiments show that bounded bi-directional dynamic programming definitely outperforms the
mono-directional algorithm commonly used and reported in the literature.

The long-term goal of this research is the effective solution of vehicle routing problems with additional constraints
through branch-and-price algorithms, where the RCESPP arises as a pricing subproblem. Future developments include
the comparison of this approach with that based on state space relaxation and the application of these ideas to the
development of more effective algorithms for the exact optimization of vehicle routing problems with additional
constraints.
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Table 10
RCESPP with capacity and time windows — Instance c 104, 100 vertices

Instance Mono-directional Arc bounding Resource bounding
Labels Time Labels Time Labels Time

c104 100 01 199 0.00 357 0.01 205 0.01
c104 100 02 299 0.02 456 0.02 286 0.02
c104 100 03 447 0.03 606 0.03 415 0.03
c104 100 04 495 0.05 674 0.06 463 0.05
c104 100 05 510 0.05 717 0.06 477 0.06
c104 100 06 698 0.07 804 0.08 603 0.06
c104 100 07 1 121 0.13 1 181 0.15 975 0.12
c104 100 08 1 416 0.23 1 439 0.24 1 232 0.22
c104 100 09 1 685 0.36 1 670 0.35 1 475 0.34
c104 100 10 1 882 0.44 1 864 0.44 1 645 0.42
c104 100 11 3 105 0.71 2 967 0.69 2 738 0.65
c104 100 12 5 122 1.43 4 816 1.41 4 595 1.36
c104 100 13 8 168 2.74 7 604 2.61 7 437 2.63
c104 100 14 9 244 3.74 8 786 3.59 8 579 3.58
c104 100 15 12 088 5.22 11 271 4.88 11 053 4.86
c104 100 16 20 841 11.40 19 449 10.65 19 267 10.42
c104 100 17 42 948 28.64 39 398 25.09 39 260 24.91
c104 100 18 56 769 45.05 53 959 41.56 53 823 41.34
c104 100 19 69 921 65.26 66 598 59.75 66 373 58.19
c104 100 20 96 971 125.26 92 308 116.27 92 042 112.48
c104 100 21 198 953 355.52 198 464 350.88
c104 100 22 324 494 750.19 318 067 740.42
c104 100 23 449 425 1336.48 441 254 1238.62
c104 100 24 555 030 2144.44 554 831 2087.82
c104 100 25

Acknowledgements

We thank Dominique Feillet for kindly providing his code and three anonymous referees for their comments.
We acknowledge the support of ACSU — Associazione Cremasca Studi Universitari — to the Operations Research
Laboratory of our department, where this research was done.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice Hall, 1993.
[2] J.E. Beasley, N. Christofides, An algorithm for the resource constrained shortest path problem, Networks 19 (1989) 379–394.
[3] N. Boland, J. Dethridge, I. Dumitrescu, Accelerated label setting algorithms for the elementary resource constrained shortest path problem,

Operations Research Letters 34 (2006) 58–68.
[4] J. Bramel, D. Simchi-Levi, Set-covering-based algorithms for the capacitated VRP, in: P. Toth, D. Vigo (Eds), The Vehicle Routing Problem,

in: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 2002.
[5] G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis, D. Villeneuve, A unified framework for deterministic time constrained

Vehicle Routing and crew scheduling Problems, in: T.G. Crainic, G. Laporte (Eds.), Fleet Management and Logistics, Kluwer, Boston, 1998,
pp. 57–93.

[6] M. Desrochers, F. Soumis, A generalized permanent labelling algorithm for the shortest path problem with time windows, INFOR 26 (1988)
191–212.

[7] J. Desrosiers, Y. Dumas, M. Solomon, F. Soumis, Time constrained routing and scheduling in Network Routing, in: M.O. Ball et al. (Eds.),
Handbooks in Operations Research and Management Science, Elsevier Science, 1995.

[8] J. Desrosiers, P. Pelletier, F. Soumis, Plus court chemin avec contraintes d’horaires, RAIRO 17 (1983) 357–377.
[9] M. Dror, Note on the complexity of the shortest path models for column generation in VRPTW, Operations Research 42 (1994) 977–978.

[10] I. Dumitrescu, N. Boland, Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem,
Networks 42 (2003) 135–153.

[11] D. Feillet, P. Dejax, M. Gendreau, C. Gueguen, An exact algorithm for the elementary shortest path problem with resource constraints:
Application to some vehicle routing problems, Networks 44 (2004) 216–229.

[12] S. Irnich, G. Desaulniers, Shortest path problems with resource constraints, Cahier du GERAD G-2004-11, Université de Montréal, 2004.
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