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a b s t r a c t

We present a branch-and-cut-and-price algorithm for the exact solution of a variation of
the vehicle routing problem with time windows in which the transportation fleet is made
by vehicles with different capacities and fixed costs, based at different depots. We illustrate
different pricing and cutting techniques and we present an experimental evaluation of
their combinations. Computational results are reported on the use of the algorithm both
for exact optimization and as a heuristic method.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There is a considerable economic interest around algorithmic techniques for optimization in logistics, since transporta-
tion represents a relevant factor in the final cost of goods.

Many real applications require to find a set of routes of minimum length for a fleet of vehicles with limited resources, in
order to serve a given set of customers. When routes start and end at a unique depot, each customer has a given demand
which must be served by a single vehicle, and the fleet is composed by identical vehicles with limited service capacity,
the problem turns out to be a classical vehicle routing problem (VRP) (Golden et al., 2008).

However these applications often require to take into account several additional constraints (Santos et al., 2008; Prindezis
and Kiranoudis, 2005). For instance, in several applications involving interaction with human personnel or customers, vis-
iting certain locations is allowed only in certain time windows; furthermore, large companies or consortia of small transpor-
tation companies usually have more than one depot and they often manage a fleet made of vehicles with different capacities
and operating costs (Ceselli et al., 2009).

Therefore, in this paper we consider three major extensions of the basic VRP model, namely time windows, heteroge-
neous vehicles and multiple depots. The resulting problem is called Multi-Depot Heterogeneous Vehicle Routing Problem
with Time Windows (MDHVRPTW): we want to simultaneously determine the optimal composition, placement and routing
of a heterogeneous fleet of capacitated vehicles in order to satisfy the delivery demands of a set of customers under time
constraints.

We refer the reader to the recent book by Golden et al. (2008) for an up-to-date survey of VRP models and methods. State-
of-the-art exact algorithms can solve instances with up to 135 customers (Fukasawa et al., 2006; Baldacci et al., 2007).

Several variants of the VRP involving subsets of the features of the MDHVRPTW have been studied in the literature.
State-of-the-art methods for the VRP with Time Windows (VRPTW) using either branch-and-cut (Kallehauge et al., 2007)

or column generation (Chabrier, 2006; Desaulniers et al., 2005) are able to solve instances with up to some hundreds cus-
tomers (Golden et al., 2008; Kallehauge, 2008).
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A branch-and-cut-and-price algorithm for the Heterogeneous fleet Vehicle Routing Problem (HVRP), able to solve in-
stances with up to 75 customers to proven optimality, has recently been proposed in Pessoa et al. (2009). The Heterogeneous
Vehicle Routing Problem with Time Windows (HVRPTW) in the variant without any limit on the number of available vehicles
was first addressed by Liu and Shen (1999) under the denomination of Fleet Size and Mix VRP with Time Windows; the
authors proposed a number of insertion-based parallel savings heuristics, performing tests on instances with up to 100 cus-
tomers. Later, Dullaert et al. (2002) developed three insertion-based heuristics, that are an extension of Solomon’s (1987)
sequential insertion heuristic combined with ideas of Golden et al.’s (1984). The authors tested their algorithms using a
slightly different objective function. More recently Belfiore and Fávero (2007) and Dell’Amico et al. (2007) respectively pro-
posed scatter search and ‘‘ruin-and-recreate” approaches to this problem. State-of-the-art heuristics are able to provide good
quality approximations for problems with 100 customers in a few minutes.

Polacek et al. (2004) studied a Variable Neighborhood Search for the Multi-Depot Vehicle Routing Problem with Time
Windows (MDVRPTW). A cluster-based optimization approach to the MDHVRPTW has been proposed by Dondo and Cerdá
(2007), who also developed a large-scale neighborhood method to improve the solutions found by their previous heuristic
(Dondo and Cerdá, 2009). In this way, instances with 100 customers can be heuristically solved in a time ranging from some
seconds to 1 h.

Baldacci and Mingozzi (2009) proposed a unified exact method, which is able to solve different classes of vehicle routing
problems, including heterogeneous fleets and multiple depots (MDHVRP), without time windows; this is based on the exact
solution of an integer linear programming problem and on dual heuristics. Instances involving up to 100 customers were
solved to optimality in some hours of computing time.

Finally, in Ceselli et al. (2009) a rich vehicle routing problem was considered: it involves multiple depots, heterogeneous
vehicles, time windows and other features. The authors proposed a column generation heuristic yielding good results on in-
stances with up to few hundred customers in some hours.

To the best of our knowledge, no exact algorithms have been proposed for the MDHVRPTW so far. In this paper we pres-
ent a branch-and-cut-and-price algorithm for the exact optimization of the MDHVRPTW. The algorithm extends some recent
ideas, such as bi-directional dynamic programming and decremental state space relaxation already applied to the VRPTW
and other versions of the VRP. In particular, in Section 2 we introduce an extended formulation for the problem; in Section
3 we illustrate our column generation routines and show how the repeated execution of the dynamic programming-based
pricing algorithm can be made more efficient; in the same section we also discuss the addition of strengthening inequalities
and branching strategies. In Section 4 we report the results of an extensive experimental campaign, evaluating the effective-
ness of our algorithm both as an exact and as a heuristic optimization method. Section 5 ends the paper with concluding
remarks.

2. Problem formulation

The MDHVRPTW can be formulated as follows. Let G ¼ ðN [H;AÞ be a directed graph whose node set is the union of a
set N of customers and a set H of depots.

Non-negative costs dij and tij are associated with each arc ði; jÞ 2A, representing respectively the travel cost and the travel
time to reach j 2N starting from i 2N. Each customer i 2N has a delivery demand qi, a service time si and a delivery time
window [ai,bi].

We consider a set K of vehicle types, with known capacities wk and fixed costs fk 8k 2K. We assume that the number uk

of available vehicles of each type k 2K is limited. The number of routes associated with each depot h 2H is limited by a
given value gh. This represents the number of drivers living close to each depot, who are able to operate routes from it; we
assume drivers to be able to use any type of vehicle.

In the version of the problem we study, we assume that all vehicles can be freely associated with any depot: this corre-
sponds to the situation in which the location of the vehicles at the depots is a decision, not a datum.

Finally, vehicles do not necessarily leave their depots at time 0: due to time windows, it may be convenient to delay the
departure time to reduce waiting time at customer locations. Following (Liu and Shen, 1999) we indicate as duration the dif-
ference between the arrival and the starting time of the route, that is the actual time spent in delivery operations. This can-
not exceed a given limit D, representing the length of driver shifts.

The objective is to minimize the sum of vehicles fixed costs and routing costs, satisfying the following conditions:

I. all customers must be served;
II. each customer must be visited by only one vehicle;

III. the service at each customer must start within the customer time window;
IV. each route begins at a depot and ends at the same depot;
V. the sum of the demands of the customers served in each route must not exceed the capacity of the associated vehicle;

VI. the duration of each route must not be greater than D;
VII. the number of available vehicles for each type must not be exceeded;

VIII. the number of allowed routes for each depot must not be exceeded.
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Our framework allows to easily consider also the version in which the location of vehicles is fixed, i.e., in each depot a
given number of vehicles of each type are pre-positioned; in this case a bound uhk is imposed on the number of routes
for each depot h 2H and for each vehicle type k 2K, but the algorithm does not change. Nevertheless, in the remainder
we discuss only the former version, because it is the only one having terms of comparison in the literature.

We introduce a set covering formulation of the MDHVRPTW as follows. We indicate as feasible any route satisfying con-
ditions II, III, IV, V and VI. We indicate as Xhk the set of all feasible routes using a vehicle of type k 2K from depot h 2H.

We associate a binary variable xr with each feasible route: xr takes value 1 if and only if route r is selected. We also use
binary coefficients air with value 1 if and only if customer i 2N is visited by route r. We indicate by cr the cost of route r; it is
equal to the sum of the vehicle fixed cost fk and the routing costs, i.e., the optimal value of the Traveling Salesman Problem
with Time Windows (TSPTW) on the customer set fi 2Njair ¼ 1g starting and ending at a particular depot. With these def-
initions we obtain the following integer linear programming model:

minimize
X
h2H

X
k2K

X
r2Xhk

crxr ; ð1Þ

s:t:
X
h2H

X
k2K

X
r2Xhk

airxr P 1 8i 2N; ð2Þ
X
h2H

X
r2Xhk

xr 6 uk 8k 2K; ð3Þ
X
k2K

X
r2Xhk

xr 6 gh 8h 2H; ð4Þ

xr 2 f0;1g 8r 2
[

k2K;h2H
Xhk: ð5Þ

Constraints (2) are standard set covering constraints, modeling condition I, while (3) and (4) impose limits on the maximum
number of available vehicles of each type and the maximum number of allowed routes for each depot, modeling conditions
VII and VIII. The objective is to minimize the overall cost of the selected routes. In the remainder we indicate this formulation
as Master Problem (MP).

3. Branch-and-cut-and-price

We solve the linear relaxation of the MP to obtain a lower bound which is used in a tree search algorithm. The number of
variables is exponential in the cardinality of the customer set N, thus we use a column generation approach (Desaulniers
et al., 2005). In this section we describe the main components of the resulting branch-and-cut-and-price algorithm, namely
pricing, cut generation and branching. We also discuss some implementation issues.

3.1. Column generation

We initially consider only a small subset of the variables in the MP. Such initial restricted master problem (RMP) includes

� a set of jNj columns, one for each customer, representing the optimal paths serving one customer at a time,
� a set of columns representing a feasible MDHVRPTW solution, found using a straightforward greedy policy,
� an additional dummy column �r of very high cost, having ai�r ¼ 18i 2N and every other coefficient set to 0.

The aim of the dummy column is to ensure feasibility at each node of the search tree.
We solve the linear relaxation of the RMP, and we search for columns which are not in the RMP, but have negative re-

duced cost. If no such column exists, the solution is optimal for the MP linear relaxation as well, and thus yields a valid lower
bound to the problem. On the opposite, if any negative reduced cost column is found, it is added to the RMP, and the process
is iterated.

Let k, l and r be the nonnegative dual vectors corresponding respectively to constraints (2), and to constraints (3) and (4)
rewritten as Pinequalities.

The reduced cost of a column encoding route r has the following form:

cr �
X
i2N

kiair þ lk þ rh:

As stressed before, the routes generated must comply with conditions II, III, IV, V and VI: it is important to note that the
same sequence of customers may correspond to a feasible or to an infeasible route according to the type of vehicle and the
depot it is associated with. For instance, different types of vehicles imply different capacities. Moreover, cost cr and dual vari-
ables lk and rh depend on both k and h. Therefore, at each column generation iteration we have to solve jKj � jHj pricing
problems. We also remark that it is never convenient to perform cycles in a feasible solution, although the prize structure
given by dual variables can make it appealing; therefore, a search must be performed for elementary routes only.

A. Bettinelli et al. / Transportation Research Part C 19 (2011) 723–740 725
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Hence, given a particular depot h and vehicle type k, the problem of finding the most negative reduced cost column
encoding a route for vehicle k using depot h turns out to be a Resource Constrained Elementary Shortest Path Problem
(RCESPP).

The RCESPP is NP-hard (Dror, 1994); we solve it using three pricing algorithms: a greedy one, a heuristic dynamic pro-
gramming one and an exact dynamic programming one. In fact, dynamic programming techniques as those described in
Righini and Salani (2006, 2008), show to be particularly effective in solving RCESPPs, provided careful design choices are
made for each problem at hand. In particular, coping with condition VI is a critical issue in our case, and requires special
adaptations to the standard framework.

Following (Salani, 2006), the three pricing algorithms are called in sequence, only if the previous pricing algorithm cannot
find any column with negative reduced cost. In the remainder we give a description of the pricing problem and of the three
algorithms. For the purpose of better illustrating them, we follow the reverse order with respect to their execution.

3.1.1. Exact dynamic programming
Let us consider first the case of a single depot h 2H and a single vehicle type k 2K: let s and v be the two distinct copies

of depot h, representing the departure and arrival node and let w = wk be the capacity of vehicle k.
For the exact solution of the RCESPP we use the technique proposed in Righini and Salani (2006), which consists of a bi-

directional extension of node labels. It associates labels with each node i 2N of the graph: forward labels represent paths
from s to i and backward labels represent paths from i to v. Each label is iteratively considered and the corresponding path is
extended to adjacent nodes.

3.1.1.1. Label structure. Each label has the form (S,v,s,d,q,C, i). This tuple represents the state of the path associated with the
label; C is the cost of the path, i is the last reached node, S, v, s, d and q are either resources or resource consumptions with
the following meaning: S is a set indicating which nodes have already been visited, v indicates the amount of capacity con-
sumed, s indicates the elapsed time from time 0 up to the earliest point in time at which service at i can start, d indicates the
minimum duration of the path from the departure time up to the point in time at which service at i starts.

The value q is needed to update d at each extension; it represents a time buffer, indicating the maximum amount of time
by which the path defined so far can be delayed still remaining feasible with respect to the time windows of the visited
nodes.

Fig. 1 represents a sample instance of two nodes i and j on a time-line. The bold lines correspond to time spent in travel
and service operations, the dashed lines correspond to waiting time either at an intermediate node or at the initial depot; the
dotted line represents the time buffer q. By leaving the depot at time 0 and visiting node i (top figure), the vehicle has to wait
until the time window of node j allows the service to start. Instead, such waiting can be avoided by delaying the departure
from the depot (bottom figure). The time buffer q is spent to reduce the overall duration d of the path.

3.1.1.2. Extension. In forward extensions the set S is initialized at ;, all resource consumptions are initialized at 0 at the depot
nodes, while q is initialized at a very large value.

The search is restricted to elementary paths by discarding extensions to any node j 2 S. When a label (S,v,s,d,q,C, i) is
extended forward to a node j, a new label (S0,v0,s0,d0,q0,C0, j) is computed using the following rules.

First, resources S, v, s and C are updated as follows:

S0 ¼ S [ fjg; ð6Þ
v0 ¼ vþ qj; ð7Þ
s0 ¼maxfsþ si þ tij; ajg; ð8Þ

C0 ¼ C � 1
2

ki þ dij �
1
2

kj; ð9Þ

in the updating formula for cost, we consider ks = kv = 0.
In order to update duration d and time buffer q we have to consider a special case: if the vehicle arrives at j early, it should

wait until aj. Let us define the waiting time at j as x = max{aj � (s + si + tij),0}. Hence the earliest starting time of service at j is
equal to the earliest arrival time s plus x. Also the duration of the route is increased by the service time at i and the travel

Fig. 1. Label resources in the dynamic programming RCESPP algorithm.

726 A. Bettinelli et al. / Transportation Research Part C 19 (2011) 723–740



Author's personal copy

time from i to j, but the time buffer can be spent by delaying the departure from the depot to reduce the waiting time, as in
the sample instance reported in Fig. 1. It might not be possible to fully avoid waiting: the departure delay is limited by the
amount q, which takes into account feasibility with respect to the time windows of the customers visited up to i, and by the
waiting time, that is min{q,x}; for example, in Fig. 2 the time window of node i is tight (top figure), and the time buffer q is
not enough to compensate the waiting time at node j (bottom figure).

Besides traveling and service time, the actual increase in duration is therefore x �min{q,x}, that is �min{q �x,0}. By
substitution with the expression of x, we obtain the following update formula for d0:

d0 ¼ dþ ðsi þ tijÞ �minfq�maxfaj � ðsþ si þ tijÞ;0g;0g:

The remaining amount of possible delay to absorb future waiting times is q0, which is limited from above both by the
remaining buffer due to the time windows of the customers in S, that is q �min{q,x}, and by the constraint imposed by
the time window of customer j, that is bj � s0. The update formula for q0 is therefore

q0 ¼minfq�minfq;maxfaj � ðsþ si þ tijÞ; 0gg; bj � s0g:

The new state is feasible if and only if

v0 6 w ðcapacity constraintÞ; ð10Þ
s0 6 bj ðtime window constraintÞ; ð11Þ
d0 6 D ðduration constraintÞ; ð12Þ

otherwise it is fathomed.
The updating rules and feasibility tests for backward extension are symmetrical. Backward extensions start from time

T ¼maxi2Nfbi þ si þ tivg that is the latest possible arrival time at the final depot.
In particular the value T � s in a backward label at a generic node j indicates the latest point in time at which service at

the node j can end.
The algorithm iteratively extends each forward and backward label to all possible successors or predecessors respectively.
In order to limit the extension of forward and backward labels and to reduce useless duplication of paths, we impose that

each partial path can use at most half of a critical resource whose consumption is monotone along the paths. The best critical
resource is the tightest one. In our case we have two meaningful choices: either time or duration.

Since in the instances from the literature it is often D = +1, we chose time as the critical resource.

3.1.1.3. Join. Forward and backward paths must be joined together to produce complete s � v paths. The result of the join is a
feasible solution if all the resource constraints are satisfied. When a forward path (Sfw,vfw,sfw,dfw,qfw,Cfw, i) is joined with a
backward path (Sbw,vbw,sbw,dbw,qbw,Cbw, j), the feasibility conditions for a vehicle type k are:

Sfw
\

Sbw ¼ ;
vfw þ vbw

6 w

sfw þ si þ tij þ sj þ sbw
6 T

Furthermore, the constraint on the maximum duration of the whole path has to be satisfied. We remark that in backward
labels, paths are supposed to end at time T, but can be shifted up to qbw time units without violating time windows of
the visited customers. Therefore T � sbw � qbw � sj represents the earliest point in time at which service at the node j can
start in the backward path. The way in which backward paths are built already ensures T � sbw � qbw � sj P aj.

Let us consider the sample three-nodes instance depicted in Fig. 3. The structure of the figure is similar to the previous
ones: the bolded lines correspond to time spent in travel and service operations, the dashed lines correspond to late depar-
ture and early arrival at the depot, the dotted line represents waiting time. During the join on arc (i, j), the time window of
node k prevents the backward path to be shifted by more than qbw units in time. In the same way, the time window of node i
prevents the forward path to be shifted by more than qfw units in time.

The waiting time needed to join the forward and backward paths is therefore x = T � sbw � qbw � sj � (sfw + qfw + si + tij),
the actual waiting time at node j is max{x,0} and the duration of the overall path is

Fig. 2. A time window limiting the time buffer q.
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dfw þ si þ tij þmaxfx;0g þ sj þ dbw:

The feasibility conditions on the overall duration of the path is thus the following:

dfw þ si þ tij þmaxfT � sbw � qbw � sj � ðsfw þ qfw þ si þ tijÞ;0g þ sj þ dbw
6 D:

The reduced cost of the resulting s � v path is

Cfw � ki

2
þ dij �

kj

2
þ Cbw þ fk þ lk þ rh:

3.1.1.4. Dominance test. During the extension of labels, a dominance test is done to fathom labels that cannot lead to an opti-
mal solution. Let l0 = (S0,v0,s0,d0,q0,C0, i) and l00 = (S00,v00,s00,d00,q00,C00, i) be two labels associated with node i. Then the former
dominates the latter if the following conditions are satisfied

ðaÞ S0 # S00

ðbÞ v0 6 v00

ðcÞ s0 6 s00

ðdÞ d0 6 d00

ðeÞ q0 P q00

ðf Þ C 0 6 C 00

Condition (e) is too restrictive and can be relaxed into the surrogate inequality

ðgÞ d0 � q0 6 d00 � q00

without losing the optimality guarantee. It is not hard to show by counter examples that inequalities (a)–(d), (f) and (g) rep-
resent a set of necessary dominance conditions: dropping any of them optimal labels might be discarded.

Further, as shown in Feillet et al. (2004), it is sometimes possible to identify some node u 2N that cannot be reached by
any feasible extension of a given label, because of resource limitations.

In this case it is useful to insert u in the set S of that label: it is easy to check that enlarging set S00 helps satisfying condition
(a); at the same time, if a node cannot be reached by extending label l0 due to resource limitations, it cannot be reached by
extending label l00 either, since resource consumption in l00 is not lower. Therefore, enlarging each set S allows dynamic pro-
gramming fathoming a larger number of labels and hence reducing the computation time.

3.1.1.5. Decremental state space relaxation. The dynamic programming algorithm is executed iteratively applying decremental
state space relaxation (Righini and Salani, 2008). The idea is to project the state space of the problem to a smaller one, by
removing some elementarity constraints. From an algorithmic point of view, this amounts to identify a set of critical nodesfN, and to replace extension rule (6) as

S0 ¼ ðS [ fjgÞ \ fN:

This relax ed problem can be solved more efficiently, since more labels can be compared in the dominance test.
In order to identify a good critical node set, we initialize fN ¼ ;; then we iteratively solve the state space relaxation of the

pricing problem and insert in the set fN all the nodes visited more than once in the optimal path, until we find an elementary
one.

3.1.1.6. Bounding. Using ideas similar to Christofides et al. (1981) and Baldacci et al. (2007), we compute lower bounds in a
preprocessing phase; these are checked during the dynamic programming iterations to detect suboptimal labels that can be
fathomed.

Consider forward labels first: we disregard elementarity constraints, time windows and duration constraints, and for each
node i 2N we compute the least cost path from i to v that uses exactly p capacity units, for all values of p in the range
[qi, . . . ,w].

Such computation requires the search for a capacity constrained shortest path; this is a weakly NP-hard problem, and
can be solved effectively in a single run for all vertices i and for all values p 2 [0, . . . ,w] as follows. We build an auxiliary graph
with w + 1 layers, one for each value of p in the range, each containing a copy of the original graph. Then, each copy of node i
in layer p0 is connected to a copy of node j in layer p00 if and only if p00 = p0 + qj, and the cost of the arc connecting them is

Fig. 3. Computation of the waiting time during the join of two labels.
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dij � ki/2 � kj/2; each copy of i in layer p is also connected to the copy of the same node in layer p + 1 with a zero-cost arc.
Since this auxiliary graph is acyclic, one can use standard shortest path algorithms, and solve the problem of finding the opti-
mal path starting from node i by finding the optimal shortest path tree rooted at node i in layer 0: the optimal path using at
most p capacity units is the one connecting node i in layer 0 with node v in layer p. We note that the same computation can
be done by reversing each arc and finding an optimal shortest path tree rooted in node v for each layer p. The overall com-
plexity of this procedure is therefore OðminfjNj;wg � ðjNj �wÞ2Þ.

Let us indicate as Fip the value of the optimal path from node i in layer p to node v in layer w; since elementarity, time
windows and duration constraints have been relaxed, this is a valid lower bound to the cost of any backward label associated
with node i with v 6 p. When the exact dynamic programming algorithm is executed, if a forward label (S,v,s,d,q,C, i) is
such that

C þ Fiv þ fk þ lk þ rh P 0; ð13Þ

the label cannot lead to a negative reduced cost path and, therefore, it can be discarded.
If the instances are asymmetric, we pre-compute an analogous lower bound to possibly fathom backward labels applying

the same idea in the other direction. This pre-computation is done once for each column generation iteration, once the dual
values have been obtained from the linear relaxation of the restricted master problem.

Preliminary computational results showed that this technique considerably reduces the overall number of labels ex-
plored, with a negligible additional computational effort.

3.1.1.7. Aggregated pricing algorithm. One of the main difficulties with the heterogeneous fleet and multi-depot version of the
VRP is that the reduced cost of the routes depends on the depot chosen and the vehicle type. Hence in principle it would be
necessary to execute the pricing algorithm for each combination of k 2K and h 2H. One of the main features of our algo-
rithm is that multiple execution of the pricing algorithm is avoided.

First, in order to optimize all vehicle types at once, we extend the labels only once at each column generation iteration,
using the capacity of the largest vehicle. Indeed, feasibility rules for time and duration are satisfied for each vehicle type,
since travel time does not change from one type to another. Hence, during the join phase a column is generated for each
vehicle type k 2K such that wk P vfw + vbw. A similar approach can be applied to speed-up the bounding technique de-
scribed above: the values F can be computed just once, considering only the largest capacity value. The drawback of this ap-
proach is that it weakens the bounding condition (13); in fact, in order to perform a valid check, we have to consider at the
same time the capacity of the largest vehicle, and the smallest fixed costs mink2Kffk þ lkg.

Furthermore it is possible to deal with all the depots in a single run as follows. We enlarge the state space by introducing
different reduced cost (Ch), time consumption (sh), duration (dh) and time buffer (qh) resources for each depot h 2H. When a
forward label is extended from a node i to a node j and sh þ tij þ si > bj for a certain h 2H, the path is not feasible for depot
h: thus we set s0

h
¼ þ1. A similar argument applies to dh resources.

For what concerns domination rules, whenever two labels l
0

and l
00

satisfy conditions (a)–(d), (f) and (g) for a particular
depot h, resources s00

h
, d00

h
and C00h are set to +1, as label l00 can never yield an optimal path for depot h.

A forward label is fathomed when, due either to extensions, feasibility checks or dominance, it has sh > T/2 and dh > D for
each h 2H.

Finally, we observe that in each label reduced costs Ch and resources sh,dh and qh for each h 2H only differ for an offset
given by the first and last arc in the path. We exploit this observation by avoiding to store a value for each h 2H, and saving
memory by computing such offset at each check.

3.1.2. Heuristic dynamic programming
The heuristic dynamic programming pricing algorithm uses basically the same bi-directional label extension described

above, but dominance condition (a) on the set S of visited nodes is dropped.
Since in this way several labels representing promising paths are fathomed, an additional dominance condition is en-

forced, as explained hereafter.
For each label, we define a potential R(S,v) which is an upper bound on the amount of dual prizes k that can be collected

by completing the path.
In order to get a better evaluation of this potential, we reduce each coefficient ki by minj2NnSfdijg, since it is always needed

to select an outgoing arc from each visited node, and cycles are not allowed.
Then we consider the problem of selecting a subset of nodes which are not yet visited, whose overall demand still fits in

the residual capacity of the vehicle and whose potential is maximum. For a given vehicle type k, such problem can be for-
mulated as follows:

RðS;vÞ ¼ max
X

i2NnS
kizi; ð14Þ

s:t:
X

i2NnS
qizi 6 wk � v; ð15Þ

zi 2 f0;1g 8i 2N n S; ð16Þ
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where S represents the set of visited customers and v is the sum of their demands; binary variables zi are 1 if node i is se-
lected, 0 otherwise; constraint (15) is a capacity constraint. The objective (14) is to maximize the sum of the potential cor-
responding to the selected nodes.

Computing each R(S,v) value requires to solve a 0–1 Knapsack problem (Martello and Toth, 1990; Kellerer et al., 2005);
therefore, to speed-up the computation we approximate the potential by computing its continuous relaxation �RðS;vÞ: this
can be done in OðjNj log jNjÞ time; furthermore, the computation of �RðS;vÞ after each label extension can be done in linear
time through very efficient re-optimization techniques.

Therefore, in the heuristic pricing algorithm a label l0 = (S0,v0,s0,d0,q0,C0, i) dominates a label l00 = (S00,v00,s00,d00,q00,C00, i) if the
following conditions are met:

ð~aÞ �RðS0;v0ÞP �RðS00;v00Þ;
ð~bÞ v0 6 v00;
ð~cÞ s0 6 s00;

ð~dÞ d0 6 d00;

ð~f Þ C 0 6 C 00;

ð~gÞ d0 � q0 6 d00 � q00;

and at least one of these inequalities is strict. This results in a much larger number of dominations and reduces computa-
tional time; on the other hand, these conditions are necessary but not sufficient to allow dominance, and therefore we loose
optimality guarantees on the best path found.

Finally, by changing in sign each value �RðS;vÞwe also obtain a lower bound on the improvement one can get by extending
each label. Therefore, given the reduced cost /* of the best s � v path found so far, any label having

C � �RðS;vÞ þmin
k2K
flkg þmin

h2H
frhg �

ki

2
P /�;

is fathomed, because it cannot provide better solutions.

3.1.3. Greedy
In the greedy pricing algorithm a single label (S,v,s,d, q,C, i) is considered and iteratively extended to a single node with a

nearest neighbor policy.
Given a vehicle type k, we first compute the set R of reachable customers, that is the set of nodes j 2N satisfying the

following conditions

j R S;

vþ qj 6 wk;

maxfsþ si þ tij; ajg 6 T;
dþ ðsi þ tijÞ �minfq�maxfaj � ðsþ si þ tijÞ;0g;0g 6 D:

If R ¼ ; we close the path going back to the depot and we stop the search. Otherwise, among the customers in R, we select
the one that minimizes the path cost, that is

�j 2 argminj2Rfdij � kjg;

we extend the label to node �j using the same update rules described for the exact pricing algorithm, and we iterate.
It is still possible to simultaneously find routes for the different vehicle types: if the value vþ q�j exceeds the capacity wk of

some vehicle types, we generate a valid route for these types by closing the path with an arc from i to v. Then, if the capacity
of the largest vehicle is not reached, we add �j to the path and iterate.

This greedy algorithm is repeated for each depot h 2H.
We tried different policies for selecting the nearest neighbor at each iteration, without observing substantial differences.

3.2. 2-Path inequalities

To strengthen the lower bound we add violated 2-path inequalities. These cuts have been introduced by Kohl et al. (1999)
for the CVRPTW, extending an idea of Laporte et al. (1985). In this paper we use the same heuristic separation algorithm
described in Kohl et al. (1999). We search for a subset S �N such that the customers in S are served by less than two vehi-
cles in the fractional solution of the master problem, but require at least two vehicles in any integer solution. In particular,
this property holds for a set S in the following two cases: (a) if the capacity of the largest vehicle is not sufficient to satisfy
the demand of all the customers in S, (b) if there is no tour including all customers in S that respects their time windows,
and therefore does not exceed the maximum length T. While property (a) can simply be checked by inspection, property (b)
requires to compute a feasible Hamiltonian tour of customers in S, that is to solve an instance of TSP with Time Windows.
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However, when jSj is small the TSPTW feasibility problem can be easily solved by dynamic programming (see Dumas et al.
(1994)). We remark that the property holds in other cases as well, but these two are the only easily computable ones.

A 2-path inequality can take two forms. Both have been used in the literature (Baldacci and Mingozzi, 2009; Pessoa et al.,
2009), but to the best of our knowledge no comparison between them has ever been presented. In the following we perform
such a comparison, while in Section 4 we discuss different ways of handling 2-path inequalities in our algorithm.

The first form is the following:
X
h2H

X
k2K

X
r2Xhk

arSxr P 2; ð17Þ

where the coefficient arS is equal to the number of arcs (i, j) used by the route r such that i 2S and j R S. Coefficients arS

might be larger than 1, since it is not needed to the nodes in S to be visited consecutively.
The second form is:
X
h2H

X
k2K

X
r2Xhk j

P
i2S

airP1

xr P 2: ð18Þ

Since
P

i2Sair P 1 for each column encoding a path visiting a customer in S, the inequality forces to select at least two such
paths. One can show that any fractional solution satisfying inequalities (18) also satisfies inequalities (17); in fact, each col-
umn r whose variable does not appear in inequality (17) has no incoming arcs in S, hence no node in S is visited, and the
variable does not appear in inequality (18) either; at the same time whenever a variable appears in (18) it also appears in
(17) with a coefficient not smaller than (18), because it is always needed to select at least an incoming arc in S to visit
its nodes. In the same way, it is easy to show that there exist fractional solutions satisfying inequalities (17) but violating
inequalities (18). Therefore, the bound obtained by introducing (18) can be stronger than that found after introducing (17).

For example, let us consider Fig. 4, where three routes (bolded, dotted and dashed arcs), visit a subset S made by gray
nodes. Bolded and dashed routes enter S once, and have therefore coefficient a = 1, while dotted route interleaves nodes
inside and outside of S, entering S twice and having thus a = 2. Each route is fractionally selected with value 0.5: the cor-
responding amount of flow is reported next to each arc. The total incoming flow in S is 2.0, but the fractional number of
routes serving S is 1.5. Hence an inequality in the form (17) is respected, while the corresponding inequality in form
(18) is violated.

We embed the dynamic generation of these inequalities in a column generation scheme separating them at the end of the
column generation iterations; the separation algorithm described in Kohl et al. (1999) is used in any case. Whenever violated
cuts are found, column generation is executed again. This price-and-cut loop is repeated until neither negative reduced cost
columns nor violated cuts are found.

When we add 2-path inequalities to the master problem, they induce a new set of dual variables, which must be taken
into account in the solution of the pricing problem. Let p P 0 be the dual vector associated with these inequalities. When the
weak form (17) is used, the expression of the reduced costs of the routes must be modified by subtracting a term arSpðSÞ for
each 2-path inequality. This can simply be obtained considering modified arc costs

d̂ij ¼ dij �
X

S:i2S;j2NnS
pðSÞ:

This does not change the structure of the pricing problem. On the contrary, when the strong form (18) is used each
inequality (18) requires to introduce a new resource in the state of the dynamic programming algorithm. Such resource
is initialized at 1; after the first visit to a customer in S, the resource is set to 0, and the reduced cost of the label is decreased

Fig. 4. Partial fractional solution covering eight nodes of a sample instance.
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by the value of the corresponding dual variable. No label having one of these resources at 0 can dominate a label having the
corresponding resource at 1. Hence, the pricing problem becomes more and more time consuming as these inequalities are
introduced.

3.3. Branching strategy

We use two branching policies, described hereafter; these are analogous to those described in Salani (2006) and widely
used in the literature for the classical VRP. The tree search policy is discussed in Section 4.

3.3.1. Branching on the number of vehicles
Let �xr be the (possibly fractional) value of each variable xr in the optimal MP fractional solution and let yk ¼

P
r2Xk

�xr be the
(possibly fractional) number of vehicles of type k in such solution. We select the vehicle type �k whose corresponding y�k var-
iable has its fractional part closest to 0.5; then we perform binary branching, imposing to use at least dy�ke vehicles of type �k
in one child node and no more than by�kc in the other.

These branching decisions are handled as follows: first, we modify constraints (3) as follows:

lk 6
X

r2Xhk

xr 6 uk 8k 2K; ð19Þ

then we set l�k ¼ dy�ke in one child node, u�k ¼ by�kc in the other.
The advantage of this branching technique is to leave the pricing subproblem unchanged: dual variables lk still appear as

constants in the objective function of the pricing problem, but they are now unrestricted in sign. On the other hand con-
straints (19) belong to the MP, which is solved as a linear programming problem, and tightening them usually results in
rather weak improvements in the lower bound.

3.3.2. Branching on arcs
When yk is integer for all vehicle types k 2K, we apply a different branching rule which forbids the use of some arcs. We

choose the customer i 2N that is split among the largest number of routes in the optimal fractional solution of MP and we
forbid half of its outgoing arcs to be used in the first child node, and the other half to be used in the second child node. To
handle these branching decisions in the pricing problem it is enough to set travel time of forbidden arcs to +1.

4. Experimental analysis

4.1. Implementation and hardware

Our algorithms have been implemented in C++, using SCIP 1.1 (Achterberg, 2007) as a branch-and-cut-and-price frame-
work. Our version of SCIP embeds the CPLEX 11 implementation of the simplex algorithm to solve LP subproblems, and auto-
matically switches between primal and dual simplex, depending on the characteristics of each instance. SCIP performs
advanced management of the column and row pools, including their removal and re-insertion. We turned off preprocessing
and automatic cut generation features, but kept all other parameters at their default values, including the decision tree
search policy.

We also experimented on introducing stabilization techniques and using the barrier algorithm to solve the LP
subproblems.

In both cases we observed a reduction on the number of column generation iterations needed to converge, but the overall
performance improvement was negligible. This is because stabilization and the barrier methods help to reduce the number
of initial and useless column generation iterations, but in our case most of the CPU time was spent during few final column
generation iterations, when the exact dynamic programming algorithm is called. The use of our pricing heuristics can be con-
sidered itself as a useful tool to overcome stability problems.

The results reported in this section are obtained using a single core of an Intel Core 2 Duo 3 GHz workstation, equipped
with 2 GB of RAM, running Linux OpenSuse 11.

4.2. Benchmark instances

To test our algorithm we used three datasets.

� Dataset 1 is composed by instances for the HVRPTW proposed by Liu and Shen (1999), derived from the VRPTW instances
of Solomon (1987). The original dataset contains 56 problems. Each problem has 100 customers, whose position are gen-
erated in the Euclidean plane, and the travel time between nodes is equal to their Euclidean distance. These instances are
divided in six classes, depending on the geographical distribution of the customers: random (classes R1 and R2), clustered
(C1 and C2) or semi-clustered (RC1 and RC2). Sets R1, C1 and RC1 have a short scheduling horizon and allow for a small
number of customers per route. Sets R2, C2 and RC2 have a long scheduling horizon and allow for a large number of cus-
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tomers per route. Liu and Shen adapted Solomon’s problems to the heterogeneous fleet version by considering vehicles
with different capacities. For each of the six classes, three sets of fixed costs for the vehicles were considered, obtaining a
total of 168 instances. Since several of these instances are too hard to be solved to proven optimality, we created two new
sets of instances by restricting them respectively to the first 50 and 25 customers in the data files. All these instances have
a single depot, no constraints on maximum route duration and no limits on the number of vehicles. Therefore, our Dataset
1 is composed by a total of 504 instances.
� Dataset 2 includes 504 more instances, obtained by simply adding a second depot to each instance in Dataset 1. The coor-

dinates of this depot are randomly generated with uniform probability distribution in the smallest rectangle containing
all the customers.
� Dataset 3 contains four instances for the MDVRPTW from Cordeau et al. (2001). These are the smallest in their dataset and

include only one type of vehicle. In Table 1 we report for each instance in the dataset the number of customers, the num-
ber of depots, the maximum allowed duration of the route and the capacity of the vehicle.

All instances considered are symmetric.
Furthermore, we considered the MDHVRPTW instance discussed in Dondo and Cerdá (2009). As presented in Bettinelli

et al. (2009), this instance turned out to be very easy to solve using our algorithms, and therefore we omit further detail.
In the remainder we present the outcome of three different sets of experiments. In Section 4.3 we studied the trade-off

between the computing time and the tightness of the lower bounds obtained at the root nodes; in Section 4.4 we present the
performance of the overall branch-and-cut-and-price algorithm for the exact optimization of the three datasets; in Section
4.5 we discuss the effectiveness of the same algorithm when it is used as a column generation-based heuristic technique.

4.3. Lower bounds

It is known that by dropping elementary conditions on the path, that is running the exact pricing algorithm with decre-
mental state space relaxation and fixing the core fN ¼ ;, the RCESPP becomes more tractable (Righini and Salani, 2008). At
the same time, paths containing cycles are super-optimal, and by introducing the corresponding infeasible columns in the
RMP the bound is weakened. Nevertheless, the generation of valid inequalities can help in filling the same duality gap,
and there is a trade-off between the hardness of the pricing problem, the feasibility of the columns which populate the RMPs
and the strength of the cutting planes introduced.

Therefore, in the first set of experiments we compared the dual bounds that can be obtained at the root node of the
branch-and-bound tree with different combinations of pricing and cutting strategies.

We considered two pricing strategies: (StrongPrice) to generate columns using the greedy pricing algorithm, the heuristic
dynamic programming pricing algorithm and the exact dynamic programming pricing algorithm in sequence, as described in
Section 3.1; (WeakPrice) to generate columns by relaxing the elementary path conditions, and using the relaxed pricing pro-
cedure described above.

At the same time, we considered three cut generation strategies: (NoCut) without 2-path inequalities; (WeakCut) cuts in
the weak form (17); (StrongCut) cuts in the strong form (18). In strategies WeakCut and StrongCut we used the heuristic
described in Kohl et al. (1999) to perform cut separation.

A time limit of one hour was imposed to each test.
Tables 2–4 show the results we obtained on the instances of Dataset 1 using respectively NoCut, WeakCut or StrongCut.

Each table has one row for each class of instances and their columns indicate the class name, the size and the total number of
instances for which the time limit was not exceeded, the average number of column generation iterations needed to con-
verge, the average number of generated cuts, the average duality gap with respect to the best known integer solution and
the average time spent during column generation for the two pricing strategies.

As expected, the CPU time increases as the size of the instance increases; the duality gap is not always small: since it is
computed using best known primal solutions, this might also depend on poor primal bounds.

We noticed that even finding a valid bound within the time limit is sometimes a difficult task; this becomes more evident
as more aggressive cut handling strategies are applied. For instance, a valid bound is obtained on 13 C2 instances with
jNj ¼ 100 using StrongPrice, but the price-and-cut loop terminates only 12 times using WeakCut and only 10 times using
StrongCut (see Tables 2–4).

No relevant difference can be observed by varying the fixed costs of the vehicles (instances a, b and c in each class).
The most noticeable performance gap on Dataset 1 is between Type 1 (R1,C1,RC1) and Type 2 (R2,C2,RC2) instances: the

Table 1
Details of instances in Dataset 3.

Instance Customers Depots Duration Capacity

pr01 48 4 500 200
pr02 96 4 480 195
pr07 72 6 500 200
pr08 144 6 475 190

A. Bettinelli et al. / Transportation Research Part C 19 (2011) 723–740 733



Author's personal copy

computation successfully terminates on almost all Type 1 instances, with both pricing strategies and with all cut handling
strategies, while timeout expires more often on Type 2 instances as the size of the instances increases. In fact, Type 2 in-
stances have loose capacity constraints, long time horizons and large time windows; this means longer feasible routes
and far more numerous labels generated by the pricing algorithm.

Instances in Class C2 show a particular characteristic: they require more column generation iterations and less computing
time, and the final duality gap is larger. This can be explained because fractional solutions can exploit both the cluster struc-
ture and the capacity of small vehicles, while integer solutions in general cannot.

Comparing the results reported on the same rows in each table (different pricing strategies, same cutting strategy) one
can see that WeakPrice is much faster: on average more column generation iterations are needed to converge, but the re-
quired CPU time is a small fraction of that required by StrongPrice. In fact, more columns are feasible using WeakPrice: a
larger number of columns has to be explored before reaching convergence, even though each of them is easier to generate.
However, when a valid bound is found using StrongPrice, the duality gap is significantly smaller. This behavior is observed
for all cut strategies.

Table 2
Lower bounds without cut generation.

Set Size StrongPrice WeakPrice

Solved Iterations LB (%) Time Solved Iterations LB (%) Time

R1 25 36 40.33 0.80 0.11 36 76.42 2.04 0.16
50 36 71.36 2.36 2.08 36 179.69 3.72 1.71

100 35 145.91 4.69 287.94 36 441.89 5.74 41.96

C1 25 27 47.26 6.12 0.31 27 71.74 6.84 0.13
50 27 86.15 5.97 2.86 27 149.48 6.59 0.89

100 26 168.65 6.68 167.42 27 294.50 7.20 6.01

RC1 25 24 42.88 3.86 0.38 24 73.54 8.52 0.16
50 24 90.04 9.68 7.37 24 156.04 12.33 1.03

100 24 168.38 7.35 427.75 24 412.54 9.52 35.17

R2 25 22 124.00 8.36 232.30 33 140.77 26.86 11.47
50 7 241.29 10.15 301.01 24 381.57 22.73 32.91

100 2 521.00 8.28 1248.17 3 2276.50 14.35 635.39

C2 25 20 187.70 19.61 234.50 24 136.55 26.60 3.96
50 15 315.20 14.31 397.24 21 297.53 18.53 24.97

100 13 1025.00 9.96 1103.55 20 1198.92 11.98 231.87

RC2 25 19 51.26 2.36 161.35 24 114.37 20.48 1.69
50 13 99.54 0.50 222.90 22 330.85 16.26 95.97

100 5 208.00 4.70 1098.81 15 553.20 9.90 97.81

Table 3
Lower bounds with WeakCut.

Set Size StrongPrice WeakPrice

Solved Iterations Cuts LB (%) Time Solved Iterations Cuts LB (%) Time

R1 25 36 41.00 1.17 0.61 0.11 36 79.22 1.89 1.81 0.14
50 36 73.22 0.81 2.29 1.58 36 187.00 4.22 3.49 1.81

100 35 141.34 0.97 4.68 192.56 36 448.49 4.57 5.67 53.35

C1 25 27 45.74 0.07 6.12 0.38 27 74.70 0.74 6.83 0.11
50 27 83.44 0.04 5.97 1.64 27 151.59 2.78 6.58 0.84

100 26 162.85 0.04 6.68 98.51 27 300.04 31.23 7.17 7.02

RC1 25 24 42.92 0.38 2.90 0.50 24 86.38 11.00 6.98 0.18
50 24 89.58 2.92 8.35 8.64 24 187.63 31.17 10.36 1.46

100 24 166.04 5.46 7.12 428.47 24 471.67 61.38 8.98 65.01

R2 25 22 117.95 0.05 8.35 173.62 33 146.23 0.14 27.58 16.99
50 7 241.29 0.00 10.15 301.01 24 441.29 0.14 22.74 41.76

100 2 459.00 0.00 8.28 1378.22 3 2225.00 16.00 14.14 954.97

C2 25 20 169.40 0.10 18.04 232.46 24 142.50 0.10 25.06 4.27
50 15 315.40 1.47 13.97 397.25 22 314.27 2.27 18.17 22.33

100 12 1195.42 0.00 10.28 1442.24 19 1233.50 8.92 12.39 237.01

RC2 25 19 49.32 0.00 7.62 66.35 24 122.15 2.40 19.60 2.30
50 13 99.54 0.00 0.50 222.90 22 365.31 14.23 19.31 153.80

100 5 203.60 0.00 4.70 1055.61 13 641.80 22.80 9.62 167.56
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Comparing the results reported in the same block in different tables (same pricing strategy, different cutting strategy),
one can see that few cuts are generated with StrongPrice; however, as expected, many more are found with WeakPrice. Cuts
are especially effective for WeakPrice in class RC; StrongCut is useful in particular in small R2 and C2 instances, when it is
combined with StrongPrice.

For some instances the use of cuts improves the bound and reduces the time as well. A preprocessing rule was responsible
for this counter intuitive result: using NoCut when a dual variable ki is 0, the corresponding customer i is removed from the
pricing problem; when cuts are introduced, p dual variables can make it appealing to visit such customers: this helps heu-
ristic pricing in finding ‘‘good” columns earlier, and therefore in speeding up the computation.

We chose to use StrongPrice with WeakCut as the best trade-off. In this way we were able to complete the price-and-cut
loop at the root node within the time limit for all instances but one, still obtaining tight dual bounds and allowing the heu-
ristic generation of good columns.

4.4. Branch-and-cut-and-price

In the second set of experiments we let our algorithm perform an exact optimization of each instance in the three Data-
sets. For these tests we used StrongPrice, heuristic separation of inequalities (17), WeakCut and the branching policy de-
scribed in Section 3.3. We turned off all SCIP general purpose heuristics, but fracdiving and RENS (Timo Berthold, 2006)
which proved effective in preliminary tests.

A time limit of one hour was imposed to each test.
Tables 5–7 show the results we obtained on the instances of Dataset 1, Dataset 2 and Dataset 3 respectively. As before,

each table has one row for each class of instances. In the columns of each table we report in turn the class name, the number
of instances solved to proven optimality within the time limit, the average optimality gap on the instances for which
optimality was not proved and the average solution time for the solved instances. We remark that for some instances the
time limit did not allow even to find an initial dual bound, as reported in Tables 2–4. These have been excluded from this
test.

Type 2 classes confirm to be much harder than Type 1. The exact algorithm is fully effective only on small instances: al-
most all Type 1 classes with 25 customers, 1/3 of those with 50 customers and only 5 of the largest ones are solved to proven
optimality. Much less Type 2 instances are solved. On small instances the algorithm is also fast: few seconds are enough to
complete each computation. An unexpected bad behavior is observed in class RC1a. By comparing Table 5 with Tables 3 and
8a we notice that the difficulty consists in finding a good primal bound.

Comparing Tables 7, 5 and 6, we conclude that handling multiple depots is not an issue in our algorithm. In fact, even the
instance with 72 customers and 6 depots of Dataset 3, involving identical vehicles, can be easily solved. Indeed, our feeling is
that managing a heterogeneous fleet is what really complicates the problem: multiple depots naturally favor geometric par-
titions of customers, and therefore the generation of less overlapping routes, without complicating the pricing algorithm.
This is not the case for heterogeneous vehicles: good routes for vehicles with different capacity can be substantially different,
and there are no geometric properties to exploit.

Table 4
Lower bounds with StrongCut.

Set Size StrongPrice WeakPrice

Solved Iterations Cuts LB (%) Time Solved Iterations Cuts LB (%) Time

R1 25 36 41.00 1.17 0.61 0.12 36 78.94 1.75 1.78 0.14
50 36 73.22 0.81 2.29 1.58 36 187.00 3.89 3.43 1.85

100 35 141.34 1.03 4.68 193.34 36 451.83 4.49 5.62 59.04

C1 25 27 45.74 0.07 6.12 0.38 27 75.15 0.81 6.81 0.12
50 27 83.44 0.04 5.97 1.64 27 152.22 3.41 6.55 0.95

100 26 162.85 0.04 6.68 103.35 27 303.81 25.77 7.12 44.55

RC1 25 24 42.92 0.38 2.90 0.50 24 87.63 8.29 5.97 0.39
50 24 89.58 2.92 7.38 8.64 24 190.67 29.58 8.28 8.70

100 23 165.35 5.70 7.00 376.51 24 492.43 45.74 8.34 165.24

R2 25 22 117.91 0.05 8.33 172.23 33 144.91 0.09 26.90 17.50
50 7 241.29 0.00 10.15 301.86 24 446.00 0.14 22.64 43.45

100 2 459.00 0.00 8.28 1421.31 3 2254.50 9.50 14.03 1384.21

C2 25 20 180.15 0.10 18.04 229.87 24 155.95 0.10 25.06 4.41
50 15 315.33 1.47 13.97 400.77 22 324.80 2.53 18.03 26.00

100 10 1176.60 0.00 10.40 1039.42 19 1213.20 4.20 12.20 225.33

RC2 25 19 49.32 0.00 2.36 67.20 24 125.68 2.16 19.04 3.11
50 13 99.54 0.00 0.50 225.78 22 418.69 12.54 12.83 506.07

100 5 201.25 0.00 4.76 871.94 10 722.50 17.75 9.52 731.18
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4.5. Column generation-based heuristics

While, to the best of our knowledge, no exact algorithm for the MDHVRP has been proposed so far, in the literature a few
algorithms showed to perform very well in heuristically solving the problem.

Hence, in the third set of experiments we tuned our algorithm to produce good integer solutions faster: we truncated the
optimization process at the root node of the branching tree; then, we tried to combine the columns in the final RMP in a good
integer solution. In particular, we considered two adaptations.

� In Algorithm iRMP, the column generation process is stopped after a given time limit a, or when no negative reduced cost
column is found; then, integrality conditions on the variables of the RMP are restored, and CPLEX 11 ILP solver is invoked
to optimize the ILP problem obtained in this way. CPLEX optimization is stopped after a time limit b, or when optimality is
proved.
� In Algorithm Fix&Gen, column generation is performed for up to a given time limit c; then, each variable taking value 1 in

the final RMP fractional solution, and the remaining variable with highest fractional value, are fixed to 1. The reduced
problem obtained in this way is re-optimized by performing again column generation for up to a time limit c. This column
generation and fixing process is iterated, until a full integer solution is found.

We compared the results of Algorithms iRMP and Fix&Gen with those obtained by the algorithms of Liu and Shen (LS) (Liu
and Shen, 1999), Belfiore and Fávero (BF) (Belfiore and Fávero, 2007), Dell’Amico et al. (DAMPV) (Dell’Amico et al., 2007). We
restricted our test to Dataset 1, since algorithms LS, BF and DAMPV have been tested on these instances only.

Table 5
Results of the exact algorithm on instances in Dataset 1.

Class Size Solved Gap (%) Time Set Size Solved Gap (%) Time

R1a 25 12 0.00 3.59 R2a 25 4 40.35 265.71
50 7 2.61 452.34 50 1 0.00 1201.98

100 0 5.04 – 100 0 – –

R1b 25 11 0.55 1.42 R2b 25 5 4.21 569.78
50 7 2.91 186.69 50 1 18.99 182.77

100 1 8.28 271.15 100 0 19.88

R1c 25 12 0.00 1.88 R2c 25 9 6.59 433.17
50 8 4.11 631.20 50 2 18.14 486.85

100 2 10.50 394.75 100 0 9.83 –

R1 25 35 0.55 2.32 R2 25 18 13.84 433.90
50 22 3.15 432.85 50 4 18.71 589.61

100 3 7.76 353.55 100 0 14.86 –

C1a 25 9 0.00 7.91 C2a 25 5 65.18 24.35
50 0 0.67 – 50 3 36.21 801.53

100 0 2.22 – 100 0 4.77 –

C1b 25 7 0.79 118.76 C2b 25 7 0.00 312.46
50 1 1.83 0.00 50 4 26.20 162.30

100 0 3.69 – 100 0 16.41 –

C1c 25 8 3.32 5.44 C2c 25 7 0.00 30.37
50 1 3.32 647.69 50 4 0.26 151.48

100 2 1.27 1453.95 100 0 12.05 –

C1 25 24 1.63 39.42 C2 25 19 65.18 132.71
50 2 1.89 323.85 50 11 15.73 332.70

100 2 2.48 1453.95 100 0 12.65 –

RC1a 25 1 3.23 120.25 RC2a 25 3 5.36 167.13
50 0 10.35 – 50 3 3.38 683.29

100 0 6.01 – 100 0 9.30 –

RC1b 25 8 0.00 6.27 RC2b 25 6 0.00 80.47
50 2 6.86 78.23 50 4 0.00 95.47

100 0 12.37 – 100 0 9.90 –

RC1c 25 8 0.00 0.87 RC2c 25 7 0.00 356.01
50 3 6.66 55.15 50 5 0.00 339.04

100 0 10.25 – 100 0 9.40 –

RC1 25 17 3.23 10.43 RC2 25 16 5.36 217.26
50 5 8.27 64.38 50 12 3.38 343.91

100 0 9.54 – 100 0 9.44 –
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We remark that, although no a-priori optimality guarantee is given by this procedure, the dual bound obtained by column
generation allows us to control the quality of the final solution. This cannot be done in any of the LS, BF and DAMPV
algorithms.

In Table 8a we report the results of our experiments. The table contains a row for each class of instances in the dataset,
and is composed by different blocks, one for each algorithm, as indicated in the leading row. The columns in the first block
report the average value of the best solution found by LS and the average CPU time spent; each subsequent block includes
the percentage improvement with respect to the value of the LS solution and the average CPU time spent. The CPU time val-
ues for algorithms LS, BF and DAMPV are taken from the original papers: according to Dongarra (2009) the CPU time reported
in LS, BF, and DAMPV should be scaled respectively by a factor 20, 2 and 10 in order to be equivalent to CPU time in our
computer.

First, in order to get roughly the same computing time of DAMPV, we tried to use iRMP algorithm by fixing a to 10 min
and b to 5 min. In Type 1 instances iRMP is consistently the best, especially in terms of average solutions cost. In classes R2a
and C2a, however, iRMP performs poorly.

Table 6
Results of the exact algorithm on instances in Dataset 2.

Class Size Solved Gap (%) Time Class Size Solved Gap (%) Time

R1a 100 0 4.90 – R2a 100 0 – –
50 4 1.92 351.58 50 0 11.09 –
25 12 0.00 11.71 25 3 31.85 145.67

R1b 100 1 9.19 52.55 R2b 100 0 – –
50 5 3.06 455.72 50 0 20.55 –
25 10 0.04 2.87 25 4 11.90 207.95

R1c 100 1 7.06 127.23 R2c 100 0 9.67 –
50 7 4.68 599.23 50 1 18.91 139.44
25 11 0.00 1.06 25 6 12.13 170.72

R1 100 2 6.84 89.89 R2 100 0 9.67 –
50 16 2.97 492.47 50 1 18.42 139.44
25 33 0.02 5.48 8 13 14.51 176.39

C1a 100 0 3.45 – C2a 100 0 24.37 –
50 0 0.92 – 50 2 15.38 180.24
25 8 0.29 445.40 25 6 0.00 100.98

C1b 100 0 5.21 – C2b 100 0 22.03 –
50 0 3.32 – 50 4 30.71 818.75
25 7 2.14 245.84 25 7 0.00 134.60

C1c 100 2 1.78 1948.98 C2c 100 0 14.86 –
50 0 4.13 – 50 3 11.62 1095.53
25 7 0.31 305.59 25 7 0.00 59.73

C1 100 2 3.69 1948.98 C2 100 0 19.93 –
50 0 2.79 – 50 9 16.06 769.12
25 22 1.04 337.42 25 20 0.00 98.31

RC1a 100 0 7.03 – RC2a 100 0 9.88 –
50 0 11.16 – 50 1 1.59 114.18
25 1 4.50 998.31 25 4 7.35 164.88

RC1b 100 0 11.35 – RC2b 100 0 9.85 –
50 2 9.65 189.42 50 4 0.00 592.67
25 8 0.00 351.47 25 5 0.78 39.45

RC1c 100 0 9.86 – RC2c 100 0 3.49 –
50 4 10.57 285.75 50 5 0.00 619.54
25 8 0.00 34.08 25 7 0.00 314.71

RC1 100 0 9.53 – RC2 100 0 8.28 –
50 6 10.53 253.64 50 10 1.59 558.26
25 17 4.50 240.16 25 16 5.71 191.24

Table 7
Results of the exact algorithm on instances in Dataset 3.

Instance Customers Depots Duration Capacity UB LB Gap (%) Time

pr01 48 4 500 200 1074.21 1074.21 0.00 2.21
pr07 72 6 500 200 1418.22 1418.22 0.00 834.94
pr02 96 4 480 195 1851.99 1743.53 5.86 3600.02
pr08 144 6 475 190 – – – –
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We found out that limit a affects the performance of iRMP more than limit b: since columns in iRMP are generated to be
good for fractional solutions, their quality for integer solutions is not guaranteed, especially during the first column gener-
ation iterations. Therefore, we also tested iRMP by increasing both a and b to 60 min. No substantial difference was observed
in Type 1 classes, since the time limit was almost never exceeded; iRMP improved solutions on Type 2 classes, but still per-
formed worse than other methods in classes R2a and C2a.

Then, we tested Fix&Gen setting time limit c to 1 min. Indeed, this heuristic is both faster and more accurate, especially in
Type 2 classes. We also tried to increase the time limit c up to 3 min, and we verified that the quality of the solutions keeps
improving.

Finally, we tested Fix&Gen by fixing c to 60 min for the first iteration and to 3 min for the subsequent iterations. On the
average the quality of solutions improved, especially in difficult classes (i.e., R2 and C2), even though in some classes (i.e.,
R1b, C1b, C1c and RC1c) this is not the case. This result is obtained at the expense of a significant increase in computing time.

We also tested our algorithms on Dataset 3, which is difficult because all vehicles have to be used in any feasible integer
solution. This makes, in fact, local search more appropriate than iterative route generation. Furthermore, the fixing of a col-
umn is likely to affect the overall solution, or even to make it impossible to obtain a feasible one; this effect is more evident
when time limit c is small, and is therefore needed to fix one of the columns produced in early column generation iterations.
Nevertheless, we still obtain good results, matching the best known solution in 2 instances and obtaining solutions whose
value is within 4% of the best known.

The choice of the right heuristic is obviously instance-dependent. However, Fix&Gen seems to give the best trade-off be-
tween quality of the solution and computational effort, especially setting c between 1 and 3 min.

5. Conclusions

In this paper we have exploited the intrinsic flexibility of a known mathematical programming framework to solve an
important optimization problem in distribution logistics, namely the MDHVRPTW.

Besides being flexible the method allows for different combinations of cutting and pricing strategies. We have presented
an experimental evaluation of these strategies in terms of lower bound tightness and computing time. This suggests to inves-
tigate mixed strategies: for instance it may be appealing to initialize the RMP using WeakPrice, repair the columns in the
RMP by removing cycles, then switch to StrongPrice, including WeakCut in the price-and-cut loop. A switch to StrongCut
has to be considered only at the end of this process, if the duality gap is still large. Since the number of column generation
iterations using WeakPrice is sometimes large, the introduction of a stabilization technique seems appropriate (Rousseau
et al., 2007).

When the size of the instance prevents the algorithm to find provably optimal solutions, it is still possible to use the algo-
rithm as a column generation-based heuristic, which is competitive and often better than constructive or local search-based
heuristics from the literature, with the additional advantage of providing also dual bounds.

Finally our experimental results reveal that what makes the MDHVRPTW difficult is the number of different vehicle types
rather than the presence of multiple depots. The tightness of the time windows also plays an important role as already high-
lighted in the literature.
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